File "HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/HL-paper3html
File size: 172.76 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><strong>In this question you will be exploring the strategies required to solve a system of linear differential equations.</strong></p>
<p> </p>
<p>Consider the system of linear differential equations of the form:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>y</mi></math>,</p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>t</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is a parameter.</p>
<p>First consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>From previous cases, we might conjecture that a solution to this differential equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation in part (a)(ii) to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> that satisfy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let the two values found in part (c)(ii) be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math>.</p>
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math> is a solution to the differential equation in (c)(i),where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will explore some of the properties of special functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">g</mi></math> and their relationship with the trigonometric functions, sine and cosine.</strong></p>
<p><br>Functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>,</mo><mo> </mo><mi>u</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Using <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math>, find expressions, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>u</mi></math>, for</p>
</div>
<div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi></math> are known as circular functions as the general point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>,</mo><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>) defines points on the unit circle with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>.</p>
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> are known as hyperbolic functions, as the general point ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>θ</mi><mo>)</mo></math> ) defines points on a curve known as a hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>. This hyperbola has two asymptotes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> satisfies the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>u</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find, and simplify, an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>, stating the coordinates of any axis intercepts and the equation of each asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> can be rotated to coincide with the curve defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> : <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}">
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>×<!-- × --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>×<!-- × --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> defined by</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {x + y,\,\,x - y} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( {\left( {x{\text{,}}\,\,y} \right)} \right) = \left( {xy,\,\,x + y} \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mi>y</mi>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ g} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mo>∘</mo>
<mi>g</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( {\left( {x{\text{,}}\,\,y} \right)} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>g</mi>
<mo>∘</mo>
<mi>f</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State with a reason whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> commute.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore cubic polynomials of the form</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> <strong>and corresponding cubic equations with one real root and two complex roots of the form </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>z</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p> </p>
</div>
<div class="specification">
<p>In parts (a), (b) and (c), let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>a</mi><mo>=</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>1</mn></math>.</p>
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>z</mi><mo>+</mo><mn>17</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>On the Cartesian plane, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mo>-</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> represent the real and imaginary parts of the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>The following diagram shows a particular curve of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math> and the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mn>80</mn></mrow></mfenced></math>. The curve and the tangent both intersect the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math> are also shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mi>r</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mo>(</mo><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> are as defined in part (d)(ii). The curve has a point of inflexion at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="specification">
<p>Consider the special case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> are roots of the equation, write down the third root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the mean of the two complex roots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the tangent to the curve at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, clearly showing where the tangent crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, prove that the tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow></mfenced></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce from part (d)(i) that the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this diagram to determine the roots of the corresponding equation of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math>.</p>
<p>You are <strong>not</strong> required to demonstrate a change in concavity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe numerically the horizontal position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> relative to the horizontal positions of the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>, state in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, the coordinates of points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore the behaviour and some key features of the function</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><mo>(</mo><mi>a</mi><mo>-</mo><mi>x</mi><msup><mo>)</mo><mi>n</mi></msup><mo> </mo></math><strong>, where</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math><strong>.</strong></p>
<p>In parts (a) and (b), <strong>only</strong> consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>2</mn></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mn>1</mn></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>(</mo><mn>2</mn><mo>-</mo><mi>x</mi><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mn>2</mn><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>n</mi><mo>></mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>n</mi><mo>></mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>By using the result from part (f) and considering the sign of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced></math>, show that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></math> is</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mn>1</mn></msub><mo>(</mo><mi>x</mi><mo>)</mo></math>, stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to explore the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo></math> for</p>
<p>• the odd values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>5</mn></math>;</p>
<p>• the even values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>.</p>
<p>Hence, copy and complete the following table.</p>
<p><img src=""></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>n</mi><msup><mi>x</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mi>a</mi><mo>-</mo><mn>2</mn><mi>x</mi></mrow></mfenced><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the three solutions to the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>,</mo><mo> </mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mfrac><mi>a</mi><mn>2</mn></mfrac></mfenced></mrow></mfenced></math> on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>f</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></math> is always above the horizontal axis.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>f</mi><mi>n</mi></msub><mo>'</mo></msup><mfenced><mfrac><mi>a</mi><mn>4</mn></mfrac></mfenced><mo>></mo><mn>0</mn></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a local minimum point for even values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>></mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a point of inflexion with zero gradient for odd values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>></mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>-</mo><mi>k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>State the conditions on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> such that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mi>n</mi></msup><msup><mfenced><mrow><mi>a</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mi>n</mi></msup><mo>=</mo><mi>k</mi></math> has four solutions for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore the behaviour and key features of cubic polynomials of the form</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math>.</p>
<p> </p>
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mn>2</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> is a parameter, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math> are shown in the following diagrams.</p>
<p style="text-align: left;"><br> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mo>-</mo><mn>1</mn></math> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>0</mn></math></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>On separate axes, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> showing the value of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept and the coordinates of any points with zero gradient, for</p>
</div>
<div class="specification">
<p>Hence, or otherwise, find the set of values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has</p>
</div>
<div class="specification">
<p>Given that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has one local maximum point and one local minimum point, show that</p>
</div>
<div class="specification">
<p>Hence, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>></mo><mn>0</mn></math>, find the set of values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>1</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a point of inflexion with zero gradient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>one local maximum point and one local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>no points where the gradient is equal to zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local maximum point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate of the local minimum point is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><msup><mi>c</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly two <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>exactly three <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo> </mo><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find all conditions on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> such that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has exactly one <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis intercept, explaining your reasoning.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore properties of a family of curves of the type</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> <strong>for various values of</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> <strong>and</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, <strong>where</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></math>.</p>
</div>
<div class="specification">
<p>On the same set of axes, sketch the following curves for <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn>2</mn></math>, clearly indicating any points of intersection with the coordinate axes.</p>
</div>
<div class="specification">
<p>Now, consider curves of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mroot><mi>b</mi><mn>3</mn></mroot></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="specification">
<p>Next, consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></math> has two points of inflexion. Due to the symmetry of the curve these points have the same <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>)</mo></math> is defined to be a rational point on a curve if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> are rational numbers.</p>
<p>The tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math> at a rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> intersects the curve at another rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> be the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>2</mn></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mroot><mn>2</mn><mn>3</mn></mroot></math>. The rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mo>-</mo><mn>1</mn></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the two points of inflexion on the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>1</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering each curve from part (a), identify two key features that would distinguish one curve from the other.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, suggest two key features common to these curves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mo>±</mo><mfrac><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi></msqrt></mrow></mfrac></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence deduce that the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>x</mi><mo> </mo></math>has no local minimum or maximum points.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mfrac><mrow><mi>p</mi><msqrt><mn>3</mn></msqrt><mo>+</mo><mi>q</mi></mrow><mi>r</mi></mfrac></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the coordinates of the rational point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> where this tangent intersects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, expressing each coordinate as a fraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>S</mtext><mo>(</mo><mo>-</mo><mn>1</mn><mo> </mo><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> also lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[QS]</mtext></math> intersects <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> at a further point. Determine the coordinates of this point.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.</strong></p>
<p><br>A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.</p>
<p>For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>,</mo><mo> </mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math>.</p>
<p>The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>For an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>-sided regular polygon, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th polygonal number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: left;">Hence, for square numbers, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>4</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>4</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup></math>.</p>
</div>
<div class="specification">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th pentagonal number can be represented by the arithmetic series</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>+</mo><mo>…</mo><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For triangular numbers, verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>351</mn></math> is a triangular number. Determine which one it is.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>, sketch a diagram clearly showing your answer to part (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> is the square of an odd number for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable table of values or otherwise, determine the smallest positive integer, greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, that is both a triangular number and a pentagonal number.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A polygonal number, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math>, can be represented by the series</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>.</p>
<p>Use mathematical induction to prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in \mathbb{R},{\text{ }}x \ne 0\} ">
<mo fence="false" stretchy="false">{</mo>
<mi>x</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
<mo fence="false" stretchy="false">}</mo>
</math></span>. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in ] - 1,{\text{ }} + 1[,{\text{ }}x \ne 0\} ">
<mo fence="false" stretchy="false">{</mo>
<mi>x</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mo stretchy="false">]</mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>+</mo>
<mn>1</mn>
<mo stretchy="false">[</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
<mo fence="false" stretchy="false">}</mo>
</math></span>.</p>
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f:A \to B">
<mi>f</mi>
<mo>:</mo>
<mi>A</mi>
<mo stretchy="false">→<!-- → --></mo>
<mi>B</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{2}{\pi }\arctan (x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>2</mn>
<mi>π<!-- π --></mi>
</mfrac>
<mi>arctan</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> be the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ x|x \in \mathbb{R},{\text{ }}x > 0\} ">
<mo fence="false" stretchy="false">{</mo>
<mi>x</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>></mo>
<mn>0</mn>
<mo fence="false" stretchy="false">}</mo>
</math></span>.</p>
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g:\mathbb{R} \to D">
<mi>g</mi>
<mo>:</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
<mi>D</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {{\text{e}}^x}">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> and hence justify whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is a bijection.</p>
<p>(ii) Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> is a group under the binary operation of multiplication.</p>
<p>(iii) Give a reason why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> is not a group under the binary operation of multiplication.</p>
<p>(iv) Find an example to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(a \times b) = f(a) \times f(b)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo>×</mo>
<mi>b</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>b</mi>
<mo stretchy="false">)</mo>
</math></span> is not satisfied for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b \in A">
<mi>a</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>∈</mo>
<mi>A</mi>
</math></span>.</p>
<div class="marks">[13]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g(x)">
<mi>y</mi>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> and hence justify whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is a bijection.</p>
<p>(ii) Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(a + b) = g(a) \times g(b)">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>a</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>b</mi>
<mo stretchy="false">)</mo>
</math></span> for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a,{\text{ }}b \in \mathbb{R}">
<mi>a</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>b</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>(iii) Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ \mathbb{R},{\text{ }} + \} ">
<mo fence="false" stretchy="false">{</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>+</mo>
<mo fence="false" stretchy="false">}</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\{ D,{\text{ }} \times \} ">
<mo fence="false" stretchy="false">{</mo>
<mi>D</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>×</mo>
<mo fence="false" stretchy="false">}</mo>
</math></span> are both groups, explain whether or not they are isomorphic.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">3</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">4</mtext></math>.</strong></p>
<p> <br>The cubic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Noah believes that if <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>≥</mo><mn>3</mn><mi>q</mi></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> are all real.</p>
</div>
<div class="specification">
<p>Now consider polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>,</mo><mo> </mo><mi>s</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>.</p>
<p>In a similar way to the cubic equation, it can be shown that:</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>β</mi><mi>δ</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mi>δ</mi></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, has one integer root.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> show that:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi></math>, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> cannot all be real.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the result from part (c), show that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>17</mn></math>, this equation has at least one complex root.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, determine the smallest positive integer value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> required to show that Noah is incorrect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the equation will have at least one real root for all values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state a condition in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> that would imply <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your result from part (f)(ii) to show that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what the result in part (f)(ii) tells us when considering this equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integer root of this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> as a product of one linear and one cubic factor, prove that the equation has at least one complex root.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.iii.</div>
</div>
<br><hr><br>