File "HL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 2/HL-paper1html
File size: 316.87 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f:x \to \sqrt {\frac{\pi }{4} - \arccos x} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the largest possible domain of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine an expression for the inverse function, \({f^{ - 1}}\), and write down its domain.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function \(f\) is defined by \(f(x) = \frac{{3x - 2}}{{2x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne \frac{1}{2}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f(x)\) can be written in the form \(f(x) = A + \frac{B}{{2x - 1}}\), find the values of the constants \(A\) and \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write \(\ln ({x^2} - 1) - 2\ln (x + 1) + \ln ({x^2} + x)\) as a single logarithm, in its simplest form.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the equation \(y{x^2} + (y - 1)x + (y - 1) = 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>y</em> for which this equation has real roots.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence determine the range of the function \(f:x \to \frac{{x + 1}}{{{x^2} + x + 1}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why <em>f</em> has no inverse.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = {x^3} + a{x^2} + bx + c\) , where <em>a </em>, <em>b </em>, \(c \in \mathbb{Z}\) . The diagram shows the graph of <em>y</em> = <em>f</em>(<em>x</em>) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the information shown in the diagram, find the values of <em>a </em>, <em>b </em>and <em>c </em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>g</em>(<em>x</em>) = 3<em>f</em>(<em>x </em>− 2) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) state the coordinates of the points where the graph of <em>g </em>intercepts the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the <em>y</em>-intercept of the graph of <em>g </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f(x) = \frac{{3x}}{{x - 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 2\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\), indicating clearly any asymptotes and points of intersection with the \(x\) and \(y\) axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find all values of \(x\) for which \(f(x) = {f^{ - 1}}(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(\left| {f(x)} \right| < \frac{3}{2}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(f\left( {\left| x \right|} \right) < \frac{3}{2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined by \(h(x) = 2{{\text{e}}^x} - \frac{1}{{{{\text{e}}^x}}},{\text{ }}x \in \mathbb{R}\) . Find an expression for \({h^{ - 1}}(x)\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The polynomial \(P(x) = {x^3} + a{x^2} + bx + 2\) is divisible by (<em>x</em> +1) and by (<em>x</em> − 2) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>a</em> and of <em>b</em>, where \(a,{\text{ }}b \in \mathbb{R}\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\) defined by \(f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.</p>
</div>
<div class="specification">
<p>The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| > a\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = f(x)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \frac{1}{{f(x)}}\);</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \left| {\frac{1}{{f(x)}}} \right|\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int {f(x)\cos x{\text{d}}x} \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding \(g'(x)\) explain why \(g\) is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by \(f(x) = 2x + \frac{\pi }{5},{\text{ }}x \in \mathbb{R}\) and \(g(x) = 3\sin x + 4,{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(g \circ f(x) = 3\sin \left( {2x + \frac{\pi }{5}} \right) + 4\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(g \circ f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(g \circ f\left( {\frac{{3\pi }}{{20}}} \right) = 7\), find the next value of \(x\), greater than \({\frac{{3\pi }}{{20}}}\), for which \(g \circ f(x) = 7\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g \circ f(x)\) can be obtained by applying four transformations to the graph of \(y = \sin x\). State what the four transformations represent geometrically and give the order in which they are applied.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x < \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g \circ f(x)\), stating its domain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(y = g \circ f(x)\)<span class="s1">, find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize \({x^2} + 3x + 2\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = - 1\) and \(x = 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(p(x) = 2{x^5} + {x^4} - 26{x^3} - 13{x^2} + 72x + 36,{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For the polynomial equation \(p(x) = 0\), state</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>the sum of the roots;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the product of the roots.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A new polynomial is defined by \(q(x) = p(x + 4)\).</p>
<p class="p1">Find the sum of the roots of the equation \(q(x) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y(x) = x{e^{3x}},{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove by induction that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\) for \(n \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any local maximum and minimum points on the graph of \(y(x)\).</p>
<p class="p1">Justify whether any such point is a maximum or a minimum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any points of inflexion on the graph of \(y(x)\). Justify whether any such point is a point of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence sketch the graph of \(y(x)\), indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The quadratic equation \({x^2} - 2kx + (k - 1) = 0\) has roots \(\alpha \) and \(\beta \) such that \({\alpha ^2} + {\beta ^2} = 4\). Without solving the equation, find the possible values of the real number \(k\).</p>
</div>
<br><hr><br><div class="specification">
<p>A given polynomial function is defined as \(f(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_n}{x^n}\). The roots of the polynomial equation \(f(x) = 0\) are consecutive terms of a geometric sequence with a common ratio of \(\frac{1}{2}\) and first term 2.</p>
<p>Given that \({a_{n - 1}} = - 63\) and \({a_n} = 16\) find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the degree of the polynomial;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the value of \({a_0}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function <em>f</em> , where \(f(x) = \arcsin (\ln x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the domain of <em>f</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find \({f^{ - 1}}(x)\).</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{\sqrt n + \sqrt {n + 1} }} = \sqrt {n + 1} - \sqrt n \) where \(n \ge 0,{\text{ }}n \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(\sqrt 2 - 1 < \frac{1}{{\sqrt 2 }}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove, by mathematical induction, that \(\sum\limits_{r = 1}^{r = n} {\frac{1}{{\sqrt r }} > \sqrt n } \) for \(n \ge 2,{\text{ }}n \in \mathbb{Z}\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g(x) = {\log _5}\left| {2{{\log }_3}x} \right|\) . Find the product of the zeros of <em>g</em> .</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by \(f(x) = a{x^2} + bx + c,{\text{ }}x \in \mathbb{R}\) and \(g(x) = p\sin x + qx + r,{\text{ }}x \in \mathbb{R}\) where \(a,{\text{ }}b,{\text{ }}c,{\text{ }}p,{\text{ }}q,{\text{ }}r\) are real constants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f\) is an even function, show that \(b = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(g\) is an odd function, find the value of \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(h\) is both odd and even, with domain \(\mathbb{R}\).</p>
<p class="p1">Find \(h(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial \(q(x) = 3{x^3} - 11{x^2} + kx + 8\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \(q(x)\) has a factor \((x - 4)\), find the value of \(k\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, factorize \(q(x)\) as a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial \(P\left( z \right) = {z^5} - 10{z^2} + 15z - 6,{\text{ }}z \in \mathbb{C}\).</p>
</div>
<div class="specification">
<p>The polynomial can be written in the form \(P(z) = {(z - 1)^3}({z^2} + bz + c)\).</p>
</div>
<div class="specification">
<p>Consider the function \(q\left( x \right) = {x^5} - 10{x^2} + 15x - 6,{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the sum and the product of the roots of \(P(z) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \((z - 1)\) is a factor of \(P(z)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(b\) and the value of \(c\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the complex roots of \(P(z) = 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the graph of \(y = q(x)\) is concave up for \(x > 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = q(x)\) showing clearly any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\) is defined as \(f(x) = \frac{{3x + 2}}{{x + 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 1\).</p>
<p class="p1">Sketch the graph of \(y = f(x)\), clearly indicating and stating the equations of any asymptotes and the coordinates of any axes intercepts.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The cubic equation \({x^3} + p{x^2} + qx + c = 0\)<span class="s1">, has roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \)</span>. By expanding \((x - \alpha )(x - \beta )(x - \gamma )\) show that</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) \(p = - (\alpha + \beta + \gamma )\);</p>
<p>(ii) \(q = \alpha \beta + \beta \gamma + \gamma \alpha \);</p>
<p>(iii) \(c = - \alpha \beta \gamma \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is now given that \(p = - 6\) and \(q = 18\) for parts (b) and (c) below.</p>
<p>(i) In the case that the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) form an arithmetic sequence, show that one of the roots is \(2\).</p>
<p>(ii) Hence determine the value of \(c\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In another case the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) <span class="s1">form a geometric sequence. Determine the value of \(c\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(h(x) = \arctan (x),{\text{ }}x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(g(x) = \frac{1}{x}\), \(x\in \mathbb{R}\)</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">, \({\text{ }}x \ne 0\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = h(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(h \circ g(x)\) and state its domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = h(x) + h \circ g(x)\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) find \(f'(x)\) in simplified form;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) show that \(f(x) = \frac{\pi }{2}\) for \(x > 0\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Nigel states that \(f\) is an odd function and Tom argues that \(f\) is an even function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State who is correct and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find the value of \(f(x)\) for \(x < 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function \(f\) is defined by \(f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of \({f^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = x\sqrt {1 - {x^2}} \) <span class="s1">on the domain \( - 1 \le x \le 1\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(f\) is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the \(x\)-coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\) indicating clearly the coordinates of the \(x\)-intercepts and any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for \(x \ge 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x > \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br> {2x - 1,}&{x \leqslant 2} \\ <br> {a{x^2} + bx - 5,}&{2 < x < 3} <br>\end{array}} \right.\]<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where a , \(b \in \mathbb{R}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>f</em> and its derivative, \(f'\) , are continuous for all values in the domain of <em>f</em> , find the values of <em>a</em> and <em>b</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>f</em> is a one-to-one function.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain expressions for the inverse function \({f^{ - 1}}\) and state their domains.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ \begin{array}{r}1 - 2x,\\{\textstyle{3 \over 4}}{(x - 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \le 2}\\{x > 2}\end{array}\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \(f\)is continuous.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained by applying the following transformations to the graph of \(f\):</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">a reflection in the \(y\)–axis followed by a translation by the vector \(\left( \begin{array}{l}2\\0\end{array} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(g(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = \frac{{1 - 3x}}{{x - 2}}\), showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the inequality \(\left| {\frac{{1 - 3x}}{{x - 2}}} \right| < 2\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f\) is given by \(f(x) = x{{\text{e}}^{ - x}}{\text{ }}(x \geqslant 0)\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find an expression for \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence determine the coordinates of the point A, where \(f'(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(f''(x)\) and hence show the point A is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, the point of inflexion.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained from the graph of \(f\) by stretching it in the <em>x</em>-direction by a scale factor 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) Write down an expression for \(g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) State the coordinates of the maximum C of \(g\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) Determine the <em>x</em>-coordinates of D and E, the two points where \(f(x) = g(x)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graphs of \(y = f(x)\) and \(y = g(x)\) on the same axes, showing clearly the points A, B, C, D and E.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an exact value for the area of the region bounded by the curve \(y = g(x)\), the <em>x</em>-axis and the line \(x = 1\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A rational function is defined by \(f(x) = a + \frac{b}{{x - c}}\) where the parameters \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\) and \(x \in \mathbb{R}\backslash \{ c\} \). The following diagram represents the graph of \(y = f(x)\).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_09.42.27.png" alt="N16/5/MATHL/HP1/ENG/TZ0/03"></p>
<p class="p1">Using the information on the graph,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">state the value of \(a\) <span class="s1">and the value of </span>\(c\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">find the value of \(b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The equation \(5{x^3} + 48{x^2} + 100x + 2 = a\) has roots \({r_1}\), \({r_2}\) and \({r_3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({r_1} + {r_2} + {r_3} + {r_1}{r_2}{r_3} = 0\), find the value of <em>a</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the equation \(9{x^3} - 45{x^2} + 74x - 40 = 0\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the numerical value of the sum and of the product of the roots of this equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The roots of this equation are three consecutive terms of an arithmetic sequence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Taking the roots to be \(\alpha {\text{ , }}\alpha \pm \beta \) , solve the equation.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <em>f</em>(<em>x</em>) = <em>x</em><sup>4</sup> + <em>px</em><sup>3</sup> + <em>qx</em> + 5 where <em>p</em>, <em>q</em> are constants.</p>
<p>The remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> + 1) is 7, and the remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> − 2) is 1. Find the value of <em>p</em> and the value of <em>q</em>.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The cubic polynomial \(3{x^3} + p{x^2} + qx - 2\) has a factor \((x + 2)\) and leaves a remainder 4 when divided by \((x + 1)\). Find the value of <em>p </em>and the value of <em>q</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The quadratic equation \(2{x^2} - 8x + 1 = 0\) has roots \(\alpha \) and \(\beta \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Without solving the equation, find the value of</p>
<p>(i) \(\alpha + \beta \);</p>
<p>(ii) \(\alpha \beta \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another quadratic equation \({x^2} + px + q = 0,{\text{ }}p,{\text{ }}q \in \mathbb{Z}\) has roots \(\frac{2}{\alpha }\) and \(\frac{2}{\beta }\).</p>
<p class="p1">Find the value of \(p\) and the value of \(q\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \frac{{2{x^2} + 3}}{{75}},{\text{ }}x \geqslant 0\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[g(x) = \frac{{\left| {3x - 4} \right|}}{{10}},{\text{ }}x \in \mathbb{R}{\text{ }}.\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f </em>and of <em>g </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(f \circ g(x)\) in the form \(\frac{{a{x^2} + bx + c}}{{3750}}\), where \(a,{\text{ }}b{\text{ and }}c \in \mathbb{Z}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find an expression for the inverse function \({f^{ - 1}}(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) State the domain and range of \({f^{ - 1}}\)<span style="font: 7.0px Helvetica;"> </span>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="line-height: normal; font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">The domains of <em>f</em> and <em>g</em> are now restricted to {0, 1, 2, 3, 4} .</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">By considering the values of <em>f </em>and <em>g </em>on this new domain, determine which of <em>f </em>and <em>g </em>could be used to find a probability distribution for a discrete random variable <em>X </em>, stating your reasons clearly.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Using this probability distribution, calculate the mean of <em>X </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graphs of \(y = \left| x \right|\) and \(y = - \left| x \right| + b\), where \(b \in {\mathbb{Z}^ + }\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs on the same set of axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the graphs enclose a region of area 18 square units, find the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the functions given below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\[f(x) = 2x + 3\]\[g(x) = \frac{1}{x},x \ne 0\]<br></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) Find \(\left( {g \circ f} \right)\left( x \right)\) and write down the domain of the function.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) Find \(\left( {f \circ g} \right)\left( x \right)\) and write down the domain of the function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the coordinates of the point where the graph of \(y = f(x)\) and the graph of \(y = \left( {{g^{ - 1}} \circ f \circ g} \right)(x)\) intersect.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \({f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether \({f_n}\) is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p style="text-align: center;">\({f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}\) where \(m \in \mathbb{Z}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of \({f_n}(x)\) with respect to \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for \(n > 1\), the equation of the tangent to the curve \(y = {f_n}(x)\) at \(x = \frac{\pi }{4}\) is \(4x - 2y - \pi = 0\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function <em>f</em> is defined by \(f(x) = \frac{{2x - 3}}{{x - 1}},{\text{ }}x \ne 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Solve the equation \(\left| {{f^{ - 1}}(x)} \right| = 1 + {f^{ - 1}}(x)\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The quadratic function \(f(x) = p + qx - {x^2}\) has a maximum value of 5 when <em>x </em>= 3.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>p</em> and the value of <em>q</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of <em>f</em>(<em>x</em>) is translated 3 units in the positive direction parallel to the <em>x</em>-axis. Determine the equation of the new graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider a function <em>f </em>, defined by \(f(x) = \frac{x}{{2 - x}}{\text{ for }}0 \leqslant x \leqslant 1\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \((f \circ f)(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">Let \({F_n}(x) = \frac{x}{{{2^n} - ({2^n} - 1)x}}\), where \(0 \leqslant x \leqslant 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">Use mathematical induction to show that for any \(n \in {\mathbb{Z}^ + }\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">\[\underbrace {(f \circ f \circ ... \circ f)}_{n{\text{ times}}}(x) = {F_n}(x)\] .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({F_{ - n}}(x)\) is an expression for the inverse of \({F_n}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State \({F_n}(0){\text{ and }}{F_n}(1)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that \({F_n}(x) < x\) , given 0 < <em>x </em>< 1, \(n \in {\mathbb{Z}^ + }\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) For \(n \in {\mathbb{Z}^ + }\) , let \({A_n}\) be the area of the region enclosed by the graph of \(F_n^{ - 1}\) , the <em>x</em>-axis and the line <em>x </em>= 1. Find the area \({B_n}\) of the region enclosed by \({F_n}\) and \(F_n^{ - 1}\) in terms of \({A_n}\) .<span style="font: 7.0px Helvetica;"><br></span></span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the set of values of \(a\) for which the function \(x \mapsto {\log _a}x\) exists, for all \(x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Given that \({\log _x}y = 4{\log _y}x\)</span>, find all the possible expressions of \(y\) as a function of \(x\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When the function \(q(x) = {x^3} + k{x^2} - 7x + 3\) is divided by (<em>x</em> + 1) the remainder is seven times the remainder that is found when the function is divided by (<em>x</em> + 2) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> .</span></p>
</div>
<br><hr><br><div class="question">
<p>Solve \({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) < 2{\left( {{\text{ln}}\,2} \right)^2}\).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The roots of a quadratic equation \(2{x^2} + 4x - 1 = 0\) are \(\alpha \) and \(\beta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Without solving the equation,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) find the value of \({\alpha ^2} + {\beta ^2}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) find a quadratic equation with roots \({\alpha ^2}\) and \({\beta ^2}\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">When the polynomial \(3{x^3} + ax + b\) is divided by \((x - 2)\), the remainder is 2, and when divided by \((x + 1)\), it is 5. Find the value of <em>a </em>and the value of <em>b</em>.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch on the same axes the curve \(y = \left| {\frac{7}{{x - 4}}} \right|\) and the line \(y = x + 2\), clearly indicating any axes intercepts and any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the exact solutions to the equation \(x + 2 = \left| {\frac{7}{{x - 4}}} \right|\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a sketch of the graph of \(y = f(x)\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-16_om_05.50.26.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = {f^{ - 1}}(x)\) on the same axes.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of \({f^{ - 1}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = \ln (ax + b),{\text{ }}x > 1\), find the value of \(a\) and the value of \(b\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>x</em> for which \(\left| {x - 1} \right| > \left| {2x - 1} \right|\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne - 2{\text{ and }}g(x) = x - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(h = g \circ f\) , find</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) <em>h</em>(<em>x</em>) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \({h^{ - 1}}(x)\) , where \({h^{ - 1}}\) is the inverse of <em>h</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is given by \(f(x) = \frac{{{3^x} + 1}}{{{3^x} - {3^{ - x}}}}\), for <em>x</em> > 0.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f(x) > 1\) for all <em>x</em> > 0.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the equation \(f(x) = 4\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Express each of the complex numbers \({z_1} = \sqrt 3 + {\text{i, }}{z_2} = - \sqrt 3 + {\text{i}}\) and \({z_3} = - 2{\text{i}}\) in modulus-argument form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that the points in the complex plane representing \({z_1}\), \({z_2}\) and \({z_3}\) form the vertices of an equilateral triangle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Show that \({\text{z}}_1^{3n} + z_2^{3n} = 2z_3^{3n}\) where \(n \in \mathbb{N}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State the solutions of the equation \({z^7} = 1\) for \(z \in \mathbb{C}\), giving them in modulus-argument form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) If <em>w</em> is the solution to \({z^7} = 1\) with least positive argument, determine the argument of 1 + <em>w</em>. Express your answer in terms of \(\pi \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Show that \({z^2} - 2z\cos \left( {\frac{{2\pi }}{7}} \right) + 1\) is a factor of the polynomial \({z^7} - 1\). State the two other quadratic factors with real coefficients.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given the complex numbers \({z_1} = 1 + 3{\text{i}}\) and \({z_2} = - 1 - {\text{i}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the exact values of \(\left| {{z_1}} \right|\) and \(\arg ({z_2})\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the minimum value of \(\left| {{z_1} + \alpha{z_2}} \right|\), where \(\alpha \in \mathbb{R}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The same remainder is found when \(2{x^3} + k{x^2} + 6x + 32\) and \({x^4} - 6{x^2} - {k^2}x + 9\) are divided by \(x + 1\) . Find the possible values of <em>k </em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(3{x^5} - ax + b\) is divided by <em>x</em> −1 and <em>x</em> +1 the remainders are equal. Given that a , \(b \in \mathbb{R}\) , find</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) the value of <em>a</em> ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) the set of values of <em>b</em> .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Express the quadratic \(3{x^2} - 6x + 5\) in the form \(a{(x + b)^2} + c\), where <em>a</em>, <em>b</em>, <em>c </em>\( \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Describe a sequence of transformations that transforms the graph of \(y = {x^2}\) to the graph of \(y = 3{x^2} - 6x + 5\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f(x) = \frac{1}{x},{\text{ }}x \ne 0\).</p>
<p class="p1">The graph of the function \(y = g(x)\) is obtained by applying the following transformations to</p>
<p class="p1">the graph of \(y = f(x)\) :</p>
<p class="p1"> \({\text{a translation by the vector }}\left( {\begin{array}{*{20}{c}}{ - 3} \\ 0 \end{array}} \right);\) \({\text{a translation by the vector }}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right);\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equations of the asymptotes of the graph of \(g\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Factorize \({z^3} + 1\) into a linear and quadratic factor.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\gamma = \frac{{1 + {\text{i}}\sqrt 3 }}{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(\gamma \) is one of the cube roots of −1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that \({\gamma ^2} = \gamma - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Hence find the value of \({(1 - \gamma )^6}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the graph of \(y = \frac{{{{(\ln x)}^2}}}{x},{\text{ }}x > 0\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_06.37.32.png" alt="M16/5/MATHL/HP1/ENG/TZ1/13"></p>
</div>
<div class="specification">
<p class="p1">The region \(R\) is enclosed by the curve, the \(x\)-axis and the line \(x = e\).</p>
</div>
<div class="specification">
<p class="p1">Let \({I_n} = \int_1^{\text{e}} {\frac{{{{(\ln x)}^n}}}{{{x^2}}}{\text{d}}x,{\text{ }}n \in \mathbb{N}} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the curve passes through the point \((a,{\text{ }}0)\)<span class="s1">, state the value of \(a\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the substitution \(u = \ln x\) to find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the value of \({I_0}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Prove that \({I_n} = \frac{1}{{\text{e}}} + n{I_{n - 1}},{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Hence find the value of \({I_1}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the volume of the solid formed when the region \(R\) <span class="s1">is rotated through \(2\pi \) </span>about the \(x\)-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Given that \(A{x^3} + B{x^2} + x + 6\) is exactly divisible by \((x +1)(x − 2)\), find the value of <em>A</em> and the value of <em>B</em> .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined, for \( - \frac{\pi }{2} \leqslant x \leqslant \frac{\pi }{2}\) , by \(f(x) = 2\cos x + x\sin x\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether <em>f</em> is even, odd or neither even nor odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(0) = 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John states that, because \(f''(0) = 0\) , the graph of <em>f</em> has a point of inflexion at the point (0, 2) . Explain briefly whether John’s statement is correct or not.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = \left| {\cos \left( {\frac{x}{4}} \right)} \right|\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve \(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The functions <em>f</em> and <em>g</em> are defined as:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant 0\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\[g(x) = \frac{1}{{x + 3}},{\text{ }}x \ne - 3.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find \(h(x){\text{ where }}h(x) = g \circ f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) State the domain of \({h^{ - 1}}(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find \({h^{ - 1}}(x)\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(f(x) = {x^4} + 3{x^3} + p{x^2} - 2x + q\) is divided by (<em>x</em> − 2) the remainder is 15, and (<em>x</em> + 3) is a factor of <em>f</em>(<em>x</em>) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the values of <em>p</em> and <em>q</em> .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the following equations:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \({\log _2}(x - 2) = {\log _4}({x^2} - 6x + 12)\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \({x^{\ln x}} = {{\text{e}}^{{{(\ln x)}^3}}}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p>The function \(f\) is defined by \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\), for \(x \in \mathbb{R},\,\,x \ne - \frac{d}{c}\).</p>
</div>
<div class="specification">
<p>The function \(g\) is defined by \(g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function \({f^{ - 1}}\), stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(g\left( x \right)\) in the form \(A + \frac{B}{{x - 2}}\) where A, B are constants.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = g\left( x \right)\). State the equations of any asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function \(h\) is defined by \(h\left( x \right) = \sqrt x \), for \(x\) ≥ 0.</p>
<p>State the domain and range of \(h \circ g\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{1}{{4{x^2} - 4x + 5}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(4{x^2} - 4x + 5\) in the form \(a{(x - h)^2} + k\) where <em>a</em>, <em>h</em>, \(k \in \mathbb{Q}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} - 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{{2x - 1}}{{x + 2}}\), with domain \(D = \{ x: - 1 \leqslant x \leqslant 8\} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(f(x)\) in the form \(A + \frac{B}{{x + 2}}\), where \(A\) and \(B \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \(f'(x) > 0\) on <em>D</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Sketch the graph of \(y = f(x)\), showing the points of intersection with both axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) On the same diagram, sketch the graph of \(y = f'(x)\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) On a different diagram, sketch the graph of \(y = f(|x|)\) where \(x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find all solutions of the equation \(f(|x|) = - \frac{1}{4}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined as \(f(x) = {{\text{e}}^{3x + 1}},{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find \({f^{ - 1}}(x)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the domain of \({f^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(g\) is defined as \(g(x) = \ln x,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">The graph of \(y = g(x)\) and the graph of \(y = {f^{ - 1}}(x)\) intersect at the point \(P\).</p>
<p class="p1">Find the coordinates of \(P\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g(x)\) intersects the \(x\)-axis at the point \(Q\).</p>
<p class="p1">Show that the equation of the tangent \(T\) to the graph of \(y = g(x)\) at the point \(Q\) is \(y = x - 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">Find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Show that \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>By replacing \(x\) with \(\frac{1}{x}\) in part (e)(i), show that \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable <em>X</em> has probability density function <em>f</em> where</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br> {kx(x + 1)(2 - x),}&{0 \leqslant x \leqslant 2} \\ <br> {0,}&{{\text{otherwise }}{\text{.}}} <br>\end{array}} \right.\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of the function. You are not required to find the coordinates of the maximum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of \(y = f\left( x \right)\) has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of \(y = f\left( x \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B\(\left( {{2^a},\,b \times {2^{ - 3a}}} \right)\) where <em>a</em>, <em>b</em>\( \in \mathbb{Q}\). Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( x \right)\) showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Shown below are the graphs of \(y = f(x)\) and \(y = g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \((f \circ g)(x) = 3\), find all possible values of <em>x</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain \(x \geqslant 0\) by \(f(x) = {{\text{e}}^x} - {x^{\text{e}}}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find an expression for \(f'(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Given that the equation \(f'(x) = 0\) has two roots, state their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f</em> , showing clearly the coordinates of the maximum and minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({{\text{e}}^\pi } > {\pi ^{\text{e}}}\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined on the domain \(\left[ {0,\,\frac{{3\pi }}{2}} \right]\) by \(f(x) = {e^{ - x}}\cos x\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the two zeros of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the graph, the <em>x</em>-axis and the <em>y</em>-axis is denoted by <em>A </em>and the region bounded by the graph and the <em>x</em>-axis is denoted by <em>B </em>. Show that the ratio of the area of <em>A </em>to the area of <em>B </em>is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{e^\pi }\left( {{e^{\frac{\pi }{2}}} + 1} \right)}}{{{e^\pi } + 1}}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows the graph of the function \(y = f(x)\) , defined for all \(x \in \mathbb{R}\),</span><br><span style="font-family: times new roman,times; font-size: medium;">where \(b > a > 0\) .</span></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt><br><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(g(x) = \frac{1}{{f(x - a) - b}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the largest possible domain of the function \(g\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">On the axes below, sketch the graph of \(y = g(x)\) . On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates</span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = 1 + \sin x,{\text{ }}0 \leqslant x \leqslant \frac{{3\pi }}{2}\),</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch the graph of \(f\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 31px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the volume of the solid formed when the graph of <em>f</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of \(y = \frac{x}{2} + 1\) and \(y = \left| {x - 2} \right|\) on the following axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation \(\frac{x}{2} + 1 = \left| {x - 2} \right|\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined as \(f(x) = k\sqrt x \), with \(k > 0\) and \(x \geqslant 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Sketch the graph of \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that <em>f</em> is a one-to-one function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find the inverse function, \({f^{ - 1}}(x)\) and state its domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) If the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) intersect at the point (4, 4) find the value of <em>k</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Consider the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) using the value of <em>k</em> found in part (d).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the area enclosed by the two graphs.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) The line <em>x</em> = <em>c</em> cuts the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ - 1}}(x)\) at point Q find the value of <em>c</em> .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of a polynomial function <em>f </em>of degree 4 is shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({(x + {\text{i}}y)^2} = - 5 + 12{\text{i}},{\text{ }}x,{\text{ }}y \in \mathbb{R}\) . Show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({x^2} - {y^2} = - 5\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(xy = 6\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the two square roots of \( - 5 + 12{\text{i}}\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For any complex number <em>z </em>, show that \({(z^*)^2} = ({z^2})^*\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence write down the two square roots of \( - 5 - 12{\text{i}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why, of the four roots of the equation \(f(x) = 0\) , two are real and two are complex.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve passes through the point \(( - 1,\, - 18)\) . Find \(f(x)\) in the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = (x - a)(x - b)({x^2} + cx + d),{\text{ where }}a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\)<em> </em>.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the two complex roots of the equation \(f(x) = 0\) in Cartesian form.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the four roots on the complex plane (the Argand diagram).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Express each of the four roots of the equation in the form \(r{{\text{e}}^{{\text{i}}\theta }}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">B.e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = \frac{{a + x}}{{b + cx}}\) is drawn below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 32px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the value of <em>a</em>, the value of <em>b</em> and the value of <em>c</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Using the values of <em>a</em>, <em>b</em> and <em>c</em> found in part (a), sketch the graph of \(y = \left| {\frac{{b + cx}}{{a + x}}} \right|\) on the axes below, showing clearly all intercepts and asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 26px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph below shows \(y = f(x)\) , where \(f(x) = x + \ln x\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) On the graph below, sketch the curve \(y = {f^{ - 1}}(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> <br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the coordinates of the point of intersection of the graph of \(y = f(x)\) and the graph of \(y = {f^{ - 1}}(x)\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , \(0 < x < {{\text{e}}^2}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) Solve the equation \(f'(x) = 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) Hence show the graph of \(f\) has a local maximum.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii) Write down the range of the function \(f\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that there is a point of inflexion on the graph and determine its coordinates.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, <em>x</em>-intercept and </span><span style="font-family: times new roman,times; font-size: medium;">the local maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , where \(0 < x < {{\text{e}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(i) Sketch the graph of \(y = g(x)\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) Write down the range of \(g\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii) Find the values of \(x\) such that \(h(x) > g(x)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the graph of <em>y</em> = <em>f</em>(<em>x</em>) . The graph has a horizontal asymptote at <em>y</em> = 2 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = \frac{1}{{f(x)}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = x{\text{ }}f(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Sketch the graphs of \(y = \sin x\) and \(y = \sin 2x\) , on the same set of axes, for \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the x-coordinates of the points of intersection of the graphs in the domain \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the area enclosed by the graphs.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution \(x = 4{\sin ^2}\theta \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The increasing function <em>f</em> satisfies \(f(0) = 0\) and \(f(a) = b\) , where \(a > 0\) and \(b > 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) By reference to a sketch, show that \(\int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} } \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <strong>Hence</strong> find the value of \(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x} \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a solid with volume <em>V</em> , obtained from a cube with edge \(a > 1\) when a smaller cube with edge \(\frac{1}{a}\) is removed.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(x = a - \frac{1}{a}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find <em>V</em> in terms of <em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence or otherwise, show that the only value of <em>a</em> for which <em>V</em> = 4<em>x</em> is \(a = \frac{{1 + \sqrt 5 }}{2}\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = f(x)\) is shown below, where A is a local maximum point and D is a local minimum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of \(y = \frac{1}{{f(x)}}\) , clearly showing the coordinates of the images of the points A, B and D, labelling them \({{\text{A}'}}\), \({{\text{B}'}}\), and \({{\text{D}'}}\) respectively, and the equations of any vertical asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of the derivative \(y = f'(x)\) , clearly showing the coordinates of the images of the points A and D, labelling them </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{A}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{D}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> respectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;"> <!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Revision>0</o:Revision>
<o:TotalTime>0</o:TotalTime>
<o:Pages>1</o:Pages>
<o:Words>14</o:Words>
<o:Characters>83</o:Characters>
<o:Company>Bontegraphics</o:Company>
<o:Lines>1</o:Lines>
<o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>96</o:CharactersWithSpaces>
<o:Version>14.0</o:Version>
</o:DocumentProperties>
<o:OfficeDocumentSettings>
<o:AllowPNG/>
</o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
<w:WordDocument>
<w:View>Normal</w:View>
<w:Zoom>0</w:Zoom>
<w:TrackMoves/>
<w:TrackFormatting/>
<w:HyphenationZone>21</w:HyphenationZone>
<w:PunctuationKerning/>
<w:ValidateAgainstSchemas/>
<w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
<w:IgnoreMixedContent>false</w:IgnoreMixedContent>
<w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
<w:DoNotPromoteQF/>
<w:LidThemeOther>NL</w:LidThemeOther>
<w:LidThemeAsian>JA</w:LidThemeAsian>
<w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
<w:Compatibility>
<w:BreakWrappedTables/>
<w:SnapToGridInCell/>
<w:WrapTextWithPunct/>
<w:UseAsianBreakRules/>
<w:DontGrowAutofit/>
<w:SplitPgBreakAndParaMark/>
<w:EnableOpenTypeKerning/>
<w:DontFlipMirrorIndents/>
<w:OverrideTableStyleHps/>
<w:UseFELayout/>
</w:Compatibility>
<m:mathPr>
<m:mathFont m:val="Cambria Math"/>
<m:brkBin m:val="before"/>
<m:brkBinSub m:val="--"/>
<m:smallFrac m:val="off"/>
<m:dispDef/>
<m:lMargin m:val="0"/>
<m:rMargin m:val="0"/>
<m:defJc m:val="centerGroup"/>
<m:wrapIndent m:val="1440"/>
<m:intLim m:val="subSup"/>
<m:naryLim m:val="undOvr"/>
</m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
DefSemiHidden="true" DefQFormat="false" DefPriority="99"
LatentStyleCount="276">
<w:LsdException Locked="false" Priority="0" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
<w:LsdException Locked="false" Priority="9" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
<w:LsdException Locked="false" Priority="39" Name="toc 1"/>
<w:LsdException Locked="false" Priority="39" Name="toc 2"/>
<w:LsdException Locked="false" Priority="39" Name="toc 3"/>
<w:LsdException Locked="false" Priority="39" Name="toc 4"/>
<w:LsdException Locked="false" Priority="39" Name="toc 5"/>
<w:LsdException Locked="false" Priority="39" Name="toc 6"/>
<w:LsdException Locked="false" Priority="39" Name="toc 7"/>
<w:LsdException Locked="false" Priority="39" Name="toc 8"/>
<w:LsdException Locked="false" Priority="39" Name="toc 9"/>
<w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
<w:LsdException Locked="false" Priority="10" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Title"/>
<w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
<w:LsdException Locked="false" Priority="11" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
<w:LsdException Locked="false" Priority="22" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
<w:LsdException Locked="false" Priority="20" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
<w:LsdException Locked="false" Priority="59" SemiHidden="false"
UnhideWhenUsed="false" Name="Table Grid"/>
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
<w:LsdException Locked="false" Priority="1" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 1"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
<w:LsdException Locked="false" Priority="34" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
<w:LsdException Locked="false" Priority="29" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
<w:LsdException Locked="false" Priority="30" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 1"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 2"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 2"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 3"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 3"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 4"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 4"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 5"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 5"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 6"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 6"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
<w:LsdException Locked="false" Priority="19" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
<w:LsdException Locked="false" Priority="21" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
<w:LsdException Locked="false" Priority="31" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
<w:LsdException Locked="false" Priority="32" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
<w:LsdException Locked="false" Priority="33" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
<w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
<w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
</w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:Standaardtabel;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:Cambria;
mso-ascii-font-family:Cambria;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Cambria;
mso-hansi-theme-font:minor-latin;
mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment-->The graphs of \(y = \left| {x + 1} \right|\) and \(y = \left| {x - 3} \right|\) are shown below.</span></p>
<p><img src="" alt></p>
<p><!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Revision>0</o:Revision>
<o:TotalTime>0</o:TotalTime>
<o:Pages>1</o:Pages>
<o:Words>11</o:Words>
<o:Characters>62</o:Characters>
<o:Company>Bontegraphics</o:Company>
<o:Lines>1</o:Lines>
<o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>72</o:CharactersWithSpaces>
<o:Version>14.0</o:Version>
</o:DocumentProperties>
<o:OfficeDocumentSettings>
<o:AllowPNG/>
</o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
<w:WordDocument>
<w:View>Normal</w:View>
<w:Zoom>0</w:Zoom>
<w:TrackMoves/>
<w:TrackFormatting/>
<w:HyphenationZone>21</w:HyphenationZone>
<w:PunctuationKerning/>
<w:ValidateAgainstSchemas/>
<w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
<w:IgnoreMixedContent>false</w:IgnoreMixedContent>
<w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
<w:DoNotPromoteQF/>
<w:LidThemeOther>NL</w:LidThemeOther>
<w:LidThemeAsian>JA</w:LidThemeAsian>
<w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
<w:Compatibility>
<w:BreakWrappedTables/>
<w:SnapToGridInCell/>
<w:WrapTextWithPunct/>
<w:UseAsianBreakRules/>
<w:DontGrowAutofit/>
<w:SplitPgBreakAndParaMark/>
<w:EnableOpenTypeKerning/>
<w:DontFlipMirrorIndents/>
<w:OverrideTableStyleHps/>
<w:UseFELayout/>
</w:Compatibility>
<m:mathPr>
<m:mathFont m:val="Cambria Math"/>
<m:brkBin m:val="before"/>
<m:brkBinSub m:val="--"/>
<m:smallFrac m:val="off"/>
<m:dispDef/>
<m:lMargin m:val="0"/>
<m:rMargin m:val="0"/>
<m:defJc m:val="centerGroup"/>
<m:wrapIndent m:val="1440"/>
<m:intLim m:val="subSup"/>
<m:naryLim m:val="undOvr"/>
</m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
DefSemiHidden="true" DefQFormat="false" DefPriority="99"
LatentStyleCount="276">
<w:LsdException Locked="false" Priority="0" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
<w:LsdException Locked="false" Priority="9" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
<w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
<w:LsdException Locked="false" Priority="39" Name="toc 1"/>
<w:LsdException Locked="false" Priority="39" Name="toc 2"/>
<w:LsdException Locked="false" Priority="39" Name="toc 3"/>
<w:LsdException Locked="false" Priority="39" Name="toc 4"/>
<w:LsdException Locked="false" Priority="39" Name="toc 5"/>
<w:LsdException Locked="false" Priority="39" Name="toc 6"/>
<w:LsdException Locked="false" Priority="39" Name="toc 7"/>
<w:LsdException Locked="false" Priority="39" Name="toc 8"/>
<w:LsdException Locked="false" Priority="39" Name="toc 9"/>
<w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
<w:LsdException Locked="false" Priority="10" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Title"/>
<w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
<w:LsdException Locked="false" Priority="11" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
<w:LsdException Locked="false" Priority="22" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
<w:LsdException Locked="false" Priority="20" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
<w:LsdException Locked="false" Priority="59" SemiHidden="false"
UnhideWhenUsed="false" Name="Table Grid"/>
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
<w:LsdException Locked="false" Priority="1" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 1"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
<w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
<w:LsdException Locked="false" Priority="34" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
<w:LsdException Locked="false" Priority="29" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
<w:LsdException Locked="false" Priority="30" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 1"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 2"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 2"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 3"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 3"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 4"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 4"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 5"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 5"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
<w:LsdException Locked="false" Priority="60" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
<w:LsdException Locked="false" Priority="61" SemiHidden="false"
UnhideWhenUsed="false" Name="Light List Accent 6"/>
<w:LsdException Locked="false" Priority="62" SemiHidden="false"
UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
<w:LsdException Locked="false" Priority="63" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
<w:LsdException Locked="false" Priority="64" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
<w:LsdException Locked="false" Priority="65" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
<w:LsdException Locked="false" Priority="66" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
<w:LsdException Locked="false" Priority="67" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
<w:LsdException Locked="false" Priority="68" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
<w:LsdException Locked="false" Priority="69" SemiHidden="false"
UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
<w:LsdException Locked="false" Priority="70" SemiHidden="false"
UnhideWhenUsed="false" Name="Dark List Accent 6"/>
<w:LsdException Locked="false" Priority="71" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
<w:LsdException Locked="false" Priority="72" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
<w:LsdException Locked="false" Priority="73" SemiHidden="false"
UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
<w:LsdException Locked="false" Priority="19" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
<w:LsdException Locked="false" Priority="21" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
<w:LsdException Locked="false" Priority="31" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
<w:LsdException Locked="false" Priority="32" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
<w:LsdException Locked="false" Priority="33" SemiHidden="false"
UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
<w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
<w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
</w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:Standaardtabel;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:Cambria;
mso-ascii-font-family:Cambria;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Cambria;
mso-hansi-theme-font:minor-latin;
mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment--><span style="font-size: 12.0pt; font-family: 'TimesNewRomanPSMT','serif'; mso-fareast-font-family: 'MS 明朝'; mso-fareast-theme-font: minor-fareast; mso-bidi-font-family: TimesNewRomanPSMT; mso-ansi-language: EN-US; mso-fareast-language: NL; mso-bidi-language: AR-SA;">Let <em>f </em>(<em>x</em>) = \(\left| {\,x + 1\,} \right| - \left| {\,x - 3\,} \right|\).</span><!--EndFragment--></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph of <em>y </em>= <em>f </em>(<em>x</em>) on the blank grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence state the value of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) <span lang="NL">\(f'( - 3)\);</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <span lang="NL">\(f'(2.7)\);</span><!--EndFragment--></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) \(\int_{ - 3}^{ - 2} {f(x)dx} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>