
HL Paper 3
In this question you will be exploring the strategies required to solve a system of linear differential equations.
Consider the system of linear differential equations of the form:
and ,
where and is a parameter.
First consider the case where .
Now consider the case where .
Now consider the case where .
From previous cases, we might conjecture that a solution to this differential equation is , and is a constant.
By solving the differential equation , show that where is a constant.
Show that .
Solve the differential equation in part (a)(ii) to find as a function of .
By differentiating with respect to , show that .
By substituting , show that where is a constant.
Hence find as a function of .
Hence show that , where is a constant.
Show that .
Find the two values for that satisfy .
Let the two values found in part (c)(ii) be and .
Verify that is a solution to the differential equation in (c)(i),where is a constant.
In this question you will explore some of the properties of special functions and and their relationship with the trigonometric functions, sine and cosine.
Functions and are defined as and , where .
Consider and , such that .
Using , find expressions, in terms of and , for
The functions and are known as circular functions as the general point () defines points on the unit circle with equation .
The functions and are known as hyperbolic functions, as the general point ( ) defines points on a curve known as a hyperbola with equation . This hyperbola has two asymptotes.
Verify that satisfies the differential equation .
Show that .
.
.
Hence find, and simplify, an expression for .
Show that .
Sketch the graph of , stating the coordinates of any axis intercepts and the equation of each asymptote.
The hyperbola with equation can be rotated to coincide with the curve defined by .
Find the possible values of .
Consider the functions , : defined by
and .
Find .
Find .
State with a reason whether or not and commute.
Find the inverse of .
This question asks you to explore cubic polynomials of the form for and corresponding cubic equations with one real root and two complex roots of the form for .
In parts (a), (b) and (c), let and .
Consider the equation for .
Consider the function for .
Consider the function for where and .
The equation for has roots and where and .
On the Cartesian plane, the points and represent the real and imaginary parts of the complex roots of the equation .
The following diagram shows a particular curve of the form and the tangent to the curve at the point . The curve and the tangent both intersect the -axis at the point . The points and are also shown.
Consider the curve for . The points and are as defined in part (d)(ii). The curve has a point of inflexion at point .
Consider the special case where and .
Given that and are roots of the equation, write down the third root.
Verify that the mean of the two complex roots is .
Show that the line is tangent to the curve at the point .
Sketch the curve and the tangent to the curve at point , clearly showing where the tangent crosses the -axis.
Show that .
Hence, or otherwise, prove that the tangent to the curve at the point intersects the -axis at the point .
Deduce from part (d)(i) that the complex roots of the equation can be expressed as .
Use this diagram to determine the roots of the corresponding equation of the form for .
State the coordinates of .
Show that the -coordinate of is .
You are not required to demonstrate a change in concavity.
Hence describe numerically the horizontal position of point relative to the horizontal positions of the points and .
Sketch the curve for and .
For and , state in terms of , the coordinates of points and .
This question asks you to explore the behaviour and some key features of the function , where and .
In parts (a) and (b), only consider the case where .
Consider .
Consider , where .
Now consider where and .
By using the result from part (f) and considering the sign of , show that the point on the graph of is
Sketch the graph of , stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.
Use your graphic display calculator to explore the graph of for
• the odd values and ;
• the even values and .
Hence, copy and complete the following table.
Show that .
State the three solutions to the equation .
Show that the point on the graph of is always above the horizontal axis.
Hence, or otherwise, show that , for .
a local minimum point for even values of , where and .
a point of inflexion with zero gradient for odd values of , where and .
Consider the graph of , where , and .
State the conditions on and such that the equation has four solutions for .
This question asks you to explore the behaviour and key features of cubic polynomials of the form .
Consider the function for and where is a parameter, .
The graphs of for and are shown in the following diagrams.
On separate axes, sketch the graph of showing the value of the -intercept and the coordinates of any points with zero gradient, for
Hence, or otherwise, find the set of values of such that the graph of has
Given that the graph of has one local maximum point and one local minimum point, show that
Hence, for , find the set of values of such that the graph of has
.
.
Write down an expression for .
a point of inflexion with zero gradient.
one local maximum point and one local minimum point.
no points where the gradient is equal to zero.
the -coordinate of the local maximum point is .
the -coordinate of the local minimum point is .
exactly one -axis intercept.
exactly two -axis intercepts.
exactly three -axis intercepts.
Consider the function for and where .
Find all conditions on and such that the graph of has exactly one -axis intercept, explaining your reasoning.
This question asks you to explore properties of a family of curves of the type for various values of and , where .
On the same set of axes, sketch the following curves for and , clearly indicating any points of intersection with the coordinate axes.
Now, consider curves of the form , for , where .
Next, consider the curve .
The curve has two points of inflexion. Due to the symmetry of the curve these points have the same -coordinate.
is defined to be a rational point on a curve if and are rational numbers.
The tangent to the curve at a rational point intersects the curve at another rational point .
Let be the curve , for . The rational point lies on .
Write down the coordinates of the two points of inflexion on the curve .
By considering each curve from part (a), identify two key features that would distinguish one curve from the other.
By varying the value of , suggest two key features common to these curves.
Show that , for .
Hence deduce that the curve has no local minimum or maximum points.
Find the value of this -coordinate, giving your answer in the form , where .
Find the equation of the tangent to at .
Hence, find the coordinates of the rational point where this tangent intersects , expressing each coordinate as a fraction.
The point also lies on . The line intersects at a further point. Determine the coordinates of this point.
This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.
A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.
For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are and .
The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.
For an -sided regular polygon, where , the th polygonal number is given by
, where .
Hence, for square numbers, .
The th pentagonal number can be represented by the arithmetic series
.
For triangular numbers, verify that .
The number is a triangular number. Determine which one it is.
Show that .
State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.
For , sketch a diagram clearly showing your answer to part (b)(ii).
Show that is the square of an odd number for all .
Hence show that for .
By using a suitable table of values or otherwise, determine the smallest positive integer, greater than , that is both a triangular number and a pentagonal number.
A polygonal number, , can be represented by the series
where .
Use mathematical induction to prove that where .
Let be the set . Let be the set .
A function is defined by .
Let be the set .
A function is defined by .
(i) Sketch the graph of and hence justify whether or not is a bijection.
(ii) Show that is a group under the binary operation of multiplication.
(iii) Give a reason why is not a group under the binary operation of multiplication.
(iv) Find an example to show that is not satisfied for all .
(i) Sketch the graph of and hence justify whether or not is a bijection.
(ii) Show that for all .
(iii) Given that and are both groups, explain whether or not they are isomorphic.
This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree and .
The cubic equation , where , has roots and .
Consider the equation , where .
Noah believes that if then and are all real.
Now consider polynomial equations of degree .
The equation , where , has roots and .
In a similar way to the cubic equation, it can be shown that:
.
The equation , has one integer root.
By expanding show that:
.
Show that .
Hence show that .
Given that , deduce that and cannot all be real.
Using the result from part (c), show that when , this equation has at least one complex root.
By varying the value of in the equation , determine the smallest positive integer value of required to show that Noah is incorrect.
Explain why the equation will have at least one real root for all values of .
Find an expression for in terms of and .
Hence state a condition in terms of and that would imply has at least one complex root.
Use your result from part (f)(ii) to show that the equation has at least one complex root.
State what the result in part (f)(ii) tells us when considering this equation .
Write down the integer root of this equation.
By writing as a product of one linear and one cubic factor, prove that the equation has at least one complex root.