File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 13/HL-paper2html
File size: 420.56 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Determine the frequency of a photon that will cause the first ionization of copper. Use sections 1, 2 and 8 of the data booklet.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0">Explain why a copper(II) solution is blue, using section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The electron configuration of copper makes it a useful metal.</span></p>
<p><span class="fontstyle0"> Copper plating can be used to improve the conductivity of an object.</span></p>
<p><span class="fontstyle0">State, giving your reason, at which electrode the object being electroplated should be placed.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting&nbsp;nickel is to roast the ore in air.</p>
</div>

<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;"><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}">
  <mrow>
    <mtext>Ni(s)</mtext>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
  <mrow>
    <mtext>CO(g)</mtext>
  </mrow>
  <mo stretchy="false">→<!-- → --></mo>
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mn>4</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>(l)</mtext>
  </mrow>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron. Both nickel and iron react with carbon monoxide gas to form gaseous complexes, tetracarbonylnickel, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}">
  <mrow>
    <mtext>Ni(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>, and pentacarbonyliron, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}">
  <mrow>
    <mtext>Fe(CO</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>)</mtext>
      </mrow>
      <mrow>
        <mtext>5</mtext>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>(g)</mtext>
  </mrow>
</math></span>. Suggest why the nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {S^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>S</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span>, of the reaction, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{J}}\,{{\text{K}}^{ - 1}}">
  <mrow>
    <mtext>J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>, using the values given.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H^\theta }">
  <mi mathvariant="normal">Δ</mi>
  <mrow>
    <msup>
      <mi>H</mi>
      <mi>θ</mi>
    </msup>
  </mrow>
</math></span> in kJ.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in °C, at which the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 500{\text{ J}}\,{{\text{K}}^{ - 1}}">
  <mo>−</mo>
  <mn>500</mn>
  <mrow>
    <mtext> J</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msup>
      <mrow>
        <mtext>K</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 200{\text{ kJ}}">
  <mo>−</mo>
  <mn>200</mn>
  <mrow>
    <mtext> kJ</mtext>
  </mrow>
</math></span> respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined<br>by titration with a standard solution of sodium hydroxide, NaOH (aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)<sub>2</sub>•2H<sub>2</sub>O, was dissolved in water to make 1.00 dm<sup>3</sup> of solution. 25.0 cm<sup>3</sup> samples of this solution were titrated against a 0.100 mol dm<sup>-3</sup> solution of sodium hydroxide using a suitable indicator.</p>
<p>(COOH)<sub>2</sub> (aq) + 2NaOH (aq) → (COONa)<sub>2 </sub>(aq) + 2H<sub>2</sub>O (l)</p>
<p>The mean value of the titre was 14.0 cm<sup>3</sup>.</p>
<p>(i) Suggest a suitable indicator for this titration. Use section 22 of the data booklet.</p>
<p>(ii) Calculate the amount, in mol, of NaOH in 14.0 cm<sup>3</sup> of 0.100 mol dm<sup>-3</sup> solution.</p>
<p>(iii) Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm<sup>3</sup> sample.</p>
<p>(iv) Determine the percentage purity of the hydrated ethanedioic acid sample.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of the ethanedioate ion, <sup>–</sup>OOCCOO<sup>–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why all the C–O bond lengths in the ethanedioate ion are the same length and suggest a value for them. Use section 10 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how ethanedioate ions act as ligands.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{Ti}}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ti</mtext>
  </mrow>
</math></span> atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}">
  <msubsup>
    <mi></mi>
    <mrow>
      <mrow>
        <mtext>22</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>48</mtext>
      </mrow>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>T</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>i</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mo>+</mo>
      </mrow>
    </msup>
  </mrow>
</math></span> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
  <mrow>
    <mtext>TiC</mtext>
  </mrow>
  <mrow>
    <msub>
      <mrow>
        <mtext>l</mtext>
      </mrow>
      <mrow>
        <mtext>4</mtext>
      </mrow>
    </msub>
  </mrow>
</math></span>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An acidic sample of a waste solution containing Sn<sup>2+</sup>(aq) reacted completely with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>&nbsp;solution to form Sn<sup>4+</sup>(aq).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one organic functional group that can react with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Corrosion of iron is similar to the processes that occur in a voltaic cell. The initial steps involve the following half-equations:</p>
<p>Fe<sup>2+</sup>(aq) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Fe(s)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>O<sub>2</sub>(g) + H<sub>2</sub>O(l) + 2e<sup>–</sup> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> 2OH<sup>–</sup>(aq)</p>
<p>Calculate <em>E</em> <sup>θ</sup>, in V, for the spontaneous reaction using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy, Δ<em>G</em> <sup>θ</sup>, in kJ, which is released by the corrosion of 1 mole of iron. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why iron forms many different coloured complex ions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zinc is used to galvanize iron pipes, forming a protective coating. Outline how this process prevents corrosion of the iron pipes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Rhenium, Re, was the last element with a stable isotope to be isolated.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Before its isolation, scientists predicted the existence of rhenium and some of its properties.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">One chloride of rhenium has the empirical formula ReCl<sub>3</sub>.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Rhenium forms salts containing the perrhenate(VII) ion, ReO<sub>4</sub><sup>−</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The stable isotope of rhenium contains 110 neutrons.</span></p>
<p><span style="background-color: #ffffff;">State the nuclear symbol notation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span> for this isotope.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the basis of these predictions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A scientist wants to investigate the catalytic properties of a thin layer of rhenium </span><span style="background-color: #ffffff;">metal on a graphite surface.<br></span></p>
<p><span style="background-color: #ffffff;">Describe an electrochemical process to produce a layer of rhenium on graphite.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>two</strong> other chemical properties you would expect rhenium to have, given its position in the periodic table.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the relative reactivity of rhenium, compared to silver, zinc, and copper, can be established using pieces of rhenium and solutions of these metal sulfates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of this compound, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the percentage, by mass, of rhenium in ReCl<sub>3</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the existence of salts containing an ion with this formula could be predicted. Refer to section 6 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the coefficients required to complete the half-equation.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">ReO<sub>4</sub><sup>−</sup> (aq) + ____H<sup>+</sup> (aq) + ____e<sup>−</sup> ⇌ [Re(OH)<sub>2</sub>]<sup>2+</sup> (aq) + ____H<sub>2</sub>O (l)        E<sup>θ</sup> = +0.36 V</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, whether the reduction of ReO<sub>4</sub><sup>−</sup> to [Re(OH)<sub>2</sub>]<sup>2+</sup> would oxidize Fe<sup>2+</sup> to Fe<sup>3+</sup> in aqueous solution. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3&thinsp;</sub>(g) + H<sub>2</sub>O&thinsp;(l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> NH<sub>4</sub><sup>+&thinsp;</sup>(aq) + HO<sup>&ndash;&thinsp;</sup>(aq)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration, in mol dm<sup>–3</sup>, of ammonia molecules in the solution with pH = 9.3. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An aqueous solution containing high concentrations of both NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> acts as an acid-base buffer solution as a result of the equilibrium:</p>
<p style="text-align:center;">NH<sub>3</sub> (aq) + H<sup>+</sup> (aq) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇌</mo></math> NH<sub>4</sub><sup>+</sup> (aq)</p>
<p>Referring to this equilibrium, outline why adding a small volume of strong acid would leave the pH of the buffer solution almost unchanged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium salts form slightly acidic solutions owing to equilibria such as:</p>
<p style="text-align:center;">Mg<sup>2+ </sup>(aq) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Mg(OH)<sup>+ </sup>(aq) + H<sup>+ </sup>(aq)</p>
<p>Comment on the role of Mg<sup>2+</sup> in forming the Mg(OH)<sup>+</sup> ion, in acid-base terms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mg(OH)<sup>+</sup> is a complex ion, but Mg is not regarded as a transition metal. Contrast Mg with manganese, Mn, in terms of one characteristic chemical property of transition metals, other than complex ion formation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>

<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>

<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) &nbsp; &nbsp; Δ<em>H </em>&lt; 0</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromine can form the bromate(V) ion, BrO<sub>3</sub><sup>−</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of a bromine atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the orbital diagram of the <strong>valence shell</strong> of a bromine atom (ground state) on the energy axis provided. Use boxes to represent orbitals and arrows to represent electrons.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw two Lewis (electron dot) structures for BrO<sub>3</sub><sup>−</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the preferred Lewis structure based on the formal charge on the bromine atom, giving your reasons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, using the VSEPR theory, the geometry of the BrO<sub>3</sub><sup>−</sup> ion and the O−Br−O bond angles.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions act as oxidizing agents in acidic conditions to form bromide ions.</p>
<p>Deduce the half-equation for this reduction reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromate(V) ions oxidize iron(II) ions, Fe<sup>2+</sup>, to iron(III) ions, Fe<sup>3+</sup>.</p>
<p>Deduce the equation for this redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>Θ</sup>, in J, of the redox reaction in (ii), using sections 1 and 24 of the data booklet.</p>
<p><em>E</em><sup>Θ</sup> (BrO<sub>3</sub><sup>−</sup> / Br<sup>−</sup>) = +1.44 V</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the magnetic property of iron(II) and iron(III) ions.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Cobalt forms the transition metal complex [Co(NH<sub>3</sub>)<sub>4</sub> (H<sub>2</sub>O)Cl]Br.</p>
</div>

<div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group whereas the melting points of the group 17 elements (F → I) increase down the group.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the complex ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the complex ion and the oxidation state of cobalt.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of acid-base theories, the type of reaction that takes place between the cobalt ion and water to form the complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The overall equation for the production of hydrogen cyanide, HCN, is shown below.</p>
<p style="text-align: center;">CH<sub>4</sub>&thinsp;(g) + NH<sub>3</sub>&thinsp;(g) +<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>O<sub>2</sub>&thinsp;(g) &rarr; HCN&thinsp;(g) + 3H<sub>2</sub>O&thinsp;(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why NH<sub>3</sub> is a Lewis base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of a 1.00 × 10<sup>−2</sup> mol dm<sup>−3</sup> aqueous solution of ammonia.</p>
<p style="text-align:center;">p<em>K</em><sub>b</sub> = 4.75 at 298 K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether a 1.0 dm<sup>3</sup> solution made from 0.10 mol NH<sup>3</sup> and 0.20 mol HCl will form a buffer solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the shape of one sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>) and one pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>) bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the number of sigma and pi bonds in HCN.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon atom in HCN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why hydrogen chloride, HCl, has a lower boiling point than hydrogen cyanide, HCN.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metal cyanide complexes are coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The properties of elements can be predicted from their position in the periodic table.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Si has a smaller atomic radius than Al.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the first ionization energy of sulfur is lower than that of phosphorus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the condensed electron configurations for Cr and Cr3<sup>+</sup>.</p>
<p><img src="" width="768" height="190"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe metallic bonding and how it contributes to electrical conductivity.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which complex ion [Cr(CN)<sub>6</sub>]<sup>3−</sup> or [Cr(OH)<sub>6</sub>]<sup>3−</sup> absorbs higher energy light. Use section 15 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>[Cr(OH)<sub>6</sub>]<sup>3−</sup> forms a green solution. Estimate a wavelength of light absorbed by this complex, using section 17 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure and molecular geometry of sulfur&nbsp;tetrafluoride, SF<sub>4</sub>, and sulfur dichloride, SCl<sub>2</sub>.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving reasons, the relative volatilities of SCl<sub>2</sub> and H<sub>2</sub>O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Fast moving helium nuclei (<sup>4</sup>He<sup>2+</sup>) were fired at a thin piece of gold foil with most passing undeflected but a few deviating largely from their path. The diagram illustrates this historic experiment.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><em>Figure from PPLATO / FLAP (Flexible Learning Approach To Physics), http://www.met.reading.ac.uk/pplato2/h-flap/</em><br><em>phys8_1.html#top 1996 The Open University and The University of Reading.</em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest what can be concluded about the gold atom from this experiment.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent experiments showed electrons existing in energy levels occupying various orbital shapes.</p>
<p>Sketch diagrams of 1s, 2s and 2p.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copper is a transition metal that forms different coloured complexes. A complex [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+ </sup>(aq) changes colour when excess Cl<sup>− </sup>(aq) is added.</p>
<p>Explain the cause of this colour change, using sections 3 and 15 from the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about iron.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the <strong>full</strong> electron configuration of Fe<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, when ligands bond to the iron ion causing the d-orbitals to split, the complex is coloured.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nuclear symbol notation, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{\text{Z}}^{\text{A}}{\text{X}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mtext>Z</mtext>
    </mrow>
    <mrow>
      <mtext>A</mtext>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>X</mtext>
  </mrow>
</math></span>, for iron-54.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Mass spectrometry analysis of a sample of iron gave the following results:</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6d.PNG" alt width="269" height="186"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the relative atomic mass, A<sub>r</sub>, of this sample of iron to two decimal places.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">An iron nail and a copper nail are inserted into a lemon.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/6e.PNG" alt width="400" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why a potential is detected when the nails are connected through a voltmeter.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard electrode potential, in V, when the Fe<sup>2+</sup> (aq) | Fe (s) and Cu<sup>2+</sup> (aq) | Cu (s) standard half-cells are connected at 298 K. Use section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate ΔG<sup>θ</sup>, in kJ, for the spontaneous reaction in (f)(i), using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate a value for the equilibrium constant, K<sub>c</sub>, at 298 K, giving your answer to two significant figures. Use your answer to (f)(ii) and section 1 of the data booklet. </span></p>
<p><span style="background-color: #ffffff;">(If you did not obtain an answer to (f)(ii), use −140 kJ mol<sup>−1</sup>, but this is not the correct value.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br>