File "HL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/HL-paper1html
File size: 230.18 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="question">
<p>Three planes have equations:</p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x - y + z = 5"> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>5</mn> </math></span></p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 3y - z = 4"> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mi>y</mi> <mo>−</mo> <mi>z</mi> <mo>=</mo> <mn>4</mn> </math></span>     , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{, }}b \in \mathbb{R}"> <mi>a</mi> <mrow> <mtext>, </mtext> </mrow> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p style="padding-left:150px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3x - 5y + az = b"> <mn>3</mn> <mi>x</mi> <mo>−</mo> <mn>5</mn> <mi>y</mi> <mo>+</mo> <mi>a</mi> <mi>z</mi> <mo>=</mo> <mi>b</mi> </math></span></p>
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> such that the three planes have no points of intersection.</p>
</div>
<br><hr><br><div class="specification">
<p>Two distinct lines, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>, intersect at a point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>. In addition to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span>, four distinct points are&nbsp;marked out on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and three distinct points on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>. A mathematician decides to join some of&nbsp;these eight points to form polygons.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> has vector equation <em><strong>r</strong></em><sub>1</sub> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  1 \\   0 \\   1  \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  1 \\   2 \\   1  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>λ<!-- λ --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda&nbsp; \in \mathbb{R}">
  <mi>λ<!-- λ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>&nbsp;and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> has vector equation&nbsp;<em><strong>r</strong></em><sub>2</sub>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  { - 1} \\   0 \\   2  \end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}  5 \\   6 \\   2  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>μ<!-- μ --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>5</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu&nbsp; \in \mathbb{R}">
  <mi>μ<!-- μ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> has coordinates (4, 6, 4).</p>
</div>

<div class="specification">
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> has coordinates (3, 4, 3) and lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> has coordinates (−1, 0, 2) and lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how many sets of four points can be selected which can form the vertices of a quadrilateral.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how many sets of three points can be selected which can form the vertices of a triangle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}">
  <mrow>
    <mtext>P</mtext>
  </mrow>
</math></span> is the point of intersection of the two lines.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span> corresponding to the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PA}}} ">
  <mover>
    <mrow>
      <mtext>PA</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{PB}}} ">
  <mover>
    <mrow>
      <mtext>PB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> be the point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> with coordinates (1, 0, 1) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> be the point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> with parameter <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  =  - 2">
  <mi>μ</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2</mn>
</math></span>.</p>
<p>Find the area of the quadrilateral <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CDBA}}">
  <mrow>
    <mtext>CDBA</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em>S</em> be the sum of the roots found in part (a).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^{24}} = 1"> <mrow> <msup> <mi>z</mi> <mrow> <mn>24</mn> </mrow> </msup> </mrow> <mo>=</mo> <mn>1</mn> </math></span> which satisfy the condition <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; {\text{arg}}\left( z \right) &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mrow> <mtext>arg</mtext> </mrow> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, expressing your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{e^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mi>e</mi> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta  \in {\mathbb{R}^ + }"> <mi>θ</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> <mo>+</mo> </msup> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Re <em>S</em> = Im <em>S</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\frac{\pi }{4} - \frac{\pi }{6}} \right)"> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>−</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </math></span>, find the value of cos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{\pi }{{12}}"> <mfrac> <mi>π</mi> <mrow> <mn>12</mn> </mrow> </mfrac> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\sqrt a  + \sqrt b }}{c}"> <mfrac> <mrow> <msqrt> <mi>a</mi> </msqrt> <mo>+</mo> <msqrt> <mi>b</mi> </msqrt> </mrow> <mi>c</mi> </mfrac> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> are integers to be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that <em>S</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}\left( {1 + \sqrt 2 } \right)\left( {1 + \sqrt 3 } \right)\left( {1 + {\text{i}}} \right)"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow> <mtext>i</mtext> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 1 - \cos 2\theta - {\text{i}}\sin 2\theta ,{\text{ }}z \in \mathbb{C},{\text{ }}0 \leqslant \theta \leqslant \pi ">
  <mi>z</mi>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−<!-- − --></mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>θ<!-- θ --></mi>
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>i</mtext>
  </mrow>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mn>2</mn>
  <mi>θ<!-- θ --></mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>z</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">C</mi>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>θ<!-- θ --></mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>π<!-- π --></mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\sin (x + 60^\circ ) = \cos (x + 30^\circ ),{\text{ }}0^\circ \leqslant x \leqslant 180^\circ ">
  <mn>2</mn>
  <mi>sin</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>60</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>+</mo>
  <msup>
    <mn>30</mn>
    <mo>∘</mo>
  </msup>
  <mo stretchy="false">)</mo>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <msup>
    <mn>0</mn>
    <mo>∘</mo>
  </msup>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <msup>
    <mn>180</mn>
    <mo>∘</mo>
  </msup>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}">
  <mi>sin</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>+</mo>
  <mi>cos</mi>
  <mo>⁡</mo>
  <msup>
    <mn>105</mn>
    <mo>∘</mo>
  </msup>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the modulus and argument of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ</mi>
</math></span>. Express each answer in its simplest form.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cube roots of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> in modulus-argument form.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the three planes</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>1</mn></munder></mstyle><mo>:</mo><mo>&#160;</mo><mn>2</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>4</mn></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>2</mn></munder></mstyle><mo>:</mo><mo>&#160;</mo><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>+</mo><mn>3</mn><mi>z</mi><mo>=</mo><mn>5</mn></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>&#8719;</mo><mn>3</mn></munder></mstyle><mo>:</mo><mo>-</mo><mn>9</mn><mi>x</mi><mo>+</mo><mn>3</mn><mi>y</mi><mo>-</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>32</mn></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the three planes do not intersect.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> lies on both <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>, the line of intersection of <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>1</mn></munder></mstyle></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>2</mn></munder></mstyle></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mstyle displaystyle="false"><munder><mo>∏</mo><mn>3</mn></munder></mstyle></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following diagram, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}} ">
  <mover>
    <mrow>
      <mtext>OA</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = <strong><em>a</em></strong>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}} ">
  <mover>
    <mrow>
      <mtext>OB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = <strong><em>b</em></strong>. C is the midpoint of [OA] and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OF}}}&nbsp; = \frac{1}{6}\overrightarrow {{\text{FB}}} ">
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
  <mover>
    <mrow>
      <mtext>FB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_14.26.10.png" alt="N17/5/MATHL/HP1/ENG/TZ0/09"></p>
</div>

<div class="specification">
<p>It is given also that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AD}}}&nbsp; = \lambda \overrightarrow {{\text{AF}}} ">
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mi>λ<!-- λ --></mi>
  <mover>
    <mrow>
      <mtext>AF</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}}&nbsp; = \mu \overrightarrow {{\text{CB}}} ">
  <mover>
    <mrow>
      <mtext>CD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mi>μ<!-- μ --></mi>
  <mover>
    <mrow>
      <mtext>CB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ,{\text{ }}\mu&nbsp; \in \mathbb{R}">
  <mi>λ<!-- λ --></mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>μ<!-- μ --></mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OF}}} ">
  <mover>
    <mrow>
      <mtext>OF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AF}}} ">
  <mover>
    <mrow>
      <mtext>AF</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}} ">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a</em></strong>, <strong><em>b </em></strong>and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OD}}} ">
  <mover>
    <mrow>
      <mtext>OD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a</em></strong>, <strong><em>b </em></strong>and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu  = \frac{1}{{13}}">
  <mi>μ</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mrow>
      <mn>13</mn>
    </mrow>
  </mfrac>
</math></span>, and find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{CD}}} ">
  <mover>
    <mrow>
      <mtext>CD</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span> in terms of <strong><em>a </em></strong>and <strong><em>b </em></strong>only.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that area <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {\text{OAB}} = k({\text{area }}\Delta {\text{CAD}})">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>OAB</mtext>
  </mrow>
  <mo>=</mo>
  <mi>k</mi>
  <mo stretchy="false">(</mo>
  <mrow>
    <mtext>area </mtext>
  </mrow>
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <mtext>CAD</mtext>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)^2} = 1 + {\text{sin}}\,2x"> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sec}}\,2x + {\text{tan}}\,2x = \frac{{{\text{cos}}\,x + {\text{sin}}\,x}}{{{\text{cos}}\,x - {\text{sin}}\,x}}"> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>+</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> <mo>−</mo> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>x</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^{\frac{\pi }{6}} {\left( {{\text{sec}}\,2x + {\text{tan}}\,2x} \right)} {\text{d}}x"> <msubsup> <mo>∫</mo> <mn>0</mn> <mrow> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>sec</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow> <mtext>tan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {a + \sqrt b } \right)"> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <mo>+</mo> <msqrt> <mi>b</mi> </msqrt> </mrow> <mo>)</mo> </mrow> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{Z}"> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following figure shows a square based pyramid with vertices at O(0, 0, 0), A(1, 0, 0), B(1, 1, 0), C(0, 1, 0) and D(0, 0, 1).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The Cartesian equation of the plane&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _2}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span>,&nbsp;passing through the points B , C and D , is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y + z = 1">
  <mi>y</mi>
  <mo>+</mo>
  <mi>z</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The plane&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>&nbsp;passes through O and is normal to the line BD.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π<!-- Π --></mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>&nbsp;cuts AD and BD at the points P and Q respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _1}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>, passing through the points A , B and D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle between the faces ABD and BCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _3}">
  <mrow>
    <msub>
      <mi mathvariant="normal">Π</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that P is the midpoint of AD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the triangle OPQ.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4}"> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>3</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mfrac> <mrow> <mn>9</mn> <mi>π</mi> </mrow> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \sin x,{\text{ }}x \ne k\pi "> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>≡</mo> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mi>k</mi> <mi>π</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the principle of mathematical induction to prove that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x +  \ldots  + \sin (2n - 1)x = \frac{{1 - \cos 2nx}}{{2\sin x}},{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}x \ne k\pi "> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mo>…</mo> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mi>cos</mi> <mo>⁡</mo> <mn>2</mn> <mi>n</mi> <mi>x</mi> </mrow> <mrow> <mn>2</mn> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>n</mi> <mo>∈</mo> <mrow> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>+</mo> </msup> </mrow> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mi>k</mi> <mi>π</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x + \sin 3x = \cos x"> <mi>sin</mi> <mo>⁡</mo> <mi>x</mi> <mo>+</mo> <mi>sin</mi> <mo>⁡</mo> <mn>3</mn> <mi>x</mi> <mo>=</mo> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </math></span> in the interval <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \pi "> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the binomial theorem to expand&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>.&nbsp;Give your answer in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mi mathvariant="normal">i</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>&nbsp;are expressed in terms of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use de Moivre’s theorem and the result from part (a) to show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the identity from part (b) to show that the quadratic equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>&nbsp;has roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a quadratic equation with integer coefficients, having roots&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following diagram, the points&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>&nbsp;are on the circumference of a circle with centre <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
  <mrow>
    <mtext>O</mtext>
  </mrow>
</math></span> and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{AC}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>AC</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>&nbsp;is a diameter of the circle.&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = r">
  <mrow>
    <mtext>BC</mtext>
  </mrow>
  <mo>=</mo>
  <mi>r</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}} = {\text{CD}}">
  <mrow>
    <mtext>AD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>CD</mtext>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{C}} = {\text{A}}\mathop {\text{D}}\limits^ \wedge&nbsp; {\text{C}} = 90^\circ ">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>D</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,75^\circ  = q"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> <mo>=</mo> <mi>q</mi> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,105^\circ  =  - q"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>105</mn> <mo>∘</mo> </msup> <mo>=</mo> <mo>−</mo> <mi>q</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{D}} = 75^\circ "> <mrow> <mtext>B</mtext> </mrow> <mover> <mrow> <mtext>A</mtext> </mrow> <mo>∧</mo> </mover> <mo>⁡</mo> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <msup> <mn>75</mn> <mo>∘</mo> </msup> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABD}}"> <mrow> <mtext>ABD</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2} = 5{r^2} - 2{r^2}q\sqrt 6 "> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> <mo>=</mo> <mn>5</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>2</mn> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mi>q</mi> <msqrt> <mn>6</mn> </msqrt> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CBD}}"> <mrow> <mtext>CBD</mtext> </mrow> </math></span>, find another expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}{{\text{D}}^2}"> <mrow> <mtext>B</mtext> </mrow> <mrow> <msup> <mrow> <mtext>D</mtext> </mrow> <mn>2</mn> </msup> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to part (c) to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,75^\circ  = \frac{1}{{\sqrt 6  + \sqrt 2 }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <msup> <mn>75</mn> <mo>∘</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msqrt> <mn>6</mn> </msqrt> <mo>+</mo> <msqrt> <mn>2</mn> </msqrt> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Given any two non-zero vectors,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi></math>, show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>×</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">a</mi></mfenced><mn>2</mn></msup><msup><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi mathvariant="bold-italic">a</mi><mo>·</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced><mn>2</mn></msup></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>,&nbsp;with asymptotes at&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">&#960;</mi><mn>4</mn></mfrac></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>4</mn></mfrac></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan </mtext><mi>x</mi></math> to the&nbsp;graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mi>q</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo>&lt;</mo><mn>1</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan </mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>arctan </mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using mathematical induction and the result from part (b), prove that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> defined by</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}:">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>:</mo>
</math></span>&nbsp;<em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="&nbsp;= \left( {\begin{array}{*{20}{c}} { - 3} \\ { - 2} \\ a \end{array}} \right) + \beta \left( {\begin{array}{*{20}{c}} 1 \\ 4 \\ 2 \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>a</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>β<!-- β --></mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}:\frac{{6 - x}}{3} = \frac{{y - 2}}{4} = 1 - z">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mo>:</mo>
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mo>−<!-- − --></mo>
      <mi>x</mi>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>y</mi>
      <mo>−<!-- − --></mo>
      <mn>2</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mo>=</mo>
  <mn>1</mn>
  <mo>−<!-- − --></mo>
  <mi>z</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant.</p>
<p>Given that the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_1}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{l_2}">
  <mrow>
    <msub>
      <mi>l</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> intersect at a point P,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the coordinates of the point of intersection P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a triangle OAB such that O has coordinates (0, 0, 0), A has coordinates&nbsp;(0, 1, 2) and B has coordinates (2<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, 0, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> − 1) where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> &lt; 0.</p>
</div>

<div class="specification">
<p>Let M be the midpoint of the line segment [OB].</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, a Cartesian equation of the plane <em>Π</em> containing this triangle.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>, the equation of the line <em>L</em> which passes through M and is perpendicular to the plane <em>П</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that<em> L</em> does not intersect the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis for any negative value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let <em>θ</em> be the angle between&nbsp;the two given sides. The triangle has an area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{5\sqrt {15} }}{2}">
  <mfrac>
    <mrow>
      <mn>5</mn>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>2</mn>
  </mfrac>
</math></span> cm<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,\theta  = \frac{{\sqrt {15} }}{4}">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>θ</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <msqrt>
        <mn>15</mn>
      </msqrt>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two possible values for the length of the third side.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A and B are given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(0,{\text{ }}3,{\text{ }} - 6)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(6,{\text{ }} - 5,{\text{ }}11)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>6</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>11</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p>The plane <em>Π</em>&nbsp;is defined by the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 3y + 2z = 20">
  <mn>4</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mi>y</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mi>z</mi>
  <mo>=</mo>
  <mn>20</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line <em>L </em>passing through the points A and B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point of intersection of the line <em>L </em>with the plane <em>Π</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is defined by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^x}\,{\text{cos}}{\,^2}x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mi>x</mi>
    </msup>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <msup>
      <mspace width="thinmathspace"></mspace>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>x</mi>
</math></span>, where 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 5.&nbsp;The curve&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;is shown on the following graph which has local maximum points at A and C and touches the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at B and D.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use integration by parts to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}\,2x{\text{d}}x = } \frac{{2{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{5}{\text{cos}}\,2x + c"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mfrac> <mrow> <mn>2</mn> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>c</mi> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{R}"> <mi>c</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {{{\text{e}}^x}\,{\text{cos}}{\,^2}x{\text{d}}x = } \frac{{{{\text{e}}^x}}}{5}{\text{sin}}\,2x + \frac{{{{\text{e}}^x}}}{{10}}{\text{cos}}\,2x + \frac{{{{\text{e}}^x}}}{2} + c"> <mo>∫</mo> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mrow> <msup> <mspace width="thinmathspace"></mspace> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> </mrow> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>5</mn> </mfrac> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mrow> <mn>10</mn> </mrow> </mfrac> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mfrac> <mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mi>x</mi> </msup> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mi>c</mi> </math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c \in \mathbb{R}"> <mi>c</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinates of A and of C , giving your answers in the form&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + {\text{arctan}}\,b"> <mi>a</mi> <mo>+</mo> <mrow> <mtext>arctan</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>b</mi> </math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{R}"> <mi>b</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area enclosed by the curve and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis between B and D, as shaded on the diagram.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A, B, C and D have position vectors <em><strong>a</strong></em>, <em><strong>b</strong></em>, <em><strong>c</strong></em> and <em><strong>d</strong></em>, relative to the origin O.</p>
<p>It is given that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AB}}}\limits^ \to&nbsp; &nbsp;= \mathop {{\text{DC}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>DC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>.</p>
</div>

<div class="specification">
<p>The position vectors&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OA}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OA</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OB}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OB</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OC}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{OD}}}\limits^ \to&nbsp; ">
  <mover>
    <mrow>
      <mrow>
        <mtext>OD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→<!-- → --></mo>
  </mover>
</math></span> are given by</p>
<p style="padding-left: 150px;"><em><strong>a</strong></em> = <em><strong>i</strong></em> + 2<em><strong>j</strong></em>&nbsp;− 3<em><strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>b</strong></em> = 3<em><strong>i</strong></em> − <em><strong>j</strong></em> + <em>p<strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>c</strong></em> = <em>q<strong>i</strong></em> + <em><strong>j</strong></em> + 2<em><strong>k</strong></em></p>
<p style="padding-left: 150px;"><em><strong>d</strong></em> =&nbsp;−<em><strong>i</strong></em> + <em>r<strong>j</strong></em> − 2<em><strong>k</strong></em></p>
<p>where <em>p</em> , <em>q</em> and <em>r</em> are constants.</p>
</div>

<div class="specification">
<p>The point where the diagonals of ABCD intersect is denoted by M.</p>
</div>

<div class="specification">
<p>The plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π<!-- Π --></mi>
</math></span> cuts the <em>x</em>, <em>y</em> and <em>z</em> axes at X , Y and Z respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why ABCD is a parallelogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using vector algebra, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  ">
  <mover>
    <mrow>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
  <mo>=</mo>
  <mover>
    <mrow>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
    </mrow>
    <mo stretchy="false">→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>p</em> = 1, <em>q</em> = 1 and <em>r</em> = 4.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the parallelogram ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector equation of the straight line passing through M and normal to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π</mi>
</math></span> containing ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Pi ">
  <mi mathvariant="normal">Π</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of X, Y and Z.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find YZ.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>The inverse of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfrac><mi>x</mi><mn>2</mn></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p>Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mi>q</mi><mn>2</mn></mfrac><msqrt><mi>r</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>By using the substitution <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mtext>sec</mtext><mo> </mo><mi>x</mi></math> or otherwise, find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mo>∫</mo><mn>0</mn><mfrac><mi>π</mi><mn>3</mn></mfrac></munderover><msup><mtext>sec</mtext><mi>n</mi></msup><mo> </mo><mi>x</mi><mo> </mo><mi>tan</mi><mo> </mo><mi>x</mi><mo> </mo><mo>d</mo><mi>x</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is a non-zero real number.</p>
</div>
<br><hr><br><div class="question">
<p>A straight line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_\theta }"> <mrow> <msub> <mi>L</mi> <mi>θ</mi> </msub> </mrow> </math></span>, has vector equation <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  5 \\   0 \\   0  \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}  5 \\   {{\text{sin}}\,\theta } \\   {{\text{cos}}\,\theta }  \end{array}} \right){\text{, }}\lambda {\text{, }}\theta \in \mathbb{R}"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>λ</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>, </mtext> </mrow> <mi>λ</mi> <mrow> <mtext>, </mtext> </mrow> <mi>θ</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p>The plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _p}"><msub><mi>Π</mi><mi>p</mi></msub></math></span>, has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p{\text{, }}p \in \mathbb{R}"> <mi>x</mi> <mo>=</mo> <mi>p</mi> <mrow> <mtext>, </mtext> </mrow> <mi>p</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<p>Show that the angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_\theta }"> <mrow> <msub> <mi>L</mi> <mi>θ</mi> </msub> </mrow> </math></span> and <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\Pi _p}"><msub><mi>Π</mi><mi>p</mi></msub></math> is independent of both <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The lines <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> have the following vector equations where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>,</mo><mo> </mo><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub><mo> </mo><mo>:</mo><mo> </mo><msub><mi mathvariant="bold-italic">r</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mi>m</mi></mtd></mtr></mtable></mfenced><mo>&nbsp;</mo><msub><mi>l</mi><mn>2</mn></msub><mo> </mo><mo>:</mo><mo> </mo><msub><mi mathvariant="bold-italic">r</mi><mn>2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>4</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn><mi>m</mi></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr><mtr><mtd><mo>-</mo><mi>m</mi></mtd></mtr></mtable></mfenced></math></p>
</div>

<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> has Cartesian equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>+</mo><mn>4</mn><mi>y</mi><mo>-</mo><mi>z</mi><mo>=</mo><mi>p</mi></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>&nbsp;</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> have no points in common, find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> are never perpendicular to each other.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the condition on the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> defined by the Cartesian equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac><mo>=</mo><mi>y</mi><mo>=</mo><mn>3</mn><mo>-</mo><mi>z</mi></math>.</p>
</div>

<div class="specification">
<p>Consider a second line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> defined by the vector equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mn>3</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> when the acute angle between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn><mo>°</mo></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that the lines&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> have a unique point of intersection, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mi>k</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, and find the coordinates of the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>(0 , 0 , 10) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>(0 , 10 , 0) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span>(10 , 0 , 0) , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}">
  <mrow>
    <mtext>V</mtext>
  </mrow>
</math></span>(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>) form the vertices of a tetrahedron.</p>
</div>

<div class="specification">
<p>Consider the case where the faces <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABV}}">
  <mrow>
    <mtext>ABV</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ACV}}">
  <mrow>
    <mtext>ACV</mtext>
  </mrow>
</math></span> are perpendicular.</p>
</div>

<div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>. The maximum point is shown by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{X}}">
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} \times \overrightarrow {{\text{AV}}} = - 10\left( {\begin{array}{*{20}{c}}  {10 - 2p} \\   p \\   p  \end{array}} \right)"> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mn>10</mn> <mo>−</mo> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and find a similar expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}}  \times \overrightarrow {{\text{AV}}} "> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>×</mo> <mover> <mrow> <mtext>AV</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that, if the angle between the faces <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABV}}"> <mrow> <mtext>ABV</mtext> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ACV}}"> <mrow> <mtext>ACV</mtext> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>, then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\theta  = \frac{{p\left( {3p - 20} \right)}}{{6{p^2} - 40p + 100}}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mi>p</mi> <mo>−</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mn>6</mn> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>40</mn> <mi>p</mi> <mo>+</mo> <mn>100</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two possible coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}"> <mrow> <mtext>V</mtext> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the positions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{V}}"> <mrow> <mtext>V</mtext> </mrow> </math></span> in relation to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC}}"> <mrow> <mtext>ABC</mtext> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{X}}"> <mrow> <mtext>X</mtext> </mrow> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the horizontal asymptote of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Find the coordinates of the point of intersection of the planes defined by the equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + z = 3,{\text{ }}x - y + z = 5"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>x</mi> <mo>−</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>5</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + 2z = 6"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>6</mn> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1</mn>
</math></span>,&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
  <mi>a</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
  <mi>a</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a =  - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
  <mo>=</mo>
</math></span>&nbsp;<strong><em>i</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}3">
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
</math></span><strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - {\text{ }}2">
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
</math></span><strong><em>k</em></strong>, <strong><em>b</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = &nbsp;- {\text{ }}3">
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>3</mn>
</math></span><strong><em>j</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + {\text{ }}2">
  <mo>+</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>2</mn>
</math></span><strong><em>k</em></strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <strong><em>a</em></strong>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
  <mo>×</mo>
</math></span>&nbsp;<strong><em>b</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the Cartesian equation of the plane containing the vectors <strong><em>a </em></strong>and <strong><em>b</em></strong>, and passing through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(1,{\text{ }}0,{\text{ }} - 1)">
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−</mo>
  <mn>1</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span> are acute angles such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,A = \frac{2}{3}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>A</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,B = \frac{1}{3}"> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>B</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </math></span>.</p>
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\left( {2A + B} \right) =  - \frac{{2\sqrt 2 }}{{27}} - \frac{{4\sqrt 5 }}{{27}}"> <mrow> <mtext>cos</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>4</mn> <msqrt> <mn>5</mn> </msqrt> </mrow> <mrow> <mn>27</mn> </mrow> </mfrac> </math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>The acute angle between the vectors 3<em><strong>i</strong></em> − 4<em><strong>j</strong></em> − 5<em><strong>k</strong></em> and 5<em><strong>i</strong></em> − 4<em><strong>j</strong></em> + 3<em><strong>k</strong></em> is denoted by <em>θ</em>.</p>
<p>Find cos <em>θ</em>.</p>
</div>
<br><hr><br><div class="specification">
<p>ABCD is a parallelogram, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = –<strong><em>i</em></strong> + 2<strong><em>j</em></strong> + 3<strong><em>k</em></strong> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AD}}} ">
  <mover>
    <mrow>
      <mtext>AD</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
</math></span> = 4<strong><em>i</em></strong> – <strong><em>j</em></strong> – 2<strong><em>k</em></strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the parallelogram ABCD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable scalar product of two vectors, determine whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat BC}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">B</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
</math></span> is acute or obtuse.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>It is given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cosec</mtext><mo> </mo><mi>θ</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mfrac><mstyle displaystyle="true"><mn>3</mn><mi mathvariant="normal">π</mi></mstyle><mstyle displaystyle="true"><mn>2</mn></mstyle></mfrac></math>. Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>cot</mtext><mo> </mo><mi>θ</mi></math>.</p>
</div>
<br><hr><br><div class="question">
<p>Let <em><strong>a</strong></em>&nbsp;=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  2 \\   k \\   { - 1}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 3} \\   {k + 2} \\   k  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>3</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mi>k</mi>
              <mo>+</mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
  <mi>k</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>Given that <em><strong>a</strong></em> and <em><strong>b</strong></em> are perpendicular, find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Three points in three-dimensional space have coordinates A(0, 0, 2), B(0, 2, 0) and&nbsp;C(3, 1, 0).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} ">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} ">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the area of the triangle ABC.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sec ^2}x + 2\tan x = 0,{\text{ }}0 \leqslant x \leqslant 2\pi "> <mrow> <msup> <mi>sec</mi> <mn>2</mn> </msup> </mrow> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>tan</mi> <mo>⁡</mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2</mn> <mi>π</mi> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The lines <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> have the following vector equations where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>,</mo><mo>&nbsp;</mo><mi>μ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub><mo>:</mo><msub><mi mathvariant="bold-italic">r</mi><mn>1</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub><mo>:</mo><msub><mi mathvariant="bold-italic">r</mi><mn>2</mn></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>μ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math> do not intersect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum distance between&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>1</mn></msub></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>l</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = {\text{sin}}\,b,\,\,0 &lt; b &lt; \frac{\pi }{2}">
  <mi>a</mi>
  <mo>=</mo>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>b</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>b</mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π</mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p>Find, in terms of <em>b</em>, the solutions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{sin}}\,2x =  - a,\,\,0 \leqslant x \leqslant \pi ">
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mi>a</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mi>π</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> defined on the domain&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 2\pi ">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>2</mn>
  <mi>π<!-- π --></mi>
</math></span> by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 3\,{\text{cos}}\,2x">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>3</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mn>2</mn>
  <mi>x</mi>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4 - 11\,{\text{cos}}\,x">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
  <mo>−<!-- − --></mo>
  <mn>11</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
</math></span>.</p>
<p>The following diagram shows the graphs of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinates of the points of intersection of the two graphs.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact area of the shaded region, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\pi  + q\sqrt 3 "> <mi>p</mi> <mi>π</mi> <mo>+</mo> <mi>q</mi> <msqrt> <mn>3</mn> </msqrt> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{Q}"> <mi>q</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Q</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the points A and B on the diagram, the gradients of the two graphs are equal.</p>
<p>Determine the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-coordinate of A on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider quadrilateral <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQRS</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>PQ</mi></mfenced></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>SR</mi></mfenced></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">In <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQRS</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PQ</mi><mo>=</mo><mi>x</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>SR</mi><mo>=</mo><mi>y</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">R</mi><mover><mi mathvariant="normal">S</mi><mo>^</mo></mover><mi mathvariant="normal">P</mi><mo>=</mo><mi>α</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">Q</mi><mover><mi mathvariant="normal">R</mi><mo>^</mo></mover><mi mathvariant="normal">S</mi><mo>=</mo><mi>β</mi></math>.</p>
<p style="text-align:left;">Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>PS</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>sin</mi><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi></mrow></mfenced></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the complex numbers&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><mn>1</mn><mo>+</mo><mi>b</mi><mtext>i</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>-</mo><mn>2</mn><mi>b</mi><mtext>i</mtext></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8800;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arg</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The vectors <strong><em>a</em></strong> and <em><strong>b</strong></em> are defined by <strong><em>a&nbsp;</em></strong>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1 \\   t  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>t</mi>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<strong><em>b</em><em>&nbsp;</em></strong>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  0 \\   { - t} \\   {4t}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mi>t</mi>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mn>4</mn>
              <mi>t</mi>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \in \mathbb{R}">
  <mi>t</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find and simplify an expression for <em><strong>a</strong></em> • <em><strong>b</strong></em> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> for which the angle between<em><strong> a</strong></em> and <em><strong>b</strong></em> is obtuse .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msqrt><mn>1</mn><mo>+</mo><mi>x</mi></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mfrac><mn>1</mn><mrow><mn>4</mn><msqrt><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mn>3</mn></msup></msqrt></mrow></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use mathematical induction to prove that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mfenced><mi>n</mi></mfenced></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mfenced><mrow><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfrac><mrow><mfenced><mrow><mn>2</mn><mi>n</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>!</mo></mrow><mrow><mfenced><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced><mo>!</mo></mrow></mfrac><msup><mfenced><mrow><mn>1</mn><mo>+</mo><mi>x</mi></mrow></mfenced><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>-</mo><mi>n</mi></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mtext>e</mtext><mrow><mi>m</mi><mi>x</mi></mrow></msup><mo>,</mo><mo>&nbsp;</mo><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>×</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mo>-</mo><mn>1</mn></math>.</p>
<p>It is given that the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup></math> term in the Maclaurin series for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a coefficient of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>7</mn><mn>4</mn></mfrac></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><msup><mi>cos</mi><mn>2</mn></msup><mo> </mo><mi>x</mi><mo>+</mo><mn>5</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi><mo>=</mo><mn>4</mn><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn><mi mathvariant="normal">π</mi></math>.</p>
</div>
<br><hr><br><div class="question">
<p>A sector of a circle with radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> &gt; 0, is shown on the following diagram.<br>The sector has an angle of 1 radian at the centre.</p>
<p style="text-align: center;"><img src=""></p>
<p>Let the area of the sector be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> cm<sup>2</sup> and the perimeter be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span> cm. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = P">
  <mi>A</mi>
  <mo>=</mo>
  <mi>P</mi>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>The plane <em>П</em> has the Cartesian equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x + y + 2z = 3"> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mo>=</mo> <mn>3</mn> </math></span></p>
<p>The line <em>L</em> has the vector equation <strong><em>r</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  3 \\   { - 5} \\   1  \end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}  1 \\   { - 2} \\   p  \end{array}} \right){\text{,}}\,\,\mu {\text{,}}\,p \in \mathbb{R}"> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>μ</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>μ</mi> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>. The acute angle between the line <em>L</em> and the plane <em>П</em> is 30°.</p>
<p>Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
</div>
<br><hr><br>