's mathematics teach-
A ers, we are always on
the lookout for moti-

vational applications for the

——— mathematics that we teach.
Apphcatmnq are espec;aﬁy useful if they help stu-
dents make connections among the various topics of
mathematics and can he used by students at sever-
al different levels. While thumbing through The
Penguin Dictionary of Curious and Interesting
Geometry, by David Wells (1991), we ran across an
entry that led to a very interesting discovery.

German mathematician Johannes Regiomontanus
(1436-1476) posed the following question (Wells
1991, pp. 2-3): From what position along a hori-
zontal line can a statue such as the one shown in
figure 1 best be viewed? If the spectator is too
close, the statue will appear heavily foreshortened,
thus distorting its size. If the spectator is too far
away, it will simply be too small to see. An optimal
distance for viewing the statue must exist.

A related question might be, From what location
can we best view the Statue of Liberty—or any
object above eye level? The answer to this question
involves finding the location that maximizes the

Fig. 1
Determining the ideal position for viewing a statue
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viewing angle and therefore makes the object
appear at maximum size.

Optimization problems have traditionally been
reserved until students have acquired calculus
skills. Such computer geometry software as The
Geometer’s Sketchpad and Cabri Geometry give
geometry and algebra students the tools to tackle
this type of optimization problem in a meaningful
way. This early introduction of maximum-minimum
situations can also help students experience more
success with this important concept in caleulus.

THE RUGBY PROBLEM

The Penguin Dictionary of Curious and Interesting
Geometry (Wells 1991) mentions the game of rughy
as another application of this maximization prob-
lem. Although rughy is unfamiliar to most students
in the United States, it is popular as an amateur
and professional sport in England, France, Ireland,
Scotland, Canada, Australia, and New Zealand,
among other countries. It was derived around 1823
from intramural soccer games at the Rugby School
in England. Although some rugby is played in the
United States, almost all U.S. high schools offer
rughy’s descendant, American football.

Rugby and American football are similar in
many ways. They use a ball and playing field
approximately the same size and shape, and teams
in both games attempt to run or pass a ball over the
goal line. Players may also kick the ball through
the goalposts for points. Unlike in American foot-
ball, however, rughy players wear little protective
equipment; like in soccer, the game continues with-
out the interruption of downs.

A team that succeeds in moving the ball past the
goal line must touch the ball down behind the goal

Troy Jones, tjones@uaterford.org, teaches at Waterford
School in Salt Lake City, Utah, and is particularly inter-
ested in helping students understand geometry through
using dynamic software. Steve Jackson, jacks786
@alpine.k12.ut.us, teaches at Timpanogos High School in
Orem, Utah, and is interested in curriculiom development
and articulation.
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Fig. 2
Kicking a conversion in rugby

line to score a try, which is worth five points. After
scoring each try, a player on the scoring team may
attempt to convert the try by placekicking the ball
through the goalposts. This placekick conversion,
which is worth two points, may be kicked from any-
where on a line perpendicular to the goal line and
through the spot where the ball was downed past
the goal line, as shown in figure 2.

To give the kicker an advantage on the conver-
sion, a player crossing the goal line often attempts
to run toward the center of the field before downing
the ball. If the ball is downed between the uprights,
the kicker has only to back up far enough to be able
to kick the ball through the uprights. But if the ball
is downed outside the uprights, does a best place
exist from which to kick the conversion?

The answer, perhaps surprisingly, is yes.
Notwithstanding the player’s kicking range, a kick-
er would want to find the location that maximizes
the angle between the uprights, thus giving the
greatest room for error to the left and right.

This article presents a series of explorations that
locate an optimal place for kicking the ball to maxi-
mize this angle at the goalposts. These investiga-
tions begin with a data-collection activity that uses
the interactive geometry software of the TI-92 cal-
culator. The second investigation locates this ideal
kicking location through geometric constructions
using computer technology and the geometric
mean. The third investigation generalizes the set of
solutions hy using analytic geometry to evaluate
the trace of locus points. The final investigation
uses calculus to verify this common solution as the
ideal position from which to kick the goal.

Through these varied investigations, this single
problem can be approached in many of our sec-
ondary mathematics courses, including elementary
algebra, geometry, intermediate algebra, precalculus,
and calculus. Appendix A includes a sample stu-
dent activity that is appropriate for the elementary
algebra level.

AN INITIAL EMPIRICAL APPROACH
With the TI-92 calculator, or other interactive

geometry software, we can construct a model of this
situation. Figure 3 shows the TI-92 calculator in
split-screen mode with the geometry application
active on the left side of the screen. Line AB is the
goal line. Points A and B are the goalposts. Point C
is an arbitrary location along the goal line where
the try was scored. Line CD is perpendicular to the
goal line, and £ is on CD'. The kicking angle that
we wish to maximize is @, the angle from E sub-
tending the goal posts. Using the angle tool, we can
approximate the maximum angle by moving E up
and down the perpendicular and observing the
dynamic measurement of o.

We animate point E along the perpendicular in
the geometry application. A number of measure-
ments of CE and & have been imported into the
data-editor application on the right side of the split
screen shown in figure 3 by using the Animate and
Collect Data tools. These numbers substantiate the
visual observation that o seems to increase to a
maximum and then decrease again as E moves
away from C.

CE=1.79cm D [eaTR |CE= |a=
a=29.44° =1 [c2 [c3
9 = 43|28. 9|
E |10 _._6,_122:‘1.1
11 .73(29.4
L= 12 [1.97]29.3
13 [2.15]29.
14 |2.33]28.6
A B C
MAIN DEG AUTD FINC
Fig. 3

Interactive geometry and data points in table
generated by sliding point E along perpendicular
to goal line

Treating these values as ordered pairs in the
Data/Matrix editor application, then plotting them,
as shown in figure 4, gives yet further evidence
that a maximum kicking angle exists. This analysis
indicates that in this scale model, the best place to
kick the conversion is where point £ is approxi-
mately 1.79 units from the goal line, yielding a
maximum angle of about 29.4 degrees.

|Fimn DEG RUTD FUNE

Fig. 4
Data plot and data table showing ideal kicking location
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CONSTRUCTING AN OPTIMAL POINT
USING GEOMETRY

A geometric solution to this problem also exists. In
his book, Wells (1991) mentions that the maximum
viewing angle is found when the circle passing
through three points—the top of the statue, the
bottom of the statue, and the spectator’s eye—is
also tangent with the horizontal line passing
through the spectator’s eye. See figure 1. A proof of
this conjecture is found in appendix B.

We can use methods of elementary geometry to
construct the point of tangency. We need to use
three theorems from geometry, the first of which is
the tangent-secant theorem. If a tangent segment
of a circle and a secant segment meet at an exter-
nal point, as shown in figure 5, then the length of
the tangent segment EC is the geometric mean of
the entire length of the secant segment AC and its
external part BC. In other words,

(1) (EC)* = (AC)BC).

The geometric mean EC is the product of two num-
bers that correspond to the lengths of overlapping
segments AC and BC.

iv : ivj ivz ;iv Tiv‘:“iv“?iv;ﬁwiﬁ? i
\ D

+

te

A~—————B C
MAIN DEG AUTD FUNC

Fig. 5
Tangent-secant theorem applied to
rugby conversion kick

To construct this geometric mean, EC, at the
optimal kicking location, we first construct the mid-
point, M, of AC, as shown in figure 6, We then con-
struet circle M with radius MC and a perpendicular
to the goal line through point B. The point of inter-
section, F, of this perpendicular and circle M cre-
ates right triangle AFC because hypotenuse AC is
the diameter of circle M. Altitude FB of this right
triangle divides the hypotenuse into two segments
such that the length of leg FC is the geometric
mean of the length of the entire hypotenuse, AC,
and the length of the segment of the hypotenuse,
BC, that is adjacent to FC. The overlapping seg-
ments of the hypotenuse, AC, and BC are the seg-
ments that we need to create the geometric mean in
figure 5.

The optimal kicking location is at the point at
which the circle passing through A and B is tangent
to line CD. Both CF and CE are radii of the same
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segment FB is
an altitude to
the hypotenuse

FI! M B (=
(FAIN DEG AUTD Wo{?

Fig. 6
Geometric mean of right triangle AFC

circle; therefore, CE is the geometric mean of AC
and BC. See figure 7. The kicking location that
maximizes the angle o occurs at the intersection E
of circle C and CD.

H T c ]
MaIN DEG AUTE FUNC

Fig. 7
Construction of ideal kicking location at point E

USING ANALYTIC GEOMETRY
TO CREATE A LOCUS OF SOLUTIONS

The most surprising discovery in the rugby problem
is still to come. We establish a rectangular coordi-
nate system with the x-axis as the goal line and the
y-axis as the perpendicular bisector of the goalposts
A and B. We label the optimal kicking location
point £ (x, y), as shown in figure 8, and begin to
experiment by dragging the downing point C (x, 0)
to various locations along the goal line. Since the
construction of E depends on this downing point C,
the location of E adjusts dynamically as we drag C.

/ Ed{x,4)
K THIS POINT %
AC-a,0) B¢a,0>C(x,0)
FRIN PEG AUTD FENC
Fig. 8

Trace of locus of ideal kicking locations
obtained by dragging point C along the x-axis
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By examining the trace of optimal kicking loca-
tions, we see that these points appear to follow a
definite and familiar path. The trace of this locus is
obtained using the trace command in the geometry
application on the TI-92 calculator. This locus looks
very much like one of the conic sections, but the
proof involves making a connection between the
geometric construction and the analytical solution
obtained earlier.

Equation (1) gives the geometric mean for point E.
From figure 8, EC =y, AC =x +a, and BC =x - a.
Therefore, equation (1) can be written as

y2=(x +a)x -a),
Yeit_g?

which is the equation of a hyperbola. All we need to

do is modify it a bit to put it in standard form:
Y=g

gl

2 2

S

1

aly
I

ij =

Since the coefficients of x* and y* are the same, the
hyperbola is a rectangular hyperbola, that is, the
asymptotes are perpendicular to each other and
form a 45 degree angle with the transversal axis, as
shown in figure 9. Therefore, any point on a rec-
tangular hyperbola maximizes the angle to the ver-
tices from a point on a line that is perpendicular to
the transversal axis.

g

L Sape—

TR

Fig. 9
Rectangular hyperbola

What does this fact mean to the rugby player?
Down the ball where he may at any x, the best
place to kick the conversion can be determined by
the equation y* = x* — a®. This location lies on a
hyperbola with the goalposts as vertices.

PROVING THE RESULT

From an analytical perspective, we can write an
algebraic equation relating the kicking angle azas a

funetion of y, the distance from the goal line. With &
written as a function of v, we can use caleulus
methods to find the optimal location from which to
kick the conversion. To express o as a function of y,
we use the definition of the tangent function for the
right triangles ACE and BCE. Figure 10 relates
these angles @ and . From this figure, we note that

_ [ side opposite )
tenimily (side adjacent /'
Therefore,
tan(a+ﬁ)=(““)
¥
and
_ 71( r+a )
(c+ ) = tan 7
Similarly, to find the angle 8, we note that
' =0
wnp=[£52)
=5
and
=1 -l(x_a ).
P =tan =

From figure 10, we can see that o can be
expressed as @ = (@ + ) — f. Substituting the
expressions involving arc tangent in the preceding
paragraph, we have the equation

x_—MLJ _ an‘l( Xx—a )

it v ¥

In this equation, both x and @ are constants, so «,
the dependent variable, is expressed in terms of the
single independent variable, y. To graph this func-
tion on the calculator that uses x as the indepen-
dent variable, we make the following adjustments:
We store an arbitrary value of x, say, 2.03, to the
variable m on the home screen; it represents the
downing location of the ball from the center of the
goalposts. One-half the distance between goalposts
is stored to the variable a. We also change the vari-
able y in our equation to the independent variable x

o = tan™

y 2a=2.00cm
%x=2.03cm
CE=1 .?:gz
a=29.
E(x,y>
% +
B
_// X
A¢-a, 8 B(a,0) |C(x,0)
| FAATN_ DEG AUTD FINC
Fig. 10
Kicking location point E and angles to
goalposts and goal line
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and change the variable o to the dependent vari-
able y. The equation that we enter and graph on
the calculator is

=tanﬁl(.,n+a )—tan’l(m_a )
Y &) X

Figure 11 shows a plot of the data, along with a
graph of the function. We can find the maximum of
the function by using the Maximum command in the
Math menu .

TmOY_F2v | F3 & FEv 7
v Zoom|Trace|ReGraph|Math ﬁ
aDATA:sysdat

Plot 1fk= = meive

-’91=tan*i[ a ; 2 ] - taik

gr= b-Maximu
SO— xcil, 7666067
ct29.512329
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|
Z|

Fig. 11
Scatterplot of data and graph of function
showing ideal kicking location

To find this solution using calculus, we assume a
fixed value for x, then use the derivative command
of the T1-92 caleulator’s computer algebra system.

a=tan™ (1—) —tan™ (u)

y ¥
da _ 1 ,lx+a) 1 ,“lx-a)
dy ~ For (M)E 32 . (u)z 3
g ¥
-1 —a £—a

e i 5 = =
yi+lx+al  yi+(x—-a)
_ 2ax*-2ay®-24°

(Y +a+aP) i+ (x-a)?)

If ¢ has a maximum, then it will occur when

2ax” — 2ay* - 24° = 0,
2ay® = 20x” - 2d°,
yizgd gl

yi=(x+a)x-a)

Therefore, y is the geometric mean of (x + a) and
(x — a), the same result obtained through other
methods described in this article,

SUMMARY

Although the practical application of this discovery
might be difficult to implement in an actual game
of rugby, this problem offers an opportunity to
solve a real-world problem while making connec-
tions with the mathematics that we teach at the
secondary level.
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APPENDIX A

SOLVING THE RUGBY PROBLEM FROM
AN ELEMENTARY ALGEBRA PERSPECTIVE

The teacher gives each student a copy of the sketch of
a rughy field drawn to scale, as shown in figure 2.
This diagram assumes that the ball has been downed
at an arbitrary location, as indicated in figure 2. Stu-
dents, working in pairs, select five different locations
along the perpendicular to the goal line and mark
these points along the perpendicular. To assure a vari-
ety of points, at least two of the students’ five points
must be beyond the forty-yard marker. After students
have marked their kicking locations, they measure the
distance from their points to the goal line along the
perpendicular. Next, students draw line segments
from their kicking location to the two goalposts and
measure the resulting kicking angle. Students can
record their data in a chart similar to the one shown
in figure 12,

Distance from
Point Center of Goalposts Kicking Angle
1
2
3
4
5
Fig. 12
Data-recording chart

After students have collected and recorded their
own data, all student pairs share data so that they
obtain at least one data point from each ten-yard sec-
tion of the playing field. Students should then plot
these combined data on a coordinate grid that shows
the distance from the goal along the horizontal axis
and the kicking angle along the vertical axis. Students
should be able to see that a maximum angle occurs for
a specific downing loeation. This “ideal kicking loca-
tion” depends on where the ball is downed. This data
plot can also be nicely done using the Stat Editor and
Stat Plots functions of most graphing calculators.

APPENDIX B

GEOMETRIC PROOF THAT THE MAXIMUM
VIEWING ANGLE OF A STATUE OCCURS AT
THE POINT OF TANGENCY TO A CIRCLE
PASSING THROUGH THE TOP AND BOTTOM
OF THE STATUE AND THE VIEWER’S EYE

In The Penguin Dictionary of Curious and Interesting
Geometry, Wells (1991) mentions that the maximum
angle to view a statue is found where a horizontal line
passing through the viewer’s eye is tangent to the cir-
cle passing through the top and bottom of the statue
and the viewer's eye. A proof of this conjecture follows.
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ProoF. We consider figure 13. We want to prove why
H is the optimal viewing location, thus creating the
maximum angle from [ to points A and B. We know
that

mZAIB = % (mA_B - mJ}().

Because the measure of arc AB is constant, the
measure of angle AIB is a maximum when the least
amount is subtracted from are AB. This maximum
measure occurs at the point of tangency.
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Why the maximum viewing angle occurs at
the point of tangency
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