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Thinking out of the Box . . . Problem
It’s a richer problem than we ever imagined

he “box problem” has been a standard optimization
exercise in almost every calculus textbook since
Leibniz and Newton invented calculus. With the
capability of technology in the form of graphing cal-
culators, this exercise has recently become stan-
dard fare earlier in the mathematics curriculum.
We even find it in middle school curricula as a nice
hands-on exercise in data analysis. With some vari-
ations in the numerical dimensions of the paper,
the problem is similar to the following:

Given a rectangular sheet of paper 8.5 inches ×
11 inches, form a box by cutting congruent
squares from each corner, folding up the sides,
and taping them to form a box without a top. To
make a box with maximum capacity, how large
should the square cutouts from the corners of the
original paper be? See figure 1.

rough determination of the cutout size that results
in a box with maximum capacity.

In a course prior to calculus, students might be
asked to write the function of x that describes the
volume of any box in which the length of the side of
the square cutout is denoted by x. This function is
as follows:

v(x) = x(8.5 − 2x)(11 − 2x)

Depending on the course and on the technology
available, students can gather data from this func-
tion or graph it over the interval [0, 4.25] and thus
determine the box of maximum volume, that is, the
absolute maximum point of the data or of the graph
over the given interval. A graph of this function,
drawn with a TI-83 graphing calculator, is given in
figure 2.
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In a middle school setting, groups of students are
often given sheets of paper and asked to cut uni-
form squares from the corners, cutting different-
sized squares for each sheet. They then fold up the
sides to make a variety of boxes of different sizes
and fill these boxes with something, such as pop-
corn, and measure or count the amount needed to
fill the boxes. In this manner, students obtain a

Fig. 2

In a beginning calculus course, students could
use a symbolic manipulator or take the derivative
of the volume function by hand, set it equal to 0,
solve, and thus determine the x-value that gives the
box of maximum volume:
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v(x) = x(8.5 − 2x)(11 − 2x)
v(x) = 93.5x − 39x2 + 4x3

v'(x) = 93.5 − 78x + 12x2

0 = 93.5 − 78x + 12x2

x ≈ 1.585
or

x ≈ 4.915

Discarding the solution that is not in the practical
interval [0, 4.25] yields an approximate solution of
x = 1.585 inches. We can verify this x-value yielding
the absolute maximum by testing the endpoints
where the volume is zero and the volume at x =
1.585 that is positive. 

The previously described experiences usually
comprise the total exposure that a student, or for
that matter, a teacher, has with this problem that
may also lead to interesting explorations for alge-
bra and geometry students. This article reveals fur-
ther questions that can be investigated from this
simply stated problem. We assigned some of these
questions to our AP calculus students as projects to
complete outside of class. We have had fun develop-
ing some of the later questions on our own and plan
to use them with students in the future. 

Question 1
If we always start with a square sheet of paper,
does a common relationship exist between the
length of the side of this square and the length of
the side of the smaller squares that are cut out
from each corner?

We asked students to experiment with several
square sheets of paper of different sizes, gather
data, try to find a general relationship, and then
prove that general relationship. In the interests of
space, we give only the general solution for a
square sheet of paper that measures a units by a
units, as shown in figure 3.

The following work could also be done using a
symbol manipulator. 

Let v(x) = x(a − 2x)2, where x is in the interval 
[0, a/2]. Then

v(x) = 4x3 − 4ax2 + a2x,
v'(x) = 12x2 − 8ax + a2,

0 = 12x2 − 8ax + a2.

We see that it factors, so

0 = (6x − a)(2x − a)

and 

x = a .
6

The other solution obviously yields a minimum
volume.

The solution makes students realize that x is the
variable for differentiation and that a, although a
variable, is constant with respect to the differentia-
tion, that is, it is one of those very useful fixed but
still variable variables. This concept is also a pre-
cursor of multivariate calculus. In addition, we
obtain a very simple general result, which says that
to find the box of maximum volume starting with
any square sheet of paper, we simply make the
square cutouts at each corner with a side length
that is one-sixth that of the side length of the origi-
nal square.

Question 2
If we start with a square but think dynamically of
increasing one side of that square to form larger
and larger rectangular sheets of paper while still
keeping the adjacent side of fixed length, how does
the side of the square cut out from the corners of
this paper to form the box of maximum volume vary
as this dynamic side becomes larger and larger? 

For example, we consider sheets of paper of the
following sizes: 6 inches × 6 inches, 6 inches ×
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8 inches, 6 inches × 10 inches, 6 inches × 12 inches,
and so on. We know that for the 6 inch × 6 inch
square, we cut out 1 inch × 1 inch squares. Is the
length of the cutout for the 6 inch × 8 inch square
more than 1 inch, less than 1 inch, or still 1 inch?
What happens to the cutout length as the variable
side of the rectangle gets longer and longer? Does a
limiting value exist? If so, what is it?

We ask our students to experiment by solving sev-
eral concrete examples and obtaining a pattern,
then generalizing, and finally maybe even proving
their generalizations. This question is much tougher
than the first one but also much more rewarding for
the persevering student. In this article, we offer
only a flavor of the total experience.

We assume that the original square sheet of paper
is a units × a units and that the side denoted by b is
the one that is increasing in size. We next want to
find the value of x for any values of a and b that yield
the box of maximum volume, as shown in figure 4.

This equation solves any box problem, given the
dimensions of the original sheet of paper, a and b.
When b = a, it gives, as it should, the solution
found in question 1. 

To get an idea of the solution to the queries given
in question 2, we asked our students to fix a = 6
and then consider x as a function of only b. The
result is

x(b) = (6 + b) – ¡36̀ –̀ 6b̀ +̀ b[ .
`````````6`````````

We next use a graphing calculator to make a graph
of x as a function of b. On a TI-83 calculator, Y1
assumes the role of x, and X assumes the role of b.
Therefore, the x-axis represents the length of the
rectangle whose adjacent side is 6, and the y-axis
represents the cutout size for the corner squares
that yields the box with maximum volume:

y1 = (6 + x) – ¡36̀ –̀ 6x̀ +̀ x[ .
```````` 6̀̀ ````````

with a window of x: [0, 100] and y: [0, 3]. See fig-
ure 5.
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Again, a symbolic manipulator can be used to do
the following calculations.

Let v(x) = x(a − 2x)(b − 2x), where x is in the
interval [0, a/2]. Then

v(x) = 4x3 − (2a + 2b)x2 + abx,
v'(x) = 12x2 − 4(a + b)x + ab,

0 = 12x2 − 4(a + b)x + ab.

Solving by using the quadratic formula yields

x = (a + b) ± ¡a[̀ –̀ ab̀ +̀ b[ .
```````` 6̀̀ ````````

For any value of b > a, the solution using the
positive root is greater than or equal to a/2, so it is
not the maximal solution that we desire. Hence, the
maximal solution is given by

x = (a + b) – ¡a[̀ –̀ ab̀ +̀ b[ .
```````` 6̀̀ ````````

We notice that as the side b increases beyond 6,
the cutout size x, for the box with maximum volume
also increases; but a limiting value, that is, a hori-
zontal asymptote for the graph, does seem to exist.
Using the table feature of the TI-83 in Ask mode
(through TBLSET) and trying higher and higher
values for b, we find that the limit for b seems to be
1.5 units. See figure 6.

We did ask students to try a couple of other fixed
values for a so that they might see a general pat-
tern. If students do so, they see that the cutout
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value x always seems to approach a/4, where a is
the dimension of the fixed side of the sheet of paper.
A nice symbolic-manipulator exercise for students
using a TI-89, TI-92, or the like is to have it actu-
ally evaluate the limit. In this situation, technology
makes this limit accessible to a great number of
students who would not be able to do the limit cal-
culations by hand:

lim x = lim (a + b) – ¡a[̀ –̀ ab̀ +̀ b[ .
b→∞ b→∞ ```````` 6̀̀ ````````

Some more mathematically able students can eval-
uate this limit analytically by rationalizing the
numerator as follows:

llim (a + b) – ¡a[̀ –̀ ab̀ +̀ b[
b→∞ ```````` 6̀̀ ````````

= lim (a + b) – ¡a[̀ –̀ ab̀ +̀ b[ × (a + b) + ¡a[̀ –̀ ab̀ +̀ b[
b→∞ ````````6̀̀ `̀ `̀ `̀ `̀ (a + b) + ¡a[̀ –̀ ab̀ +̀ b[

= lim 3ab
b→∞ 6(a + b + ¡a[̀ –̀ ab̀ +̀ b[ )

= lim a
b→∞ 2�a + 1 + �a2

– a + 1�b b[ b

= a
4

We know that for any size a × b sheet of paper,
where a ≤ b, the cutout size, x, for the length of the
side of the square cut from each corner to yield the
box of maximum volume always satisfies the
inequality 

a ≤ x < a .
6 4

The square sheet of paper uses the smallest cutout
size; and the more elongated the paper is, the closer
the cutout size should be to a/4.

Question 3
For any rectangular sheet of paper that measures
a × b, does a relationship exist between the lateral
area and the area of the base for the box of maxi-
mal volume found by cutting congruent squares of
side length x from the corners of the paper? If so,
what is this relationship?

This question was one that we had not immediately
considered. Only later did we begin to pursue the
relationship between the lateral area and the area
of the base of the box with maximal volume. This
question becomes fundamental in the rest of our
work. Again, students should experiment before
seeking the formal result; however, this result is
quite easy in its general form. We assume that the
original sheet of paper is a × b with a ≤ b, and the
cutout-square side length is again denoted by x.

Where x is in the interval [0, a/2],

v(x) = x(a − 2x)(b − 2x).

Rather than expanding the term on the right out to
obtain a polynomial, we can take the derivative in
this form using the product rule. One of us had done
so initially and noted that the first term was the
area of the base of the box and wondered whether
the remaining term had any physical significance:

v' (x) = (a − 2x)(b − 2x) + x[(a − 2x)(−2) + (b − 2x)(−2)]

Rewriting this result in a slightly different form
yields the following:

v' (x) = (a − 2x)(b − 2x) − x[2(a − 2x) + 2(b − 2x)]
0 = (a − 2x)(b − 2x) − x[2(a − 2x) + 2(b − 2x)]

We notice that (a − 2x)(b − 2x) is the area of the
base of our box and that x[2(a − 2x) + 2(b − 2x)] is
the lateral area of the box. Hence, when we have
the box of maximal volume, the area of the base
minus the lateral area equals 0. Therefore, the box
of maximal volume is always the box that has the
property that the lateral area is the same as the
area of the base. This result gives us an easy way to
verify whether any open box previously constructed
from a rectangular sheet of paper is indeed a box
with maximal volume. We simply measure the
length, width, and height of the box and then calcu-
late the base area and the lateral area. If the two
results are equal, the box is the box with maximal
volume; otherwise, it is not.

If we had relied only on a symbolic manipulator,
we might not have been able to see this relation-
ship. A symbolic manipulator gives only the sym-
bolic form that has been programmed into it. A dif-
ferent form often gives one better insight into a
generalization. In this situation, writing the equa-
tion in our special symbolic form enabled us to
clearly see the relationship.

So far, we have just been using rectangular
sheets of paper and have been cutting squares out
at each corner to form a box. No reason dictates
that the piece of paper must be rectangular. 

Question 4

a) If the piece of paper that we start with is an
equilateral triangle, how do we cut out the cor-
ners so that we can then fold up the sides and
have a box that has an equilateral triangle for a
base?

b) Once we have solved part (a), what is the rela-
tionship between the side of the original equilat-
eral triangle and the height, x, of the lateral
sides of the box formed in part (a) that gives the
box of maximum volume?

We no longer cut squares with a side length of x
out of the corners. Instead, we draw in the angle
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makes this
limit 
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to a great
number of
students
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bisectors of the three angles and mark off the same
distance on each one. We then connect the three
endpoints of these angle-bisector segments. We can
see the base of our solid in figure 7. Finally, we
draw in the six perpendicular segments from these
points to the original three sides of the paper. The
length of these perpendicular segments is denoted
by x. Hence, x becomes the height of our box. Thus,
for the equilateral triangle, we cut out congruent
kites from each corner. Each kite has two opposite
right angles and the 60-degree angle from the origi-
nal equilateral triangle paper. 

to follow any simple pattern. We also tried to obtain
the result for a regular hexagonal sheet of paper
and the general regular n-gon sheet of paper. We
used the formula A = (1/2)ap for the area of the
base of the box when writing the volume function.
During these calculations, we finally arrived at a
better way to look at our results. We decided to
compare the height of the box of maximum volume
with the apothem of the regular polygonal sheet of
paper, not with the side, as we had been doing.
Because the apothem is half the side of the square,
the maximum box occurs when the cutout size is
one-third of the apothem, or

x = s
6

= 2a
6̀̀

= a ,
3

where a is the apothem of the square and s is the
side. We next look at the equilateral triangle, as
shown in figure 8.
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To answer part (b) of question 4, we need to write
a formula for the volume in terms of the original
side, s, of the equilateral triangular paper and x.
We can immediately write it in general, but stu-
dents should do a few concrete examples first. We
use the fact that the area of an equilateral triangle
is given by 

A = (side)2 ¡3 .
`̀ `̀ 4̀ `̀ `

Then

v(x) = x (s – 2x ¡3)2 ¡3 ,
4̀̀

where x is in the interval 

 0, s¡3  .
 `6` 

We next take the derivative, set it equal to 0,
and solve for x. Using a symbolic manipulator yields
x = s¡3/18 or x = s¡3/6. Because the latter result
obviously gives a minimum volume, our maximum
occurs when x = s¡3/18. 

This result is not as satisfying as we had hoped.
So far, we have worked with two regular polygons,
the square and the equilateral triangle. For the
square, the result was x = s/6. We were hoping for
some simple relationship that would give us the
result quickly for all regular polygons. The work
became quite tedious, and the result did not seem

From the diagram, we see that s = 2a¡3, so that

x = s¡3
1̀8̀

= 2a¡3¡3
`̀ 1̀8̀ `̀

= a .
3

For both the square and the equilateral triangle,
the height of the box of maximum volume is one-
third the length of the apothem of the original
sheet of paper.

Question 5
For any regular n-gon sheet of paper, if congruent
kites are cut from the corners and then the sides
are folded up to form a box with a similar n-gon for
a base, what is the relationship between the height
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of the box and the apothem of the original sheet of
paper for the box of maximum volume?

We have an idea that the answer might be x = a/3,
where x is the height of the box and a is the
apothem of the original n-gon sheet of paper. To
prove this result, perhaps we should write the area
of the n-gon as a function of the apothem, a, of the
original sheet of paper.

For the square.

v(x) = x(2a − 2x)2

= 4x(a − x)2.

We have already shown that the maximum occurs
when x = a/3. Thus, if we take the derivative of v(x)
and set it equal to 0, our result will be x = a/3.

For the equilateral triangle. We know that s =
2a¡3, so that 

v(x) = x(2a¡3 – 2x¡3)2 ¡3
4̀̀

= 3¡3x(a – x)2.

We notice that this formula differs only by a con-
stant factor from that of the volume of the square,
so the derivative has the same roots. Hence, we
again see that x = a/3 is the correct solution.

The general regular n-gon. From figure 9 and
using the fact that the area of any regular n-gon is
given by A = (1/2)ap, where a is the apothem and p
is the perimeter, we know that the volume of the
box is 

v(x) = 1 (a – x)n�2a tan�π� – 2x tan�π�� x;
2 n n

v(x) = n tan�π� x(a – x)2.
n

We notice that this result is just a constant times
the formula for the volume of the square; hence,
again the box with maximum volume occurs when
x, the height of the box, is chosen such that x = a/3,
where a is the apothem of the original sheet of paper.

When we have the general regular n-gon volume
formula, students can go back and try values of 
n = 3 and n = 4 and verify that these values are the
exact constant factors that we determined earlier
when we did these problems separately.

Question 6
What is the relationship between the lateral area and
the area of the base of the box of maximum volume
constructed from a regular n-gon sheet of paper?

This relationship is a relatively easy one to deter-
mine from the fact that the maximum volume box
has x = a/3. Then the area of the base is

1 (a – x)p = 1 �a – a�p
2 2 3

= 1 �2a�p
2 3̀̀

= a p
3

= xp,

which is the lateral area. Hence, the box with maxi-
mum volume made from any regular n-gon−shaped
sheet of paper has lateral area equal to the area of
its base.

SUMMARY
This classic problem has much more to offer than
what appears in most textbooks. Along the way in
our questioning, we used a great deal of high school
mathematics, and we have discovered interesting
geometric and algebraic relationships. Finally, we
hope that when readers see a classic problem, they
will think beyond that problem and try to find
interesting mathematical generalizations lurking
in the background.

FOR DISCUSSION WITH STUDENTS
AND COLLEAGUES
We pose further questions that are related to the
content of this article. We have explored answers to
the first three of these questions and would be
interested in seeing whether readers agree with our
results and seeing how they obtained their results.

Extension 1
For any given sheet of paper that measures a × b,
where a ≤ b, if we always make the length, x, of the
side of the cutout square, so that x = a/5, how far

The formula
differs only
by a constant
factor from
that of the
square, 
so the 
derivative
has the same
roots

x x

a – x

x

n
xTan�    �

n

n
aTan�    �

Fig. 9
A section of a regular n-gon
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will we be from the box with maximum volume?
From a practical standpoint, for all typical boxes
that would normally be manufactured, we are real-
ly asking whether we could tell the production staff
to always cut the squares at the corner of length 
x = a/5, where a is the shortest dimension of the
original sheet of paper, and not be too far from the
box with maximum volume.

Extension 2
For the regular n-gon situation, what happens 
in the limit as the number of sides of the regular
n-gon approaches infinity? What relationships do
we obtain for a cylinder?

Extension 3
We have seen that with regular n-gon paper and
with rectangular paper, the box with maximal vol-
ume occurs when the lateral area of the box and
the area of the base of the box are equal. Do we con-
tinue to obtain this result if we are given any convex
polygon as the original sheet of paper? The reader
should either furnish a proof or a counterexample.

Extension 4 
What other extensions of this problem should stu-
dents consider?

Extension 5 
What are appropriate uses of computer algebra sys-
tems and other technology in these extensions?
What can students learn about appropriate technol-
ogy use from these box problems?

Extension 6
The teacher can choose another classic problem
from the mathematics curriculum. What extension
questions could be used with that problem? How
might students respond to these questions? What
mathematics would they learn or use in the 
solutions?
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