During an air show, two planes, A and B, perform a manoeuvre in which their paths cross in a *near miss*. The two planes are flying at the same altitude.

$$\mathbf{r}_A = \begin{pmatrix} 150 \\ 320 \end{pmatrix} + t \begin{pmatrix} 200 \\ 300 \end{pmatrix}$$

$$\mathbf{r}_{B} = \begin{pmatrix} 875\\110 \end{pmatrix} + t \begin{pmatrix} -100\\400 \end{pmatrix}$$

t = time in seconds. Distances are given in metres.

- a) Show that the two planes cross paths, but the planes do not collide
- b) Find the distance between the planes when t = 0.
- c) Show that the distance d between A and B at any time t can be given by the expression

$$d = \sqrt{100000t^2 - 477000t + 569725}$$

d) To the nearest metre, find the closest distance that the two planes get to one another.

since
$$\begin{pmatrix} -100 \\ 400 \end{pmatrix} \neq k \begin{pmatrix} 200 \\ 300 \end{pmatrix}$$
 the direction of the planes is not parallel

Therefore, their paths will cross.

$$f_A = {150 \choose 320} + t {200 \choose 300}$$

The or positions of the planes are the same when t = 2.42

The y positions of the planes are the same when t=2.1

Hence the planes do not collide.

b) When
$$t=0$$
 $C_{A} = \begin{pmatrix} 150 \\ 320 \end{pmatrix}$ $C_{B} = \begin{pmatrix} 875 \\ 110 \end{pmatrix}$

Closest distance 2 30 m