Let 
$$f(x) = 2x^4 + x^3 - 14x^2 + 5x + 6$$
,  $x \in \mathbb{R}$ 

- a. For the polynomial equation f(x) = 0, find the value of
  - i. the sum of the roots
  - ii. the product of the roots
- b. A new polynomial is defined by g(x) = f(x 2). Find the sum of the roots of the equation g(x) = 0

A. 
$$2x^4 + x^3 - 14x^2 + 5x + 6 = 0$$
  
Sum of roots =  $-\frac{1}{2}$   
Product of roots = 3

В.

$$y=f(x)$$
 has 4 roots  $y=g(x)=f(x-2)$  The graph is translated 2 units to the right. Each root is translated 2 units to the right (value increase by 2) Sum of roots  $=-\frac{1}{2}+4\times 2$  Sum of roots  $=7\frac{1}{2}$ 

