File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 20/HL-paper2html
File size: 850.4 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>One structural isomer of C<sub>4</sub>H<sub>9</sub>Br is a chiral molecule.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the three-dimensional shape of each enantiomer of this isomer showing their spatial relationship to each other.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When one enantiomer undergoes substitution by alkaline hydrolysis approximately 75 % of the product molecules show inversion of configuration. Comment on the mechanisms that occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the rate of alkaline hydrolysis of an enantiomer of iodopropane is greater than that of an enantiomer of bromopropane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.</p>
<p><img src="" alt></p>
<p> </p>
<p>(ii) State the number of sigma (σ) and pi (π) bonds in propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct the mechanism of the formation of 2-bromopropane from hydrogen bromide and propene using curly arrows to denote the movement of electrons.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hybridization of hydrocarbons affects their reactivity.</p>
</div>
<div class="specification">
<p>Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a sigma and pi bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the hybridization of carbon in ethane, ethene and ethyne.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if but-1-ene exhibits cis-trans isomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction which occurs between but-1-ene and hydrogen iodide at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between but-1-ene with hydrogen iodide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if the product of this reaction exhibits stereoisomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the units of the rate constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial rate of reaction in experiment 4.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, with a reason, the mechanism of the reaction between 2-chloropentane and sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the reason benzene is more reactive with an electrophile than a nucleophile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math> </span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> <br>Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the mechanism of the reaction between chloroethane and aqueous sodium hydroxide, <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>NaOH</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math>, using curly arrows to represent the movement of electron pairs.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion.<br>Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and chemical shifts with splitting patterns in the <sup>1</sup>H NMR</span><span class="fontstyle0"> spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s produce chlorine radicals. Write two successive propagation steps to show how chlorine radicals catalyse the depletion of ozone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of hybridization shown by the central carbon atom in molecule </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the number of sigma (</span><span class="fontstyle2"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">σ</mi></math></span><span class="fontstyle0">) and pi (<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">π</mi></math></span><span class="fontstyle0">) bonds around the central carbon atom in molecule </span><strong><span class="fontstyle3">B</span></strong>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p style="text-align: left;"><span class="fontstyle0">Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard Gibbs free energy change, </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi>G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle5"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi><mo mathvariant="bold"> </mo><msup><mi mathvariant="bold">mol</mi><mrow><mo mathvariant="bold">–</mo><mn mathvariant="bold">1</mn></mrow></msup></math></span><span class="fontstyle0">, for the reaction (</span><strong><span class="fontstyle5">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle5">B</span></strong><span class="fontstyle0">) at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene. Suggest the synthetic route including all the necessary reactants and steps.<br> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Propanone can be synthesized in two steps from propene.</span></p>
<p><span class="fontstyle0">Suggest why propanal is a minor product obtained from the synthetic route in (g)(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Benzene is an aromatic hydrocarbon.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the physical evidence for the structure of benzene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the typical reactions that benzene and cyclohexene undergo with bromine.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_16.35.41.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/07.b"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used to convert benzene to nitrobenzene and the formula of the electrophile formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism for the nitration of benzene, using curly arrows to show the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used in the two-stage conversion of nitrobenzene to aniline.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The reactivity of organic compounds depends on the nature and positions of their functional groups.</p>
</div>
<div class="specification">
<p>The structural formulas of two organic compounds are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which of the two compounds can show optical activity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw three-dimensional representations of the two enantiomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents used in the nitration of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the formation of NO<sub>2</sub><sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 2-bromo-2-methylpropane, (CH<sub>3</sub>)<sub>3</sub>CBr, and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>
<div class="specification">
<p>Alternative synthetic routes exist to produce alcohols.</p>
</div>
<div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of compound to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the molecular formula of the next member of the homologous series to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why ethene has only a single signal in its <sup>1</sup>H NMR spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the chemical shift of this signal. Use section 27 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> possible products of the incomplete combustion of ethene that would not be formed by complete combustion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A white solid was formed when ethene was subjected to high pressure.</p>
<p>Deduce the type of reaction that occurred.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the mechanism for the reaction of propene with hydrogen bromide using curly arrows.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromopropane and not 1-bromopropane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromopropane and not 1-bromopropane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2-bromopropane can be converted directly to propan-2-ol. Identify the reagent required.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Propan-2-ol can also be formed in one step from a compound containing a carbonyl group.</p>
<p>State the name of this compound and the type of reaction that occurs.</p>
<p><img src="" width="641" height="152"></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>A compound with a molecular formula C<sub>7</sub>H<sub>14</sub>O produced the following high resolution <sup>1</sup>H NMR spectrum.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what information can be obtained from the <sup>1</sup>H NMR spectrum.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional group that shows stretching at 1710 cm<sup>–1</sup> in the infrared spectrum of this compound using section 26 of the data booklet and the <sup>1</sup>H NMR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the structural formula of this compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the main organic product when hex-1-ene reacts with hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents and the name of the mechanism for the nitration of benzene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the bonding present, why the reaction conditions of halogenation are different for alkanes and benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are two isomers, A and B, with the molecular formula C<sub>4</sub>H<sub>9</sub>Br.</p>
<p><img src=""></p>
<p>Explain the mechanism of the nucleophilic substitution reaction with NaOH(aq) for the isomer that reacts almost exclusively by an S<sub>N</sub>2 mechanism using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic chemistry can be used to synthesize a variety of products.</p>
</div>
<div class="specification">
<p>Combustion analysis of an unknown organic compound indicated that it contained only carbon, hydrogen and oxygen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Several compounds can be synthesized from but-2-ene. Draw the structure of the final product for each of the following chemical reactions.</p>
<p><img src="" width="651" height="241"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in enthalpy, Δ<em>H</em>, for the combustion of but-2-ene, using section 11 of the data booklet. </p>
<p style="text-align:center;">CH<sub>3</sub>CH=CHCH<sub>3 </sub>(g) + 6O<sub>2</sub> (g) → 4CO<sub>2 </sub>(g) + 4H<sub>2</sub>O (g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon I and II atoms in but-2-ene.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.</p>
<p><img src="" width="693" height="286"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the mechanism for the reaction of 2-methylbut-2-ene with hydrogen bromide using curly arrows.</p>
<p style="text-align:center;"><img src="" width="225" height="109"></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the major organic product is 2-bromo-2-methylbutane and not 2-bromo-3-methylbutane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce two features of this molecule that can be obtained from the mass spectrum. Use section 28 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="660" height="270"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.<br><br></p>
<p><img src="" width="764" height="248"></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bond responsible for the absorption at <strong>A</strong> in the infrared spectrum. Use section 26 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="692" height="321"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the identity of the unknown compound using the previous information, the <sup>1</sup>H NMR spectrum and section 27 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="387" height="329"></p>
<p style="text-align:center;">SDBS, National Institute of Advanced Industrial Science and Technology (AIST).<br><br></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the stereoisomers of butan-2-ol using wedge-dash type representations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how two enantiomers can be distinguished using a polarimeter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the reactions of halogenoalkanes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the mechanisms by which 1-chlorobutane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl, and 2-chloro-2-methylpropane, (CH<sub>3</sub>)<sub>3</sub>CCl, react with aqueous sodium hydroxide, giving <strong>two </strong>similarities and <strong>one </strong>difference.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of reaction of the similar bromo-compounds is faster.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the organic product of the reaction between 1-chlorobutane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Cl, and aqueous sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how this product could be synthesized in one step from butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the name of the class of compound formed when the product of (c)(i) reacts with butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>
<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>–</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math> (sigma) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> (pi) bonds in Compound A.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the hybridization of the central carbon atom in Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the isomer of Compound B that exists as optical isomers (enantiomers).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction produces more (CH<sub>3</sub>)<sub>3</sub>COH than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Nitric acid is usually produced by the oxidation of ammonia.</p>
</div>
<div class="specification">
<p>A mixture of nitric acid and sulfuric acid can be used to convert benzene to nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrows in the boxes to represent the electron configuration of a nitrogen atom.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a Lewis (electron dot) structure of the nitric acid molecule, HNO<sub>3</sub>, that obeys the octet rule, showing any non-zero formal charges on the atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the relative lengths of the three bonds between N and O in nitric acid.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique used to determine the length of the bonds between N and O in solid HNO<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation for the reaction between the acids to produce the electrophile, NO<sub>2</sub><sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the carbocation intermediate produced when this electrophile attacks benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals that you would expect in the <sup>1</sup>H NMR spectrum of nitrobenzene and the relative areas of these.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the wavenumber of one peak in the IR spectrum of benzoic acid, using section 26 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the spectroscopic technique that is used to measure the bond lengths in solid benzoic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> piece of physical evidence for the structure of the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why both C to O bonds in the conjugate base are the same length and suggest a value for them. Use section 10 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The combustion reaction in (f)(ii) can also be classed as redox. Identify the atom that is oxidized and the atom that is reduced.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagent used to convert benzoic acid to phenylmethanol (benzyl alcohol), C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>OH.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}">
<mrow>
<msub>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>6</mtext>
</mrow>
</msub>
</mrow>
</math></span>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_15.22.26.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_14.32.42.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.bi"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the splitting patterns in the <sup>1</sup>H NMR spectrum of C<sub>2</sub>H<sub>5</sub>Cl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why tetramethylsilane (TMS) is often used as a reference standard in <sup>1</sup>H NMR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p>carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the product <strong>X</strong> is reacted with NaOH in a hot alcoholic solution, C<sub>2</sub>H<sub>3</sub>Cl is formed. State the role of the reactant NaOH other than as a nucleophile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{\text{Cl}}">
<mrow>
<msub>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>Cl</mtext>
</mrow>
</math></span>, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/1.PNG" alt></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Xylene, like benzene, can be nitrated.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Bromine reacts with alkanes.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of <sup>1</sup>H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the equation for the production of the active nitrating agent from concentrated sulfuric and nitric acids.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the mechanism for the nitration of benzene, using curly arrows to indicate the movement of electron pairs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the initiation step of the reaction and its conditions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The organic product is not optically active. Discuss whether or not the organic product is a racemic mixture.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon forms many compounds.</p>
</div>
<div class="specification">
<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>
</div>
<div class="specification">
<p>Chlorine reacts with methane.</p>
<p style="text-align: center;">CH<sub>4</sub> (g) + Cl<sub>2 </sub>(g) → CH<sub>3</sub>Cl (g) + HCl (g)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> differences between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why C<sub>60</sub> and diamond sublime at different temperatures and pressures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two features showing that propane and butane are members of the same homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formula of (Z)-but-2-ene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, the major product of reaction between but-1-ene and steam.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br, and aqueous sodium hydroxide, NaOH (aq), using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the splitting pattern in the <sup>1</sup>H NMR spectrum for 1-bromopropane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label an enthalpy level diagram for this reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Halogenoalkanes undergo nucleophilic substitution reactions with sodium hydroxide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why most halogenoalkanes are more reactive than alkanes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify 1-bromopropane as a primary, secondary or tertiary halogenoalkane, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane with aqueous sodium hydroxide using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving your reason, whether the hydroxide ion acts as a Lewis acid, a Lewis base, or neither in the nucleophilic substitution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> advantages of understanding organic reaction mechanisms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Propene is an important starting material for many products. The following shows some compounds which can be made from propene, C<sub>3</sub>H<sub>6</sub>.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><br>Propene (C<sub>3</sub>H<sub>6</sub>) → C<sub>3</sub>H<sub>7</sub>Cl → C<sub>3</sub>H<sub>8</sub>O → C<sub>3</sub>H<sub>6</sub>O</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Consider the conversion of propene to C<sub>3</sub>H<sub>7</sub>Cl.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">An experiment was carried out to determine the order of reaction between one of the isomers of C<sub>3</sub>H<sub>7</sub>Cl and aqueous sodium hydroxide. The following results were obtained.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="367" height="138"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the IUPAC name of the major product.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why it is the major product.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the reaction of the major product with aqueous sodium hydroxide to produce a C<sub>3</sub>H<sub>8</sub>O compound, showing structural formulas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the rate expression from the results, explaining your method.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the type of mechanism for the reaction of this isomer of C<sub>3</sub>H<sub>7</sub>Cl with aqueous sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch the mechanism using curly arrows to represent the movement of electrons.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of the compound C<sub>3</sub>H<sub>8</sub>O formed in (a)(iv).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of combustion of this compound, in kJ mol<sup>−1</sup>, using data from section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagents for the conversion of the compound C<sub>3</sub>H<sub>8</sub>O formed in (a)(iv) into C<sub>3</sub>H<sub>6</sub>O.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the compound C<sub>3</sub>H<sub>8</sub>O, produced in (a)(iv), has a higher boiling point than compound C<sub>3</sub>H<sub>6</sub>O, produced in d(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the <sup>1</sup>H NMR spectrum of C<sub>3</sub>H<sub>6</sub>O, produced in (d)(i), shows only one signal.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Propene is often polymerized. Draw a section of the resulting polymer, showing two repeating units.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Phenylethene can be polymerized to form polyphenylethene (polystyrene, PS).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6.PNG" alt width="187" height="190"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The major product of the reaction with hydrogen bromide is C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub> and the minor product is C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the repeating unit of polyphenylethene.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Phenylethene is manufactured from benzene and ethene in a two-stage process. The overall reaction can be represented as follows with ΔG<sup>θ</sup> = +10.0 kJ mol<sup>−1</sup> at 298 K.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6b.PNG" alt width="593" height="174"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the equilibrium constant for the overall conversion at 298 K, using section 1 of the data booklet.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The benzene ring of phenylethene reacts with the nitronium ion, NO<sub>2</sub><sup>+</sup>, and the C=C double bond reacts with hydrogen bromide, HBr.</span></p>
<p><span style="background-color: #ffffff;">Compare and contrast these two reactions in terms of their reaction mechanisms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Similarity: </span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the major product, C<sub>6</sub>H<sub>5</sub>–CHBr–CH<sub>3</sub>, can exist in two forms and state the relationship between these forms.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Two forms: </span></p>
<p><span style="background-color: #ffffff;">Relationship:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can exist in different conformational forms (isomers).</span></p>
<p><span style="background-color: #ffffff;">Outline what this means.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The minor product, C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br, can be directly converted to an intermediate compound, <strong>X</strong>, which can then be directly converted to the acid C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–CH<sub>2</sub>Br → <strong>X</strong> → C<sub>6</sub>H<sub>5</sub>–CH<sub>2</sub>–COOH</span></p>
<p><span style="background-color: #ffffff;">Identify <strong>X</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic compounds often have isomers.</p>
<p>A straight chain molecule of formula C<sub>5</sub>H<sub>10</sub>O contains a carbonyl group. The compound cannot be oxidized by acidified potassium dichromate(VI) solution.</p>
</div>
<div class="specification">
<p>A tertiary halogenoalkane with three different alkyl groups, (R<sub>1</sub>R<sub>2</sub>R<sub>3</sub>)C−X, undergoes a S<sub>N</sub>1 reaction and forms two isomers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formulas of the two possible isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectra <strong>A </strong>and <strong>B </strong>of the two isomers are given.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_16.37.09.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.a.ii_01"></p>
<p>Explain which spectrum is produced by each compound using section 28 of the data booklet.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bond fission that takes place in a S<sub>N</sub>1 reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of solvent most suitable for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of the intermediate formed stating its shape.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, the percentage of each isomer from the S<sub>N</sub>1 reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>, can be converted to phenylamine via a two-stage reaction.</p>
<p>In the first stage, nitrobenzene is reduced with tin in an acidic solution to form an intermediate ion and tin(II) ions. In the second stage, the intermediate ion is converted to phenylamine in the presence of hydroxide ions.</p>
<p>Formulate the equation for each stage of the reaction.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH, is a weak acid and ethylamine, CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>, is a weak base.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of each substance with water.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram showing the delocalization of electrons in the conjugate base of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A 0.250 mol dm<sup>−3</sup> aqueous solution of butanoic acid has a concentration of hydrogen ions, [H<sup>+</sup>], of 0.00192 mol dm<sup>−3</sup>. Calculate the concentration of hydroxide ions, [OH<sup>−</sup>], in the solution at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of a 0.250 mol dm<sup>−3</sup> aqueous solution of ethylamine at 298 K, using section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the pH curve for the titration of 25.0 cm<sup>3</sup> of ethylamine aqueous solution with 50.0 cm<sup>3</sup> of butanoic acid aqueous solution of equal concentration. No calculations are required.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable reagent for the reduction of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the complete reduction reaction in (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon dioxide contributes significantly to global warming. It can be used as a raw material with methyloxirane to form polymers.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the three-membered ring in methyloxirane is unstable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw <strong>two</strong> structural isomers of methyloxirane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, whether methyloxirane can form<em> cis-trans</em> isomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the chemical shift and splitting pattern of the signal produced by the hydrogen atoms labelled <strong>X</strong> in the <sup>1</sup>H NMR spectrum of the polymer. Use section 27 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>