File "SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Option D/SL-paper3html
File size: 419.64 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>Medicines have a variety of different effects on the body and act at the molecular level.</p>
</div>
<div class="specification">
<p>Morphine and codeine are strong analgesics. Their structures are given in section 37 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dose response curves are determined for each drug.</p>
<p><img src="images/Schermafbeelding_2017-09-25_om_13.15.24.png" alt="M17/4/CHEMI/SP3/ENG/TZ1/XX"></p>
<p>Outline the significance of range “a”.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the type of reaction used to convert morphine to codeine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the action of opiates as painkillers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Solubility plays an important role in the bioavailability of drugs in the body.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why aspirin is <strong>slightly</strong> soluble in water. Refer to section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the conversion of aspirin to a more water soluble derivative.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student prepares aspirin from salicylic acid in the laboratory, extracts it from the reaction mixture, ensures the sample is dry and determines its melting point.</p>
<p><img src=""></p>
<p>Suggest why the melting point of the student’s sample is lower and not sharp compared to that of pure aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Organic molecules can be characterized using infrared (IR) spectroscopy.</p>
<p>Compare and contrast the infrared peaks above 1500 cm<sup>−1</sup> in pure samples of aspirin and salicylic acid using section 26 of the data booklet.</p>
<p><img src=""></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pharmaceutical industry is one of the largest producers of waste solvents.</p>
<p>State a green solution to the problem of organic solvent waste.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The structures of oseltamivir (Tamiflu) and zanamivir (Relenza) are given in section 37 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the structures of oseltamivir and zanamivir, stating the names of functional groups.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the wavenumber of one absorbance seen in the IR spectrum of only one of the compounds, using section 26 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> ethical consideration faced by medical researchers when developing medications.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are both used as antivirals to help prevent the spread of the flu virus, but are administered by different methods.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zanamivir must be taken by inhalation, not orally. Deduce what this suggests about the bioavailability of zanamivir if taken orally.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir does not possess the carboxyl group needed for activity until it is chemically changed in the body. Deduce the name of the functional group in oseltamivir which changes into a carboxyl group in the body. Use section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The synthesis of oseltamivir is dependent on a supply of the precursor shikimic acid, which is available only in low yield from certain plants, notably Chinese star anise. State one alternative green chemistry source of shikimic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess stomach acid leads to medical conditions that affect many people worldwide. These conditions can be treated with several types of medical drugs.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ranitidine (Zantac) is a drug that inhibits stomach acid production. Outline why the development of this drug was based on a detailed knowledge of the structure of histamine, shown below.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two other drugs, omeprazole (Prilosec) and esomeprazole (Nexium), directly prevent the release of acid into the stomach. Identify the site of action in the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A different approach to treating excess stomach acid is to neutralize it with antacids. Formulate an equation that shows the action of an antacid that can neutralize three moles of hydrogen ions, H<sup>+</sup>, per mole of antacid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Consider the structures of medicinal molecules in section 37 of the data booklet.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Name </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">functional groups that both zanamivir and oseltamivir contain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how zanamivir works as a preventative agent against flu viruses.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Circle the side-chain in penicillin on the structure below.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain, with reference to the action of penicillin, why new penicillins with different side-chains need to be produced.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State and explain the relative solubility of codeine in water compared to morphine and diamorphine.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the natural source from which codeine, morphine and diamorphine are obtained.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Penicillin is an antibiotic which contains a beta-lactam ring. Its general structure is shown below.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline what is meant by the term “ring strain”.</p>
<p>(ii) On the diagram above, label with asterisk/s (*) the carbon atom/s that experience ring strain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Some antibiotic-resistant bacteria produce a beta-lactamase enzyme which destroys penicillin activity. Suggest how adding clavulanic acid to penicillin enables the antibiotic to retain its activity.</p>
<p><img src=""></p>
<p>(ii) Populations of antibiotic-resistant bacteria have increased significantly over the last 60 years. Outline why antibiotics such as penicillin should not be prescribed to people suffering from a viral infection.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A number of drugs have been developed to treat excess acidity in the stomach.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two drugs are ranitidine (Zantac) and omeprazole (Prilosec). Outline how they function to reduce stomach acidity.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.500 g of solid anhydrous sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>(s), is dissolved in 75.0 cm<sup>3</sup> of 0.100 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup> sodium hydrogen carbonate solution, NaHCO<sub>3</sub>(aq). Assume the volume does not change when the salt dissolves.</p>
<p>HCO<sub>3</sub><sup>−</sup>(aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> CO<sub>3</sub><sup>2−</sup>(aq) + H<sup>+</sup>(aq) p<em>K</em><sub>a</sub> = 10.35.</p>
<p>Calculate the pH of the buffer solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Aspirin is formed by reacting salicylic acid with ethanoic anhydride. The structure of aspirin is given in section 37 of the data booklet.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="404" height="144"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the structural formula of the by-product of this reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Aspirin crystals are rinsed with water after recrystallization to remove impurities.<br>Suggest why </span><span class="fontstyle2"><strong>cold</strong> </span><span class="fontstyle0">water is used.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The solubility of aspirin is increased by converting it to an ionic form. Draw the structure of the ionic form of aspirin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on the risk of overdose when taking aspirin as an analgesic, referring to the following values, for a person weighing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>70</mn><mo> </mo><mi>kg</mi></math>:</span></p>
<p><span class="fontstyle0">Minimum therapeutic dose <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">g</mi></math></span></p>
<p><span class="fontstyle0">Estimated minimum lethal dose <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mn>15</mn><mo> </mo><mi mathvariant="normal">g</mi></math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The buffer formed by carbon dioxide, CO<sub>2</sub>(aq) and hydrogen carbonate ion, HCO<sub>3</sub><sup>−</sup>(aq), plays an important role in maintaining the pH of blood.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of the buffer from the following data and section 1 of the data booklet.</p>
<p>p<em>K</em><sub>a</sub>(CO<sub>2</sub>) = 6.34</p>
<p>[HCO<sub>3</sub><sup>−</sup>(aq)] = 1.40 × 10<sup>−2</sup> mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup></p>
<p>[CO<sub>2</sub>(aq)] = 1.25 × 10<sup>−3</sup> mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>−3</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of a large amount of aspirin on the pH of blood.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are antiviral drugs used to prevent flu.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of <strong>two</strong> functional groups that <strong>both</strong> compounds contain, using section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how oseltamivir and zanamivir can stop the spread of the flu virus in the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The production of many pharmaceutical drugs involves the use of solvents.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> problem associated with chlorinated organic solvents as chemical waste.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the principles of green chemistry can be used to solve the environmental problems caused by organic solvents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aspirin is one of the most widely used drugs in the world.</p>
</div>
<div class="specification">
<p>Aspirin was synthesized from 2.65 g of salicylic acid (2-hydroxybenzoic acid) (<em>M</em><sub>r</sub> = 138.13) and 2.51 g of ethanoic anhydride (<em>M</em><sub>r</sub> = 102.10).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amounts, in mol, of each reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in g, the theoretical yield of aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> techniques which could be used to confirm the identity of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how aspirin can be converted to water-soluble aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare, giving a reason, the bioavailability of soluble aspirin with aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>New drugs undergo thorough clinical trials before they are approved.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the difference between the therapeutic index in animal studies and the therapeutic index in humans.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the method of drug administration that gives the maximum bioavailability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Some analgesics are derived from compounds found in plants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aspirin is a mild analgesic derived from salicylic acid found in willow bark.</p>
<p>Describe how mild analgesics function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The strong analgesics morphine and codeine are opiates. Outline how codeine can be synthesized from morphine. The structures of morphine and codeine are in section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why opiates are addictive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral drugs are designed to take different approaches to fighting viruses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how oseltamivir (Tamiflu<sup>®</sup>) works.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir was commercially produced from shikimic acid, a precursor which is a metabolite in micro-organisms and plants.</p>
<p>Outline how green chemistry was used to develop the precursor for oseltamivir in order to overcome a shortage of the drug during the flu season.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the administration of antibiotics to humans and animals can affect the environment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Consider the following antacids:</span></p>
<p><img src="" width="485" height="109"></p>
<p><span class="fontstyle0">Show that antacid </span><strong><span class="fontstyle2">X </span></strong><span class="fontstyle0">is more effective, per tablet, than antacid </span><span class="fontstyle2"><strong>Y</strong>.</span></p>
</div>
<br><hr><br><div class="question">
<p>Radioisotopes are used to diagnose and treat various diseases. Explain the low environmental impact of most medical nuclear waste.</p>
</div>
<br><hr><br><div class="specification">
<p>Excess acid in the stomach can cause discomfort and more serious health issues.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how ranitidine (Zantac) reduces stomach acid production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pH is maintained in different fluids in the body by the use of buffers.</p>
<p>Calculate the pH of a buffer solution of 0.0200 mol dm<sup>–3</sup> carbonic acid, H<sub>2</sub>CO<sub>3</sub>, and 0.400 mol dm<sup>–3</sup> sodium hydrogen carbonate, NaHCO<sub>3</sub>. The p<em>K</em><sub>a</sub> of carbonic acid is 6.35.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Molecules of antibiotics often contain a beta-lactam ring. Explain the importance of the betalactam ring in the action of penicillin, using section 37 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p>Penicillins and aspirin are important medicines.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how penicillin combats bacterial infections.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how penicillins may be modified to increase their effectiveness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction used to synthesize aspirin from salicylic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why aspirin is <strong>not </strong>stored in a hot, humid location.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The mild analgesic aspirin can be prepared in the laboratory from salicylic acid.</p>
<p style="text-align: center;">(CH<sub>3</sub>CO)<sub>2</sub>O + HOC<sub>6</sub>H<sub>4</sub>COOH → CH<sub>3</sub>CO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>COOH + CH<sub>3</sub>COOH</p>
<p style="text-align: center;">Salicylic acid Aspirin </p>
<p> </p>
<p>After the reaction is complete, the product is isolated, recrystallized, tested for purity and the experimental yield is measured. A student’s results in a single trial are as follows.</p>
<p style="text-align: center;"><img src=""></p>
<p>Literature melting point data: aspirin = 138–140 °C</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage experimental yield of the product after recrystallization. The molar masses are as follows: <em>M</em>(salicylic acid) = 138.13 g mol<sup>−1</sup>, <em>M</em>(aspirin) = 180.17 g mol<sup>−1</sup>. (You do not need to process the uncertainties in the calculation.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why isolation of the crude product involved the addition of ice-cold water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the conclusion that recrystallization increased the purity of the product, by reference to <strong>two</strong> differences between the melting point data of the crude and recrystallized products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why aspirin is described as a mild analgesic with reference to its site of action.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Many drugs, including aspirin, penicillin, codeine and taxol, have been modified from compounds that occur naturally.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aspirin is often taken to reduce pain, swelling or fever. State one other use of aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the bioavailability of a drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the bioavailability of aspirin may be increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the IR spectrum of aspirin with that of salicylic acid, using section 26 of the data booklet.</p>
<p><img src=""></p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how penicillin combats bacterial infections.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>consequences of prescribing antibiotics such as penicillin unnecessarily.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how penicillins may be modified to increase their effectiveness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Morphine and codeine are strong analgesics. Outline how strong analgesics function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why codeine is more widely used than morphine as an analgesic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral medications such as zanamivir (Relenza) are commonly available for consumer use.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the names of <strong>two </strong>functional groups present in zanamivir using section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between bacteria and viruses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Opiates are strong analgesics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why diamorphine (heroin) crosses the blood–brain barrier more easily than morphine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the analgesic action of an opiate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the meaning of the bioavailability of a drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral drugs are a major research focus.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are used against flu viruses. Explain how these drugs function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shikimic acid, the precursor for oseltamivir (Tamiflu), was originally extracted from star anise, and is now produced using genetically modified <em>E. coli </em>bacteria.</p>
<p>Suggest <strong>one </strong>difficulty associated with synthesizing oseltamivir (Tamiflu) from star anise.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Drug testing is necessary to determine safe and effective doses.</p>
<p>Distinguish between the lethal dose (LD<sub>50</sub>) and the toxic dose (TD<sub>50</sub>).</p>
</div>
<br><hr><br><div class="specification">
<p>Excess stomach acid can be counteracted by a range of medications.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An antacid tablet contains 680 mg of calcium carbonate, CaCO<sub>3</sub>, and 80 mg of magnesium carbonate, MgCO<sub>3</sub>.</p>
<p>State the equation for the reaction of magnesium carbonate with hydrochloric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount, in mol, of hydrochloric acid neutralized by <strong>one antacid </strong><strong>tablet</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how omeprazole (Prilosec) reduces stomach acidity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The structure of penicillin is shown in section 37 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the internal bond angles in the β-lactam ring and the expected bond angles for the same atoms in an open structure.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the open β-lactam ring kills bacteria.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> effect of over-prescription of penicillin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the structure of penicillin can be changed to combat this effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why human cells are not affected by penicillin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Buffer systems control pH in the body.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of a buffer solution that is 0.0100 mol dm<sup>−3</sup> sodium hydrogen carbonate and 0.0200 mol dm<sup>−3</sup> sodium carbonate, using section 1 of the data booklet.</p>
<p><em>K</em><sub>a</sub> (hydrogen carbonate ion) = 4.8 × 10<sup>−11</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of calcium carbonate, the active ingredient in some antacids, with stomach acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a technique for measuring the percentage mass of calcium carbonate in this type of antacid tablet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the proper disposal of low-level radioactive waste in hospitals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline a green chemistry solution for problems generated by the use of organic solvents.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Mild heartburn is treated with antacids such as calcium carbonate.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate an equation for the neutralization of stomach acid with calcium carbonate, CaCO<sub>3</sub> (s).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the volume of CO<sub>2</sub> (g), in dm<sup>3</sup>, produced at STP, when 1.00 g of CaCO<sub>3</sub> (s) reacts completely with stomach acid.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>M<sub>r</sub></em> CaCO<sub>3</sub> = 100.09</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Acid secretion can be regulated by other types of drugs such as omeprazole and ranitidine. Outline how each of these drugs acts to reduce excess stomach acid. </span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Omeprazole:</span></p>
<p><span style="background-color: #ffffff;">Ranitidine:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Drug synthesis often involves solvents.</p>
<p>Identify a common hazardous solvent and a Green solvent that could replace it.</p>
<p><img src=""></p>
<p> </p>
</div>
<br><hr><br><div class="specification">
<p>The structures of morphine, diamorphine and codeine are given in section 37 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why diamorphine passes more readily than morphine through the blood-brain barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a reagent used to prepare diamorphine from morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> reason why codeine is available without prescription in some countries whilst morphine is administered under strict medical supervision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Opium and its derivatives have been used for thousands of years as strong analgesics.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how opiates act to provide pain relief.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss how the difference in structure of two opiates, codeine and morphine, affect their ability to cross the blood–brain barrier. Use section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Aspirin can be obtained from salicylic acid.</span></p>
<p><span style="background-color: #ffffff;">Unreacted salicylic acid may be present as an impurity in aspirin and can be detected in the infrared (IR) spectrum.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="392" height="175"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name the functional group and identify the absorption band that differentiates salicylic acid from aspirin. Use section 26 of the data booklet.</span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name: </span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Absorption band:</span></span></p>
</div>
<br><hr><br><div class="question">
<p>Suggest <strong>two</strong> reasons why chlorinated solvents should neither be released into the atmosphere nor incinerated (burnt).</p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Excess acid in the stomach can cause breakdown of the stomach lining.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how ranitidine (Zantac) inhibits stomach acid production.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> advantages of taking ranitidine instead of an antacid which neutralizes excess acid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Some antacids contain carbonates.</span></p>
<p><span style="background-color: #ffffff;">Determine the pH of a buffer solution which contains 0.160 mol dm<sup>−3</sup> CO<sub>3</sub><sup>2−</sup> and 0.200 mol dm<sup>−3</sup> HCO<sub>3</sub><sup>−</sup>, using section 1 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">p<em>K<sub>a</sub></em> (HCO<sub>3</sub><sup>−</sup>) = 10.32</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about antiviral drugs.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Oseltamivir, used for the treatment of severe flu, is inactive until converted in the liver to its active carboxylate form.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a circle around the functional group that can be converted to the carboxylate by hydrolysis.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="329" height="226"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a reason for using a phosphate salt of oseltamivir in oral tablets.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Anti-HIV drugs, such as zidovudine, often become less effective over time.</span></p>
<p><span style="background-color: #ffffff;">Explain the development of resistant virus strains in the presence of antiviral drugs.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Medicines and drugs are tested for effectiveness and safety.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between therapeutic window and therapeutic index in humans. </span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Therapeutic window:</span></p>
<p><span style="background-color: #ffffff;">Therapeutic index:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> advantage of using morphine as an analgesic.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why diamorphine (heroin) is more potent than morphine using section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Viruses and bacteria both cause diseases and are frequently confused.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> way in which viruses differ from bacteria.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> different ways in which antiviral medications work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;"><em>Staphylococcus aureus</em> (<em>S. aureus</em>) infections have been successfully treated with penicillin and penicillin derivatives.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the feature in penicillin responsible for its antibiotic activity.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The widespread use of penicillin and its derivatives has led to the appearance of resistant <em>S. aureus</em> strains.</span></p>
<p><span style="background-color: #ffffff;">Outline how these bacteria inactivate the antibiotics.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how the structure of penicillin has been modified to overcome this resistance.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student synthesized aspirin, acetylsalicylic acid, in a school laboratory.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="203" height="273"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">0.300 g of crude aspirin was dissolved in ethanol and titrated with sodium hydroxide solution, NaOH (aq).</span></p>
<p><span style="background-color: #ffffff;">NaOH (aq) + C<sub>9</sub>H<sub>8</sub>O<sub>4</sub> (in ethanol) → NaC<sub>9</sub>H<sub>7</sub>O<sub>4</sub> (aq) + H<sub>2</sub>O (l)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>one</strong> absorption band present in an infrared (IR) spectrum of aspirin, using section 26 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the mass of aspirin which reacted with 16.25 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> NaOH solution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the percentage purity of the synthesized aspirin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how aspirin can be chemically modified to increase its solubility in water.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State why aspirin should not be taken with alcohol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> factors which must be considered to assess the greenness of any chemical process.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Antiviral medications have recently been developed for some viral infections.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> way in which antiviral drugs work.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss <strong>two</strong> difficulties associated with solving the AIDS problem.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Body fluids have different pH values.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the compound responsible for the acidity of gastric juice, and state whether it is a strong or weak acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An antacid contains calcium carbonate and magnesium carbonate.</span></p>
<p><span style="background-color: #ffffff;">Write the equation for the reaction of magnesium carbonate with excess stomach acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how ranitidine reduces stomach acidity.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the pH of a buffer solution which contains 0.20 mol dm<sup>−3</sup> ethanoic acid and 0.50 mol dm<sup>−3</sup> sodium ethanoate. Use section 1 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">p<em>K</em><sub>a</sub> (ethanoic acid) = 4.76</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Infectious diseases can be caused by bacteria or viruses.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> difference between bacteria and viruses.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss <strong>two</strong> difficulties, apart from socio-economic factors, associated with finding a cure for AIDS.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The discovery of penicillins contributed to the development of antibiotics.</span></p>
<p><span style="background-color: #ffffff;">Explain how the beta-lactam ring is responsible for the antibiotic properties of penicillin. Refer to section 37 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Codeine, morphine and diamorphine (heroin) are derived from opium.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">S</span><span style="background-color: #ffffff;">tate the names of <strong>two</strong> functional groups present in all three molecules, using section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why diamorphine has greater potency than morphine.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The structure of aspirin is shown in section 37 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="161" height="171"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>one</strong> reactant used to prepare aspirin from salicylic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Aspirin, C<sub>6</sub>H<sub>4</sub>(OCOCH<sub>3</sub>)COOH, is only slightly soluble in water.</span></p>
<p><span style="background-color: #ffffff;">Outline, including an equation, how aspirin can be made more water-soluble. Use section 37 in the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Disposal of chemical waste is a growing problem in industry.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the impact of antibiotic waste on the environment.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a concern about the disposal of solvents from drug manufacturing.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess acid in the stomach is often treated with calcium carbonate.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate a chemical equation for the neutralization of stomach acid with calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of stomach acid neutralized by an antacid tablet containing 0.750 g calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how omeprazole (Prilosec) regulates pH in the stomach.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Methadone, a synthetic opioid, binds to opioid receptors in the brain.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the functional groups present in methadone and diamorphine (heroin), giving their names. Use section 37 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methadone is sometimes used to help reduce withdrawal symptoms in the treatment of heroin addiction. Outline <strong>one</strong> withdrawal symptom that an addict may experience.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Morphine and diamorphine (heroin) are both opioids.</p>
<p>Explain why diamorphine is more potent than morphine using section 37 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Most of the nuclear waste generated in a hospital is low-level waste (LLW).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline what is meant by low-level waste.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the disposal of LLW.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>