File "SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/SL-paper1html
File size: 339.34 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {p^x} + q">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>p</mi>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x{\text{, }}p{\text{, }}q \in \mathbb{R}{\text{, }}p > 1">
  <mi>x</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>p</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>p</mi>
  <mo>&gt;</mo>
  <mn>1</mn>
</math></span>. The point&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {0{\text{, }}a} \right)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mi>a</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {g^{ - 1}}\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>g</mi>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and is the reflection of point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> in the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( a \right) = \frac{1}{{{\text{ln}}\,p}}"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> </mfrac> </math></span>, find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> <strong>in terms of</strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> is tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> and has equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left( {{\text{ln}}\,p} \right)x + q + 1"> <mi>y</mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>p</mi> </mrow> <mo>)</mo> </mrow> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> </math></span>.</p>
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 2{\text{, }} - 2} \right)"> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mn>2</mn> <mrow> <mtext>, </mtext> </mrow> <mo>−</mo> <mn>2</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>The gradient of the normal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{{\text{ln}}\left( {\frac{1}{3}} \right)}}"> <mfrac> <mn>1</mn> <mrow> <mrow> <mtext>ln</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </math></span>.</p>
<p> </p>
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the binomial expansion <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mn>7</mn></msup><mo>=</mo><msup><mi>x</mi><mrow><mn>7</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mi>x</mi><mn>6</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>5</mn></msup><mo>+</mo><mn>35</mn><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mo>&#8230;</mo><mo>+</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8800;</mo><mn>0</mn></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>21</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The third term in the expansion is the mean of the second term and the fourth term in the expansion.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of a quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has its vertex at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mn>4</mn><mo>)</mo></math>, and it passes through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> as shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The function can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>h</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
</div>

<div class="specification">
<p>Now consider another function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>. The derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>&#8242;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>-</mo><mi>d</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>5</mn><mo>,</mo><mo> </mo><mn>12</mn><mo>)</mo></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is an increasing function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is concave-up.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfrac><mo>+</mo><mn>1</mn></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8800;</mo><mn>4</mn></math>, and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>3</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
<p>The following diagram shows the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> intersect at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>. The coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>)</mo></math>.</p>
</div>

<div class="specification">
<p>In the following diagram, the shaded region is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>,&nbsp;the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The area of the shaded region can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>+</mo><mn>8</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8484;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, with domain <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 2 \leqslant x \leqslant 4">
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>4</mn>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_09.13.25.png" alt="N17/5/MATME/SP1/ENG/TZ0/03"></p>
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(4,{\text{ }}7)">
  <mo stretchy="false">(</mo>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>7</mn>
  <mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
</div>

<div class="question">
<p>On the grid, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Olava’s Pizza Company supplies and delivers large cheese pizzas.</p>
<p>The total cost to the customer, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math>, in Papua New Guinean Kina (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PGK</mtext></math>), is modelled by&nbsp;the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>34</mn><mo>.</mo><mn>50</mn><mi>n</mi><mo>+</mo><mn>8</mn><mo>.</mo><mn>50</mn><mo> </mo><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo> </mo><mo>,</mo><mo>&nbsp;</mo><mi>n</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi><mo>,</mo></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, is the number of large cheese pizzas ordered. This total cost includes a fixed&nbsp;cost for delivery.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>34</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in the context of the question, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>50</mn></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum number of pizzas that can be ordered.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Kaelani has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>450</mn><mo> </mo><mtext>PGK</mtext></math>.</p>
<p>Find the maximum number of large cheese pizzas that Kaelani can order from Olava’s Pizza Company.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of the quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = c + bx - {x^2}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>c</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}( - 1,{\text{ }}0)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span> and has its vertex at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(3,{\text{ }}16)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>16</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.57.03.png" alt="N16/5/MATSD/SP1/ENG/TZ0/09"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the axis of symmetry for this graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  = \frac{3}{4}"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta  &gt; 0"> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> <mo>&gt;</mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined for all&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>. The line with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>1</mn></math> is the tangent to&nbsp;the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>f</mi><mfenced><mrow><mi>g</mi><mfenced><mi>x</mi></mfenced></mrow></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mn>4</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a vertical asymptote and a horizontal asymptote.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the horizontal asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the set of axes below, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo>&lt;</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>+</mo><mn>3</mn></mrow></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.&nbsp;The following diagram shows part&nbsp;of the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>For the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the coordinates of the vertex.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>2</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>.</p>
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>a</mi><mi>x</mi></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#62;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>&#62;</mo><mn>1</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> contains the point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mfrac><mn>2</mn><mn>3</mn></mfrac><mo>,</mo><mo>&#8202;</mo><mn>4</mn></mrow></mfenced></math>.</p>
</div>

<div class="specification">
<p>Consider the arithmetic sequence&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mn>27</mn><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mi>p</mi><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mi>q</mi><mo>&#160;</mo><mo>,</mo><mo>&#160;</mo><msub><mi>log</mi><mn>8</mn></msub><mo>&#8202;</mo><mn>125</mn><mo>&#160;</mo><mo>,</mo></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#62;</mo><mn>1</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>&#62;</mo><mn>1</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>8</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><msqrt><mn>32</mn></msqrt></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo>,</mo><mo> </mo><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>125</mn></math> are four consecutive terms in a geometric sequence.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the graph of the quadratic function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></math> ,&nbsp;with vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mo>−</mo><mn>2</mn><mo>,</mo><mo>&nbsp;</mo><mn>10</mn></mrow></mfenced></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math> has two solutions. One of these solutions is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>2</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the other solution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table below placing a tick (✔) to show whether the unknown parameters <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> are positive, zero or negative. The row for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> has been completed as an example.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quadratic function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a(x - p)(x - 3)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mi>p</mi>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo stretchy="false">)</mo>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has axis of symmetry <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2.5">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2.5</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(0,{\text{ }} - 6)">
  <mo stretchy="false">(</mo>
  <mn>0</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = kx - 5"> <mi>y</mi> <mo>=</mo> <mi>k</mi> <mi>x</mi> <mo>−</mo> <mn>5</mn> </math></span> is a tangent to the curve of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>. Find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo>&nbsp;</mo><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mfrac><mi>k</mi><mi>p</mi></mfrac></mrow></mfenced></math>&nbsp;be any point on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>2</mn><mi>p</mi><mo>,</mo><mo>&nbsp;</mo><mn>0</mn></mrow></mfenced></math> and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis at point B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>p</mi></mfenced></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>1</mn></msub></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mi>x</mi><mo>+</mo><msup><mi>p</mi><mn>2</mn></msup><mi>y</mi><mo>-</mo><mn>2</mn><mi>p</mi><mi>k</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AOB</mtext></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is translated by <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr></mtable></mfenced></math> to give the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.<br>In the following diagram:</p>
<ul>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math> lies on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> lie on the vertical asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> lie on the horizontal asymptote of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>
</li>
<li>point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>FG</mtext></math> is parallel to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DC</mtext></math>.</li>
</ul>
<p>Line <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>, and passes through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<p><img src=""></p>
<p>Given that triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDF</mtext></math> and rectangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CDFG</mtext></math> have equal areas, find the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mn>2</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves along the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. The velocity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>&#8202;</mo><mi mathvariant="normal">m</mi><mo>&#8202;</mo><msup><mi mathvariant="normal">s</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>4</mn><mo>+</mo><mn>4</mn><mi>t</mi><mo>-</mo><mn>3</mn><msup><mi>t</mi><mn>2</mn></msup></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>3</mn></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>P</mi></math> is at the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> reaches its maximum velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi></math> at this time is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>88</mn><mn>27</mn></mfrac></math> metres.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, clearly showing any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>The following table shows the probability distribution of a discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, justifying your answer.</p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>m</mi><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>m</mi><mi>x</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. The line&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>-</mo><mn>9</mn></math>&nbsp;meets the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;at exactly one point.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> can be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>p</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>q</mi></mrow></mfenced></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;can also be expressed in the form&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>-</mo><mi>h</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><mi>k</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is both negative and increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, has its derivative given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mi>p</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>. The following&nbsp;diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math> has an axis of symmetry <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math>.</p>
</div>

<div class="specification">
<p>The vertex of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>&#8242;</mo></math> lies on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
</div>

<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a point of inflexion at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>a</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the discriminant of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the gradient of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo></math> at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>″</mo></math>, the second derivative of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>. Indicate clearly the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is concave-down. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Jean-Pierre jumps out of an airplane that is flying at constant altitude. Before opening his&nbsp;parachute, he goes through a period of freefall.</p>
<p>Jean-Pierre’s vertical speed during the time of freefall, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is modelled by the following function.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>K</mi><mo>-</mo><mn>60</mn><mfenced><mrow><mn>1</mn><mo>.</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>t</mi></mrow></msup></mrow></mfenced><mo>&nbsp;</mo><mo>,</mo><mo>&nbsp;</mo><mi>t</mi><mo>≥</mo><mn>0</mn></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the number of seconds after he jumps out of the airplane, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math> is a constant.&nbsp;A sketch of Jean-Pierre’s vertical speed against time is shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Jean-Pierre’s initial vertical speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the model, state what the horizontal asymptote represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Jean-Pierre’s vertical speed after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> seconds. Give your answer in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>km</mtext><mo> </mo><msup><mtext>h</mtext><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 1 + {{\text{e}}^{ - x}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1</mn>
  <mo>+</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 2x + b">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> is a constant.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(g \circ f)(x)"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {\lim }\limits_{x \to  + \infty } (g \circ f)(x) =  - 3"> <munder> <mrow> <mo form="prefix">lim</mo> </mrow> <mrow> <mi>x</mi> <mo stretchy="false">→</mo> <mo>+</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo>⁡</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>3</mn> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>&nbsp;is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msqrt><mi>x</mi></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mn>0</mn></math>&nbsp;to&nbsp;the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mi>x</mi><mo>+</mo><mn>3</mn></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≥</mo><mo>-</mo><mn>3</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point(s) where the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math> intersect.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at point A and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis at point B, as shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.18.01.png" alt="M17/5/MATSD/SP1/ENG/TZ2/04"></p>
<p>The length of line segment OB is three times the length of line segment OA, where O is the origin.</p>
</div>

<div class="specification">
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{(2, 6)}}">
  <mrow>
    <mtext>(2, 6)</mtext>
  </mrow>
</math></span> lies on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate of point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 2">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^3} - 4{x^2} + 2x + 6">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>6</mn>
</math></span></p>
<p>The functions intersect at points P and Q. Part of the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;and part of the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;are shown on the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <em>f</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>x</em>-coordinate of P and the <em>x</em>-coordinate of Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <em>x</em> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) &gt; g\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^2} + bx + 11">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>11</mn>
</math></span>. The point&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( { - 1{\text{, }}8} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo>−<!-- − --></mo>
      <mn>1</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mn>8</mn>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;lies on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </math></span> is transformed to obtain the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<p>Describe this transformation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Consider the function defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mfrac><mrow><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>4</mn></msup></mfrac></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>&nbsp;and its graph&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>x</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mn>1</mn><mo>-</mo><mn>4</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></mrow><msup><mi>x</mi><mn>5</mn></msup></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a horizontal tangent at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>. Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>''</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>20</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>-</mo><mn>9</mn></mrow><msup><mi>x</mi><mn>6</mn></msup></mfrac></math>,&nbsp;show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is a local maximum point.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>&gt;</mo><mn>0</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>, showing clearly the value of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept and the&nbsp;approximate position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> for different values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<p>Both&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are one-to-one functions.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mn>3</mn></math>.</p>
</div>

<div class="specification">
<p>Write down the equation of</p>
</div>

<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the horizontal asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the axes below.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>p</mi><mo>&#8202;</mo><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mo>&#8230;</mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#62;</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>p</mi><mo>&#8800;</mo><mn>0</mn></math>.</p>
</div>

<div class="specification">
<p>Consider the case where the series is geometric.</p>
</div>

<div class="specification">
<p>Now consider the case where the series is arithmetic with common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&gt;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the series is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>3</mn><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>+</mo><mi>k</mi></math>.</p>
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math> has no real roots.</p>
</div>
<br><hr><br><div class="specification">
<p>The functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> are defined such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{x + 3}}{4}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 8x + 5">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {g \circ f} \right)\left( x \right) = 2x + 11">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mo>∘</mo>
      <mi>f</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>11</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {g \circ f} \right)^{ - 1}}\left( a \right) = 4">
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>g</mi>
          <mo>∘</mo>
          <mi>f</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>a</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>4</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mo>&nbsp;</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mi>x</mi><mo>-</mo><mn>4</mn></mrow></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>4</mn></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>Point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>13</mn><mo>,</mo><mo>&nbsp;</mo><mn>7</mn></mrow></mfenced></math>&nbsp;lies on the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-intercept of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<p>On the following grid, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph of the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>+</mo><mfrac><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac><mo>,</mo><mo>&nbsp;</mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the zero of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the local minimum point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mo>-</mo><mi>x</mi></math>.</p>
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span> have position vectors&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 2} \\   4 \\   { - 4}  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>4</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  6 \\   8 \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>6</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>&nbsp;respectively.</p>
<p>Point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> has position vector&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  { - 1} \\   k \\   0  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{O}}">
  <mrow>
    <mtext>O</mtext>
  </mrow>
</math></span> be the origin.</p>
</div>

<div class="specification">
<p>Find, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OA}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OA</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{OB}}}  \bullet \overrightarrow {{\text{OC}}} "> <mover> <mrow> <mtext>OB</mtext> </mrow> <mo>→</mo> </mover> <mo>∙</mo> <mover> <mrow> <mtext>OC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\widehat {\text{O}}{\text{C}} = {\text{B}}\widehat {\text{O}}{\text{C}}"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>O</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 7"> <mi>k</mi> <mo>=</mo> <mn>7</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AOC}}"> <mrow> <mtext>AOC</mtext> </mrow> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>&nbsp;is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>2</mn></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>+</mo><mn>1</mn></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>4</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>6</mn></math>.&nbsp;On the axes above, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math>.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>20</mn><mo>)</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>4</mn><mo>,</mo><mo>&#160;</mo><mn>6</mn><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mo>(</mo><mo>-</mo><mn>14</mn><mo>,</mo><mo>&#160;</mo><mn>12</mn><mo>)</mo></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the&nbsp;point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>k</mi><mo>,</mo><mo> </mo><mn>2</mn><mo>)</mo></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The functions&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>&nbsp;by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><mo>-</mo><mn>2</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mn>2</mn></mfenced><mo>=</mo><mo>-</mo><mn>3</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mn>1</mn></mfenced><mo>=</mo><mn>5</mn></math>, find&nbsp;the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msqrt><mn>3</mn></msqrt><mi>sin</mi><mo>&#8202;</mo><mi>x</mi><mo>+</mo><mi>cos</mi><mo>&#8202;</mo><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mi>&#960;</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>f</mi><mo>∘</mo><mi>g</mi><mo>)</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>2</mn><mo> </mo><mi>cos</mi><mo> </mo><mn>2</mn><mi>x</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>π</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.25.10.png" alt="N17/5/MATME/SP1/ENG/TZ0/08"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis at the origin and at the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(1,{\text{ }}0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>1</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at another point Q, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-11_om_09.27.48.png" alt="N17/5/MATME/SP1/ENG/TZ0/08.c.d"></p>
</div>

<div class="question">
<p>Find the area of the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = ax + b + \frac{c}{x}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
  <mo>+</mo>
  <mfrac>
    <mi>c</mi>
    <mi>x</mi>
  </mfrac>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span> are positive integers.</p>
<p>Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is shown on the axes below. The graph of the function has its local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }} - 2)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span> and its local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(2,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.28.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/12"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y =  - 6"> <mi>y</mi> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span> on the axes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of solutions to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =  - 6"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−</mo> <mn>6</mn> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = k"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </math></span> has no solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the vectors <em><strong>a</strong></em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  3 \\   {2p}  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span> and <em><strong>b</strong></em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  {p + 1} \\   8  \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mrow> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<p>Find the possible values of <em>p</em> for which <strong><em>a</em></strong> and <strong><em>b</em></strong> are parallel.</p>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 4x + 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>5</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The function can also be expressed in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {(x - h)^2} + k">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mi>x</mi>
    <mo>−<!-- − --></mo>
    <mi>h</mi>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>k</mi>
</math></span>.</p>
</div>

<div class="question">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
<p>(ii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, with derivative&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 2{x^2} + 5kx + 3{k^2} + 2">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
  <mi>k</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>k</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
</math></span> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x{\text{, }}k \in \mathbb{R}">
  <mi>x</mi>
  <mrow>
    <mtext>,&nbsp;</mtext>
  </mrow>
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the discriminant of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - 16"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>16</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> is an increasing function, find all possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ln</mi><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>16</mn><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>4</mn></math>.</p>
<p>The following diagram shows part of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> which crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, with&nbsp;coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mn>0</mn><mo>)</mo></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac></math>,&nbsp;find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>