EQUILIBRIUM Core (SL & HL)

1. (a) Consider the equilibrium: $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$
(i) Write an expression for the equilibrium constant, K _c , for the reaction.
(ii) Distinguish between the terms reaction quotient, Q, and equilibrium constant, K _c .
[1]
(iii) State why this equilibrium reaction is considered homogeneous. [1]
(iv) Initially, an equal number of moles of CO (g) and H_2O (g) only are present in a cylinder and are allowed to reach equilibrium at 800°C. At 800°C, K_c = 4.0 for the reaction.
Sketch a graph to show the change in concentration of the reactants and products with time until
the equilibrium is established. [4]

(v) The forward reaction in (a) is exothermic. State and explain the effect on the value of K_c if
temperature is increased. [2]
(vi) State the effect on the position of equilibrium and the value of K_c if a catalyst is used.
[2]
2 (a) The Haber process is used to produce ammenia:
2. (a) The Haber process is used to produce ammonia:
$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
(i) State and explain how the equilibrium would be affected by increasing the volume of the
container at constant temperature.
[3]
(ii) The percentage yield of ammonia is 25% at 400°C and 11% at 500°C. State and explain whether
the reaction is exothermic or endothermic in the forward direction.
[2]