ATOMIC STRUCTURE AHL (HL only)

Please ensure that you have also completed the Atomic Structure Core (SL & HL) questions

1. (a) Give the definition of <i>first ionisation energy</i> : [2]
(b) State the electron configurations of sodium and potassium. State and explain how the first ionisation energy of sodium compares with potassium.
[3]
(c) Describe how the first five successive ionisation energies of silicon vary (you may wish to sketch
a graph to illustrate your answer). [3]
[3]

2. The chart below shows the first ionisation energies of the elements for the first twenty elements in the period table.

(a) Explain why is there an overall increase in ionisation energy between elements 3 and 10.

[2]

(b) Explain why is there a decrease is ionisation energy between elements 4 and 5.

L-1

[1]

Explain why there is	s a large decre	ase in ionisatior	n energy betwe	en elements 10	and 11
				••••••	
The successive ionisa	ation energies	of an element i	n period 3 are s	shown in the tab	ole:
The successive ionisation Energy	1st	2nd	3rd	4th	5th
					T
onisation Energy	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578	2nd 1817	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹) Identify the period 3	1st 578 3 element repr	2nd 1817 resented. Explai	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹) Identify the period 3	1st 578 3 element repr	2nd 1817 resented. Explai	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹) Identify the period 3	1st 578 3 element repr	2nd 1817 resented. Explai	3rd 2745	4th 11578	5th
onisation Energy (kJ mol ⁻¹)	1st 578 3 element repr	2nd 1817 resented. Explai	3rd 2745	4th 11578	5th

\uparrow	
	n=4
Energy	n=3
<u>ш</u>	n=2
	n=1
(a) Draw an arrow on the diagra atom of hydrogen in the ground	am to represent the electron transition for the ionisation of an d state.
(b) The wavelength of the conv Using the appropriate values fo	ergence point in the hydrogen emission spectrum is 9.12×10^{-8} m. or the speed of light (c) and Planck's constant (h) given in the data the first ionisation energy of hydrogen. Show your working.
	[3]

4. The diagram below represents some of the electronic energy levels in a hydrogen atom.