File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 6 HTML/HL-paper2html
File size: 136.81 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>The table gives data for Jupiter and three of its moons, including the radius <em>r</em> of each object.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A spacecraft is to be sent from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math> to infinity.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the surface of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>, the gravitational field strength <em>g</em><sub>Io</sub> due to the mass of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>gravitational</mi><mo> </mo><mi>potential</mi><mo> </mo><mi>due</mi><mo> </mo><mi>to</mi><mo> </mo><mi>Jupiter</mi><mo> </mo><mi>at</mi><mo> </mo><mi>the</mi><mo> </mo><mi>orbit</mi><mo> </mo><mi>of</mi><mo> </mo><mi>Io</mi></mrow><mrow><mo> </mo><mi>gravitational</mi><mo> </mo><mi>potential</mi><mo> </mo><mi>due</mi><mo> </mo><mi>to</mi><mo> </mo><mi>Io</mi><mo> </mo><mi>at</mi><mo> </mo><mi>the</mi><mo> </mo><mi>surface</mi><mo> </mo><mi>of</mi><mo> </mo><mi>Io</mi></mrow></mfrac></math> is about 80.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using (b)(i), why it is not correct to use the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><mfrac><mrow><mn>2</mn><mi>G</mi><mo>×</mo><mtext>mass of Io</mtext></mrow><mtext>radius of Io</mtext></mfrac></msqrt></math> to calculate the speed required for the spacecraft to reach infinity from the surface of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Io</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An engineer needs to move a space probe of mass 3600 kg from Ganymede to Callisto. Calculate the energy required to move the probe from the orbital radius of Ganymede to the orbital radius of Callisto. Ignore the mass of the moons in your calculation. </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,45}^{106}{\text{Rh}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>45</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Rh</mtext>
</mrow>
</math></span>) decays into palladium-106 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{\,\,\,46}^{106}{\text{Pd}}">
<msubsup>
<mi></mi>
<mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>46</mn>
</mrow>
<mrow>
<mn>106</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Pd</mtext>
</mrow>
</math></span>) by beta minus (<em>β</em><sup>–</sup>) decay. The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106. The arrow represents the <em>β</em><sup>–</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition <em>mvr </em>= <em>n</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{h}{{2\pi }}">
<mfrac>
<mi>h</mi>
<mrow>
<mn>2</mn>
<mi>π</mi>
</mrow>
</mfrac>
</math></span>. Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the radius <em>r </em>of the orbit by the expression</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} ">
<mi>v</mi>
<mo>=</mo>
<msqrt>
<mfrac>
<mrow>
<mi>k</mi>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mi>r</mi>
</mrow>
</mfrac>
</msqrt>
</math></span></p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit in the ground state of hydrogen is given by the following expression.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}">
<mi>r</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>h</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>k</mi>
<mrow>
<msub>
<mi>m</mi>
<mrow>
<mtext>e</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The moon Phobos moves around the planet Mars in a circular orbit.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the origin of the force that acts on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on Phobos.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital period <em>T</em> of a moon orbiting a planet of mass <em>M</em> is given by</p>
<p style="text-align:center;"><span style="background-color:#ffffff;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{R^3}}}{{{T^2}}} = kM">
<mfrac>
<mrow>
<mrow>
<msup>
<mi>R</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mi>T</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mi>k</mi>
<mi>M</mi>
</math></span></span></p>
<p>where <em>R</em> is the average distance between the centre of the planet and the centre of the moon.</p>
<p>Show that <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = \frac{G}{{4{\pi ^2}}}">
<mi>k</mi>
<mo>=</mo>
<mfrac>
<mi>G</mi>
<mrow>
<mn>4</mn>
<mrow>
<msup>
<mi>π</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data for the Mars–Phobos system and the Earth–Moon system are available:</p>
<p>Mass of Earth = 5.97 × 10<sup>24</sup> kg</p>
<p>The Earth–Moon distance is 41 times the Mars–Phobos distance.</p>
<p>The orbital period of the Moon is 86 times the orbital period of Phobos.</p>
<p>Calculate, in kg, the mass of Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of the gravitational potential between the Earth and Moon with distance from the centre of the Earth. The distance from the Earth is expressed as a fraction of the total distance between the centre of the Earth and the centre of the Moon.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Determine, using the graph, the mass of the Moon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet is in a circular orbit around a star. The speed of the planet is constant. The following data are given:</p>
<p style="padding-left: 120px;">Mass of planet <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>24</mn></msup><mo> </mo></math>kg<br>Mass of star <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mo>×</mo><msup><mn>10</mn><mn>30</mn></msup><mo> </mo></math>kg<br>Distance from the star to the planet <em>R</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><msup><mn>10</mn><mn>10</mn></msup><mo> </mo></math>m.</p>
</div>
<div class="specification">
<p>A spacecraft is to be launched from the surface of the planet to escape from the star system. The radius of the planet is 9.1 × 10<sup>3</sup> km.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a centripetal force is needed for the planet to be in a circular orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the centripetal force.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the gravitational potential due to the planet and the star at the surface of the planet is about −5 × 10<sup>9 </sup>J kg<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the escape speed of the spacecraft from the planet–star system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet has radius <em>R</em>. At a distance <em>h </em>above the surface of the planet the gravitational field strength is <em>g </em>and the gravitational potential is <em>V</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by gravitational field strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>V </em>= –<em>g</em>(<em>R </em>+ <em>h</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph, on the axes, to show the variation of the gravitational potential <em>V</em> of the planet with height <em>h </em>above the surface of the planet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A planet has a radius of 3.1 × 10<sup>6</sup> m. At a point P a distance 2.4 × 10<sup>7</sup> m above the surface of the planet the gravitational field strength is 2.2 N kg<sup>–1</sup>. Calculate the gravitational potential at point P, include an appropriate unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the path of an asteroid as it moves past the planet.</p>
<p> <img src="images/Schermafbeelding_2018-08-14_om_07.33.17.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/06.c"></p>
<p>When the asteroid was far away from the planet it had negligible speed. Estimate the speed of the asteroid at point P as defined in (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the asteroid is 6.2 × 10<sup>12</sup> kg. Calculate the gravitational force experienced by the <strong>planet </strong>when the asteroid is at point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>There is a proposal to place a satellite in orbit around planet Mars.</p>
</div>
<div class="specification">
<p>The satellite is to have an orbital time <em>T</em> equal to the length of a day on Mars. It can be shown that</p>
<p style="text-align: center;"><em>T</em><sup>2</sup> = <em>kR</em><sup>3</sup></p>
<p>where<em> R</em> is the orbital radius of the satellite and <em>k</em> is a constant.</p>
</div>
<div class="specification">
<p>The ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{distance of Mars from the Sun}}}}{{{\text{distance of Earth from the Sun}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>distance of Mars from the Sun</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>distance of Earth from the Sun</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> = 1.5.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by gravitational field strength at a point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Newton’s law of gravitation applies to point masses. Suggest why the law can be applied to a satellite orbiting Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mars has a mass of 6.4 × 10<sup>23</sup> kg. Show that, for Mars, <em>k</em> is about 9 × 10<sup>–13 </sup>s<sup>2 </sup>m<sup>–3</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The time taken for Mars to revolve on its axis is 8.9 × 10<sup>4</sup> s. Calculate, in m s<sup>–1</sup>, the orbital speed of the satellite.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of solar radiation at the orbit of Mars is about 600 W m<sup>–2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in K, the mean surface temperature of Mars. Assume that Mars acts as a black body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atmosphere of Mars is composed mainly of carbon dioxide and has a pressure less than 1 % of that on the Earth. Outline why the mean temperature of Earth is strongly affected by gases in its atmosphere but that of Mars is not.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the Earth-Sun distance.</p>
</div>
<div class="specification">
<p>The molar mass of nitrogen is 28 g mol<sup>−1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Titan is 0.025 times the mass of the Earth and its radius is 0.404 times the radius of the Earth. The escape speed from Earth is 11.2 km s<sup>−1</sup>. Show that the escape speed from Titan is 2.8 km s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of a nitrogen molecule is 4.7 × 10<sup>−26</sup> kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the root mean square speed of nitrogen molecules in the Titan atmosphere. Assume an atmosphere temperature of 90 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, by reference to the answer in (b), whether it is likely that Titan will lose its atmosphere of nitrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A proton moves along a circular path in a region of a uniform magnetic field. The magnetic field is directed into the plane of the page.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The speed of the proton is 2.16 × 10<sup>6</sup> m s<sup>-1</sup> and the magnetic field strength is 0.042 T.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the magnetic force <em>F</em> on the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label with arrows on the diagram the velocity vector <em>v</em> of the proton.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">For this proton, determine, in m, the radius of the circular path. Give your answer to an appropriate number of significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">For this proton, calculate, in s, the time for one full revolution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<br><hr><br><div class="specification">
<p>The ball is now displaced through a small distance <em>x </em>from the bottom of the bowl and is then released from rest.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.19.20.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/01.d"></p>
<p>The magnitude of the force on the ball towards the equilibrium position is given by</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{mgx}}{R}">
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
<mi>x</mi>
</mrow>
<mi>R</mi>
</mfrac>
</math></span></p>
<p>where <em>R </em>is the radius of the bowl.</p>
</div>
<div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>θ</em> to the horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following equation.</p>
<p> <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="F = \frac{{mg}}{{\tan \theta }}">
<mi>F</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<mrow>
<mi>tan</mi>
<mo></mo>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the ball will perform simple harmonic oscillations about the equilibrium position.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the period of oscillation of the ball is about 6 s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amplitude of oscillation is 0.12 m. On the axes, draw a graph to show the variation with time <em>t </em>of the velocity <strong><em>v </em></strong>of the ball during one period.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced so that its height from the horizontal is equal to 8.0 m.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The gravitational potential due to the Sun at its surface is –1.9 x 10<sup>11</sup> J kg<sup>–1</sup>. The following data are available.</p>
<table style="width: 441.4px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 422px;">Mass of Earth</td>
<td style="width: 558.4px;">= 6.0 x 10<sup>24</sup> kg</td>
</tr>
<tr>
<td style="width: 422px;">Distance from Earth to Sun</td>
<td style="width: 558.4px;">= 1.5 x 10<sup>11</sup> m</td>
</tr>
<tr>
<td style="width: 422px;">Radius of Sun</td>
<td style="width: 558.4px;">= 7.0 x 10<sup>8</sup> m</td>
</tr>
</tbody>
</table>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the gravitational potential is negative.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The gravitational potential due to the Sun at a distance <em>r</em> from its centre is <em>V</em><sub>S</sub>. Show that</p>
<p><em>rV</em><sub>S</sub> = constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the gravitational potential energy of the Earth in its orbit around the Sun. Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total energy of the Earth in its orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An asteroid strikes the Earth and causes the orbital speed of the Earth to suddenly decrease. Suggest the ways in which the orbit of the Earth will change.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the force acting on it, why the Earth remains in a circular orbit around the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>