File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 12/HL-paper2html
File size: 266.49 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{Ti}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span> atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
</math></span> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>

<div class="specification">
<p>The equilibrium for a mixture of NO<sub>2</sub> and N<sub>2</sub>O<sub>4</sub> gases is represented as:</p>
<p style="text-align: center;">2NO<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> N<sub>2</sub>O<sub>4</sub>(g)</p>
<p>At 100°C, the equilibrium constant, <em>K</em><sub>c</sub>, is 0.21.</p>
</div>

<div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the bonding in the resonance structures of ozone.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce one resonance structure of ozone and the corresponding formal charges on each oxygen atom.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The first six ionization energies, in kJ mol<sup>–1</sup>, of an element are given below.</p>
<p><img src="images/Schermafbeelding_2017-09-21_om_08.29.16.png" alt="M17/4/CHEMI/HP2/ENG/TZ2/04.c"></p>
<p>Explain the large increase in ionization energy from IE<sub>3</sub> to IE<sub>4</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a given time, the concentration of NO<sub>2</sub>(g) and N<sub>2</sub>O<sub>4</sub>(g) were 0.52 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.10{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mn>0.10</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> respectively.</p>
<p>Deduce, showing your reasoning, if the forward or the reverse reaction is favoured at this time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the value of Δ<em>G</em> when the reaction quotient equals the equilibrium constant, <em>Q</em> = <em>K</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium ions produce no emission or absorption lines in the visible region of the electromagnetic spectrum. Suggest why most magnesium compounds tested in a school laboratory show traces of yellow in the flame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain the convergence of lines in a hydrogen emission spectrum.</p>
<p>(ii) State what can be determined from the frequency of the convergence limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>(i) Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922K and 987K respectively.</p>
<p><img src="" alt></p>
<p>(ii) Identify the type of reaction occurring at the cathode (negative electrode).</p>
<p>(iii) State the products when a very <strong>dilute</strong> aqueous solution of magnesium chloride is electrolysed.</p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Standard electrode potentials are measured relative to the standard hydrogen electrode. Describe a standard hydrogen electrode.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A magnesium half-cell, Mg(s)/Mg<sup>2+</sup>(aq), can be connected to a copper half-cell, Cu(s)/Cu<sup>2+</sup>(aq).</p>
<p>(i) Formulate an equation for the spontaneous reaction that occurs when the circuit is completed.</p>
<p>(ii) Determine the standard cell potential, in V, for the cell. Refer to section 24 of the data booklet.</p>
<p>(iii) Predict, giving a reason, the change in cell potential when the concentration of copper ions increases.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The equations show steps in the formation and decomposition of ozone in the stratosphere, some of which absorb ultraviolet light.</span></p>
<p><span style="background-color: #ffffff;"><br>Step 1&nbsp; &nbsp; O<sub>2</sub> → 2O•</span></p>
<p><span style="background-color: #ffffff;">Step 2&nbsp; &nbsp; O• + O<sub>2</sub> → O<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">Step 3&nbsp; &nbsp; O<sub>3</sub> → O• + O<sub>2</sub></span></p>
<p><span style="background-color: #ffffff;">Step 4&nbsp; &nbsp; O• + O<sub>3</sub> → 2O<sub>2</sub></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the Lewis structures of oxygen, O<sub>2</sub>, and ozone, O<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why both bonds in the ozone molecule are the same length and predict the bond length in the ozone molecule. Refer to section 10 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">Reason: </span></p>
<p><span style="background-color: #ffffff;">Length:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict the bond angle in the ozone molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss how the different bond strengths between the oxygen atoms in O<sub>2</sub> and O<sub>3</sub> in the ozone layer affect radiation reaching the Earth’s surface.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the steps which absorb ultraviolet light.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine, showing your working, the wavelength, in m, of ultraviolet light absorbed by a single molecule in one of these steps. Use sections 1, 2 and 11 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Ozone depletion is catalysed by nitrogen monoxide, NO, which is produced in aircraft and motor vehicle engines, and has the following Lewis structure.</span></p>
<p style="text-align: center;"><img src=""></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Show how nitrogen monoxide catalyses the decomposition of ozone, including equations in your answer.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbide, CaC<sub>2</sub>, is an ionic solid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the nature of ionic bonding.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the relative atomic mass of a sample of calcium could be determined from its mass spectrum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calcium compounds are introduced into a gas flame a red colour is seen; sodium compounds give a yellow flame. Outline the source of the colours and why they are different.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>reasons why solid calcium has a greater density than solid potassium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why solid calcium is a good conductor of electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six ionization energies of calcium.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbide reacts with water to form ethyne and calcium hydroxide.</p>
<p style="text-align: center;">CaC<sub>2</sub>(s) + H<sub>2</sub>O(l) → C<sub>2</sub>H<sub>2</sub>(g) + Ca(OH)<sub>2</sub>(aq)</p>
<p>Estimate the pH of the resultant solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how sigma (σ) and pi (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span>) bonds are formed.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of σ and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> bonds in a molecule of ethyne.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about sodium and its compounds.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Born-Haber cycle for sodium oxide is shown (not to scale).</span></p>
<p><span style="background-color: #ffffff;"><img src="images/3d.PNG" alt width="391" height="427"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Sodium peroxide is used in diving apparatus to produce oxygen from carbon dioxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O<sub>2</sub> (s) + 2CO<sub>2</sub> (g) → 2Na<sub>2</sub>CO<sub>3</sub> (s) + O<sub>2</sub> (g)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Plot the relative values of the first four ionization energies of sodium.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why the alkali metals (group 1) have similar chemical properties.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding in solid sodium oxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate values for the following changes using section 8 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;"><br>ΔH<sub>atomisation</sub> (Na) = 107 kJ mol<sup>−1</sup><br>ΔH<sub>atomisation</sub> (O) = 249 kJ mol<sup>−1</sup></span></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span></span>O<sub>2</sub>(g) <span style="background-color: #ffffff;">→ </span>O<sup>2- </sup>(g):</p>
<p><span style="background-color: #ffffff;">Na (s) → Na<sup>+</sup> (g):</span></p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The standard enthalpy of formation of sodium oxide is −414 kJ mol<sup>−1</sup>. Determine the lattice enthalpy of sodium oxide, in kJ mol<sup>−1</sup>, using section 8 of the data booklet and your answers to (d)(i).</span></p>
<p><span style="background-color: #ffffff;"><br>(If you did not get answers to (d)(i), use +850 kJ mol<sup>−1</sup> and +600 kJ mol<sup>−1</sup> respectively, but these are not the correct answers.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Justify why K<sub>2</sub>O has a lower lattice enthalpy (absolute value) than Na<sub>2</sub>O.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write equations for the separate reactions of solid sodium oxide and solid phosphorus(V) oxide with excess water and differentiate between the solutions formed.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Sodium oxide, Na<sub>2</sub>O:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Phosphorus(V) oxide, P<sub>4</sub>O<sub>10</sub>:</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Differentiation:</span></span></span></span></p>
<p> </p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;"><span style="background-color: #ffffff;">Sodium peroxide, Na<sub>2</sub>O<sub>2</sub>, is formed by the reaction of sodium oxide with oxygen.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Na<sub>2</sub>O (s) + O<sub>2</sub> (g) → 2Na<sub>2</sub>O<sub>2</sub> (s)</span></p>
<p style="text-align: left;"><span style="background-color: #ffffff;">Calculate the percentage yield of sodium peroxide if 5.00g of sodium oxide produces 5.50g of sodium peroxide.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy change, <em>ΔH</em>, in kJ, for this reaction using data from the table and section 12 of the data booklet.</span></p>
<p style="padding-left:90px;"><span style="background-color: #ffffff;"><img src=""></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why bond enthalpy values are not valid in calculations such as that in (g)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An allotrope of molecular oxygen is ozone. Compare, giving a reason, the bond enthalpies of the O to O bonds in O<sub>2</sub> and O<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why a real gas differs from ideal behaviour at low temperature and high pressure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The reaction of sodium peroxide with excess water produces hydrogen peroxide and one other sodium compound. Suggest the formula of this compound.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the oxidation number of carbon in sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Determine the frequency of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Explain why a copper(II) solution is blue, using section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0"> Copper plating can be used to improve the conductivity of an object.</span></p>
<p><span class="fontstyle0">State, giving your reason, at which electrode the object being electroplated should be placed.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Properties of elements and their compounds can be related to the position of the elements in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the decrease in atomic radius from Na to Cl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the radius of the sodium ion, Na<sup>+</sup>, is smaller than the radius of the oxide ion, O<sup>2−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph to show the relative values of the successive ionization energies of boron.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving your reasons, whether Mn<sup>2+</sup> or Fe<sup>2+</sup> is likely to have a more exothermic enthalpy of hydration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The properties of elements can be predicted from their position in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Si has a smaller atomic radius than Al.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the first ionization energy of sulfur is lower than that of phosphorus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>
<p><img src="" width="768" height="190"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which complex ion [Cr(CN)<sub>6</sub>]<sup>3−</sup> or [Cr(OH)<sub>6</sub>]<sup>3−</sup> absorbs higher energy light. Use section 15 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>[Cr(OH)<sub>6</sub>]<sup>3−</sup> forms a green solution. Estimate a wavelength of light absorbed by this complex, using section 17 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur&nbsp;tetrafluoride, SF<sub>4</sub>, and sulfur dichloride, SCl<sub>2</sub>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from iron (II) sulfide, FeS.</p>
</div>

<div class="specification">
<p>Iron (II) sulfide, FeS, is ionically bonded.</p>
</div>

<div class="specification">
<p>The first step in the extraction of iron from iron (II) sulfide is to roast it in air to form iron (III) oxide and sulfur dioxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why metals, like iron, can conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why sulfur is classified as a non-metal by giving <strong>two</strong> of its chemical properties.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the first eight successive ionisation energies of sulfur.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="480" height="394"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in this type of solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique that could be used to determine the crystal structure of the solid compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the sulfide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of their electronic structures, why the ionic radius of the sulfide ion is greater than that of the oxide ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why chemists find it convenient to classify bonding into ionic, covalent and metallic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in the oxidation state of sulfur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why this process might raise environmental concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the addition of small amounts of carbon to iron makes the metal harder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide, N<sub>2</sub>O, causes depletion of ozone in the stratosphere.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Different sources of N<sub>2</sub>O have different ratios of <sup>14</sup>N : <sup>15</sup>N.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The Lewis (electron dot) structure of the dinitrogen monoxide molecule can be represented as:</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="images/3d.PNG_1.png" alt width="373" height="54"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ozone in the stratosphere is important.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide in the stratosphere is converted to nitrogen monoxide, NO (g).</span></p>
<p><span style="background-color: #ffffff;">Write <strong>two</strong> equations to show how NO (g) catalyses the decomposition of ozone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> analytical technique that could be used to determine the ratio of <sup>14</sup>N : <sup>15</sup>N.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A sample of gas was enriched to contain 2 % by mass of <sup>15</sup>N with the remainder being <sup>14</sup>N.</span></p>
<p><span style="background-color: #ffffff;">Calculate the relative molecular mass of the resulting N<sub>2</sub>O.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving <strong>two</strong> reasons, how the first ionization energy of <sup>15</sup>N compares with that of <sup>14</sup>N.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the first ionization energy of nitrogen is greater than both carbon and oxygen.</span></p>
<p><span style="background-color: #ffffff;">Nitrogen and carbon:</span></p>
<p><span style="background-color: #ffffff;">Nitrogen and oxygen:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what the presence of alternative Lewis structures shows about the nature of the bonding in the molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State, giving a reason, the shape of the dinitrogen monoxide molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the hybridization of the central nitrogen atom in the molecule.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Iron(II) disulfide, FeS<sub>2</sub>, has been mistaken for gold.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electronic configuration of Fe<sup>2+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why there is a large increase from the 8th to the 9th ionization energy of iron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the oxidation state of sulfur in iron(II) disulfide, FeS<sub>2</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in iron, Fe (s).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Electron transitions are related to trends in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the general increase in trend in the first ionization energies of the period 3 elements, Na to Ar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sodium emits yellow light with a frequency of 5.09 × 10<sup>14 </sup>Hz when electrons transition from 3p to 3s orbitals.</p>
<p>Calculate the energy difference, in J, between these two orbitals using sections 1 and 2 of the data booklet.</p>
<p> </p>
<p style="text-align:center;"><em>Darling, D, n.d. D lines (of sodium). [online] Available at &lt;https://www.daviddarling.info/encyclopedia/D/D_lines.html&gt; [Accessed 6 May 2020].</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>

<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 &plusmn;0.001&thinsp;g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 &plusmn;0.001&thinsp;g</p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3&thinsp;Mg&thinsp;(s) + N<sub>2&thinsp;</sub>(g) &rarr; Mg<sub>3</sub>N<sub>2&thinsp;</sub>(s)</p>
</div>

<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>

<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3&ndash;</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia is added to water that contains a few drops of an indicator. Identify an indicator that would change colour. Use sections 21 and 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br>