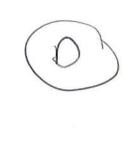
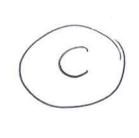
## Paper 1






2. 
$$e = \frac{m}{V}$$

$$e \propto \frac{m}{l^3}$$


So 
$$\Delta P = \Delta M + 3\Delta L$$

"percentage = 8%+ 3×4%

uncertainty" = 20%



$$v^2 = u^2 + 2as$$
  
 $0 = 20^2 + 2(-4)s$   
 $8s = 400$   
 $s = 50m$ 



4. Notice the axes! BUT "projectile", "airresistance negligible"

Q (→) no force, velocity constant

mg (1) resultant force, magnitude increases (A)

S. Notice the axes! Need an equation without t...

v=u2+2as "a constant" v2x8:.vxJs A



|       |                                                                                                                               | ww.mmking.ner           |
|-------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6.    | Consider X it's accelerating (→) so                                                                                           | needs                   |
|       | Frictional forces are same type acting on                                                                                     | different               |
|       | Frictional forces are same type acting an bodies. It's an N3 pair!                                                            | A                       |
|       |                                                                                                                               |                         |
| 7.    | Circular motton so resultant force is toward                                                                                  | udo centre              |
|       | (horizontal, incidentally). Force and vel                                                                                     | ocity are               |
|       | Circular motton so resultant force is toward (horizontal, incidentally). Force and vel always at right angles so no work done | 2. (A)                  |
| 8.    | Energies! EPE of spring -> KE of                                                                                              | object                  |
|       | Energies! EPE of spring -> KE of $\frac{1}{2}kx^2 = \frac{1}{2}mv^2$ (                                                        | or diagram)             |
|       | $\chi^2 \propto \sqrt{2}$                                                                                                     |                         |
|       | don't know $\chi \chi \chi$                                                                                                   | $\binom{\mathcal{B}}{}$ |
|       | Impulse = Ft = don't know                                                                                                     |                         |
|       |                                                                                                                               | energy                  |
| Cho   | nge = my - mu; (better!)                                                                                                      | 2                       |
| in wi | KE= 1                                                                                                                         | my = 1 p                |
|       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                        | / 2 m                   |
|       | Impulse & sp                                                                                                                  | △ J2.KE.m               |
|       | * Come back to this one?! *                                                                                                   | only quality            |
|       |                                                                                                                               | charging                |



9. 
$$\frac{m}{2}$$
  $v$  before Impube =  $\Delta \rho$ 
 $v' \leftarrow 0$  after direction =  $-mv' - (mv)$ 

$$\frac{1}{2}m(v')^2 = \frac{1}{4} \times \frac{1}{2}mv^2 = -m(v'+v')$$
Since 75"/. List =  $-\frac{3}{2}mv$  (0)
$$(v')^2 = \frac{v'}{4}$$
N6: magnifude
$$v' = \frac{v}{2}$$



10. 
$$C = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$$

with  $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Pt}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta \theta} = \frac{Q}{m \Delta \theta}$ 
 $t = \frac{Q}{m \Delta$ 

4. Any wave: propagation parallel to energy transfer Longhidinal: oscillations of medium parallel (B)

InThinking is an innovative educational consultancy service which provides quality training for teachers & administrators in IB World Schools. We are also committed to developing outstanding web-based teacher resources and to promoting critical thinking across the curriculum. For further information, visit our website at www.inthinking.net



15. Lock for complete cycle



= 800 ms

16. Decrease in fringe spacing means less spread

1. 12 will increase spread X (since more space to havel)

11. 1d will reduce spread (since yx 1)

111. Agreen & I red so will reduce spread -

(Since

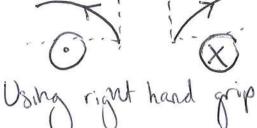
17. "Same speed" and "same frequency"

= 3L,

= nAve



19. 
$$P = \frac{V^2}{R}$$
  $P \times \frac{1}{R} \times \frac{1}{R} = \frac{\rho_1^2}{A}$ 


l doubles so P halves
$$E \leftarrow \text{negligible in}$$

$$Combined resistance$$

$$I = \frac{E}{5R} = \frac{3E}{5R}$$

$$I = \frac{2R}{5R} + R = \frac{5R}{3}$$
Two thirds goes through  $X = \frac{2R}{3} \times \frac{3E}{5R} = \frac{2E}{5R}$ 

21. Left and right concelling in the concelling in



field (into page)

force (down)

Conventional current

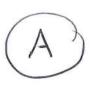




23. 
$$F(\leftarrow) = F(\rightarrow)$$

$$\frac{4M}{(1-x)^2} = \frac{9M}{x^2}$$

$$4x^2 = 9(1-x)^2$$


 $(1-x)^{2}$   $2x^{2} = 9(1-x)^{2}$  2x = 3(1-x) = 3a - 3x 5x = 3




24. Half life is 50s (don't be fooled by non-origin scale)
200s is four to 100% in 50°/2 in



25. 1 11 X / 1 / Z



$$\beta^{+} + \nu = 0$$





Charge: 
$$1+(-1) \rightarrow (-1)+1$$
  
Strangeness:  $0+0 \rightarrow -1+0$  \*violated \*  
\*\text{Since 's'}

$$\frac{208 = 15A}{48 = A}$$

30. 
$$\alpha = \frac{\text{reflected}}{\text{received}}$$
  $p = 0.8 \, \text{J}_{o} \times 0.3$  (show) (cloud)

NS: 
$$0.8 = \frac{4}{5}$$

and  $0.3$  is  $0.06$