File "HL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 3/HL-paper1html
File size: 132.83 KB
MIME-type: text/x-tex
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the values of <em>x </em>for which the vectors \(\left( {\begin{array}{*{20}{c}}<br> 1 \\ <br> {2\cos x} \\ <br> 0 <br>\end{array}} \right)\) and \(\left( {\begin{array}{*{20}{c}}<br> { - 1} \\ <br> {2\sin x} \\ <br> 1 <br>\end{array}} \right)\) are perpendicular, \(0 \leqslant x \leqslant \frac{\pi }{2}\).</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\arctan \left( {\frac{1}{5}} \right) + \arctan \left( {\frac{1}{8}} \right) = \arctan \left( {\frac{1}{p}} \right)\), where \(p \in {\mathbb{Z}^ + }\), find <em>p</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\arctan \left( {\frac{1}{2}} \right) + \arctan \left( {\frac{1}{5}} \right) + \arctan \left( {\frac{1}{8}} \right)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the identity \(\cos 2\theta = 2{\cos ^2}\theta - 1\) to prove that \(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} ,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\int_0^{\frac{\pi }{2}} {\left( {\sqrt {1 + \cos x} + \sqrt {1 - \cos x} } \right){\text{d}}x} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that </span><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{\sin 2\theta }}{{1 + \cos 2\theta }} = \tan \theta \)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence find the value of \(\cot \frac{\pi }{8}\) </span><span style="font-family: times new roman,times; font-size: medium;">in the form \(a + b\sqrt 2 \) , where \(a,b \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\cot \alpha = \tan \left( {\frac{\pi }{2} - \alpha } \right)\) for \(0 < \alpha < \frac{\pi }{2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 < \alpha < \frac{\pi }{2}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In the triangle ABC, \({\text{AB}} = 2\sqrt 3 \) , AC = 9 and \({\rm{B\hat AC}} = 150^\circ \) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine BC, giving your answer in the form \(k\sqrt 3 \), \(k \in {\mathbb{Z}^ + }\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point D lies on (BC), and (AD) is perpendicular to (BC). Determine AD.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(z = 1 - \cos 2\theta - {\text{i}}\sin 2\theta ,{\text{ }}z \in \mathbb{C},{\text{ }}0 \leqslant \theta \leqslant \pi \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve \(2\sin (x + 60^\circ ) = \cos (x + 30^\circ ),{\text{ }}0^\circ \leqslant x \leqslant 180^\circ \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\sin 105^\circ + \cos 105^\circ = \frac{1}{{\sqrt 2 }}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the modulus and argument of \(z\) in terms of \(\theta \). Express each answer in its simplest form.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the cube roots of \(z\) in modulus-argument form.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(\sin \frac{\pi }{4} + \sin \frac{{3\pi }}{4} + \sin \frac{{5\pi }}{4} + \sin \frac{{7\pi }}{4} + \sin \frac{{9\pi }}{4}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\frac{{1 - \cos 2x}}{{2\sin x}} \equiv \sin x,{\text{ }}x \ne k\pi \) <span class="s1">where \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the principle of mathematical induction to prove that</p>
<p class="p1">\(\sin x + \sin 3x + \ldots + \sin (2n - 1)x = \frac{{1 - \cos 2nx}}{{2\sin x}},{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}x \ne k\pi \) where \(k \in \mathbb{Z}\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence or otherwise solve the equation \(\sin x + \sin 3x = \cos x\) <span class="s1">in the interval \(0 < x < \pi \).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="font: 28px Helvetica; margin: 0px; text-align: justify;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows a tangent, (TP) , to the circle with centre O and radius <em>r</em> . The size of \({\rm{P\hat OA}}\) is \(\theta \) radians.</span></p>
<p style="font: normal normal normal 28px/normal Helvetica; text-align: center; margin: 0px;"> </p>
<p style="font: normal normal normal 28px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of triangle AOP in terms of <em>r</em> and \(\theta \) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of triangle POT in terms of <em>r</em> and \(\theta \) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using your results from part (a) and part (b), show that \(\sin \theta < \theta < \tan \theta \) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The first three terms of a geometric sequence are \(\sin x,{\text{ }}\sin 2x\) and \(4\sin x{\cos ^2}x,{\text{ }} - \frac{\pi }{2} < x < \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the common ratio <em>r</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the set of values of <em>x </em>for which the geometric series \(\sin x + \sin 2x + 4\sin x{\cos ^2}x + \ldots \) converges.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider \(x = \arccos \left( {\frac{1}{4}} \right),{\text{ }}x > 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Show that the sum to infinity of this series is \(\frac{{\sqrt {15} }}{2}\).</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Solve the equation \(\sin 2x - \cos 2x = 1 + \sin x - \cos x\) for \(x \in [ - \pi ,{\text{ }}\pi ]\).</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">In triangle \({\text{ABC, BC}} = \sqrt 3 {\text{ cm}}\), \({\rm{A\hat BC}} = \theta \) and \({\rm{B\hat CA}} = \frac{\pi }{3}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that length \({\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta + \sin \theta }}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(AB\) has a minimum value, determine the value of \(\theta \) <span class="s1">for which this occurs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the triangle ABC where \({\text{AB}} = 2,{\text{ AC}} = \sqrt 2 \) and \({\rm{B\hat AC}} = 15^\circ \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_08.33.57.png" alt="M16/5/MATHL/HP1/ENG/TZ1/05.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Expand and simplify \({\left( {1 - \sqrt 3 } \right)^2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By writing \(15^\circ \) as \(60^\circ - 45^\circ \) find the value of \(\cos (15^\circ )\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find BC </span>in the form \(a + \sqrt b \) where \(a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The triangle ABC is equilateral of side 3 cm. The point D lies on [BC] such that BD = 1 cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\cos {\rm{D\hat AC}}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{{\sin 3x}}{{\sin x}} - \frac{{\cos 3x}}{{\cos x}}\)<em>.</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For what values of <em>x </em>does \(f(x)\) not exist?</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Simplify the expression \(\frac{{\sin 3x}}{{\sin x}} - \frac{{\cos 3x}}{{\cos x}}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A circular disc is cut into twelve sectors whose areas are in an arithmetic sequence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The angle of the largest sector is twice the angle of the smallest sector.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the size of the angle of the smallest sector.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a circular lake with centre O, diameter AB and radius 2 km.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Jorg needs to get from A to B as quickly as possible. He considers rowing to point P and then walking to point B. He can row at \(3{\text{ km}}\,{{\text{h}}^{ - 1}}\) and walk at \(6{\text{ km}}\,{{\text{h}}^{ - 1}}\). Let \({\rm{P\hat AB}} = \theta \) radians, and <em>t</em> be the time in hours taken by Jorg to travel from A to B.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(t = \frac{2}{3}(2\cos \theta + \theta )\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\theta \) for which \(\frac{{{\text{d}}t}}{{{\text{d}}\theta }} = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">What route should Jorg take to travel from A to B in the least amount of time?</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give reasons for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Write down the expansion of \({\left( {\cos \theta + {\text{i}}\sin \theta } \right)^3}\) in the form \(a + {\text{i}}b\) , where \(a\) and \(b\) </span><span style="font-family: times new roman,times; font-size: medium;">are in terms of \({\sin \theta }\) and \({\cos \theta }\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence show that \(\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta \) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Similarly show that \(\cos 5\theta = 16{\cos ^5}\theta - 20{\cos ^3}\theta + 5\cos \theta \) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Hence</strong> solve the equation \(\cos 5\theta + \cos 3\theta + \cos \theta = 0\) , where \(\theta \in \left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">By considering the solutions of the equation \(\cos 5\theta = 0\) , show that </span><span style="font-family: times new roman,times; font-size: medium;">\(\cos \frac{\pi }{{10}} = \sqrt {\frac{{5 + \sqrt 5 }}{8}} \)</span><span style="font-family: times new roman,times; font-size: medium;"> and state the value of \(\cos \frac{{7\pi }}{{10}}\)</span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">From a vertex of an equilateral triangle of side \(2x\), a circular arc is drawn to divide the triangle into two regions, as shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the areas of the two regions are equal, find the radius of the arc in terms of <em>x</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The angle \(\theta \) lies in the first quadrant and \(\cos \theta = \frac{1}{3}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the value of \(\sin \theta \) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\tan 2\theta \) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\cos \left( {\frac{\theta }{2}} \right)\) , giving your answer in the form \(\frac{{\sqrt a }}{b}\) where <em>a</em> , \(b \in {\mathbb{Z}^ + }\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The following diagram shows the curve \(y = a\sin \left( {b(x + c)} \right) + d\), where \(a\)</span>, <span class="s1">\(b\)</span>, <span class="s1">\(c\) and \(d\) </span>are all positive constants. The curve has a maximum point at \((1,{\text{ }}3.5)\) and a minimum point at \((2,{\text{ }}0.5)\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_07.33.57.png" alt="M16/5/MATHL/HP1/ENG/TZ1/03"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the value of \(a\) and the value of \(d\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the smallest possible value of \(c\), given \(c > 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The logo, for a company that makes chocolate, is a sector of a circle of radius \(2\) cm, shown as shaded in the diagram. The area of the logo is \(3\pi {\text{ c}}{{\text{m}}^2}\)<span class="s1">.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2015-12-22_om_11.15.57.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find, in radians, the value of the angle \(\theta \), as indicated on the diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the total length of the perimeter of the logo.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In the diagram below, AD is perpendicular to BC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">CD = 4, BD = 2 and AD = 3. \({\rm{C}}\hat {\rm{A}}{\rm{D}} = \alpha \) and \({\rm{B}}\hat {\rm{A}}{\rm{D}} = \beta \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 36px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact value of \(\cos (\alpha - \beta )\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve defined by the equation \({x^2} + \sin y - xy = 0\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, show that \(\tan \theta = \frac{1}{{1 + 2\pi }}\), where \(\theta \) is the acute angle between the tangent to the curve at \((\pi ,{\text{ }}\pi )\) and the line <em>y </em>= <em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{\cos A + \sin A}}{{\cos A - \sin A}} = \sec 2A + \tan 2A\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Prove the trigonometric identity \(\sin (x + y)\sin (x - y) = {\sin ^2}x - {\sin ^2}y\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Given \(f(x) = \sin({x + \frac{\pi }{6}})\sin({x - \frac{\pi }{6}}),{\text{ }}x \in \left[ {0,{\text{ }}\pi } \right]\), find the range of \(f\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Given \(g(x) = \csc( {x + \frac{\pi }{6}})\csc( {x - \frac{\pi }{6}}),{\text{ }}x \in \left[ {0,{\text{ }}\pi } \right],{\text{ }}x \ne \frac{\pi }{6},{\text{ }}x \ne \frac{{5\pi }}{6}\), find the range of \(g\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the equation \(\frac{{\sqrt 3 - 1}}{{\sin x}} + \frac{{\sqrt 3 + 1}}{{\cos x}} = 4\sqrt 2 ,{\text{ }}0 < x < \frac{\pi }{2}\). Given that \(\sin \left( {\frac{\pi }{{12}}} \right) = \frac{{\sqrt 6 - \sqrt 2 }}{4}\) and \(\cos \left( {\frac{\pi }{{12}}} \right) = \frac{{\sqrt 6 + \sqrt 2 }}{4}\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">verify that \(x = \frac{\pi }{{12}}\) is a solution to the equation;</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">hence find the other solution to the equation for \(0 < x < \frac{\pi }{2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x < \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g \circ f(x)\), stating its domain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(y = g \circ f(x)\)<span class="s1">, find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows the boundary of the cross-section of a water channel.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The equation that represents this boundary is \(y = 16\sec \left( {\frac{{\pi x}}{{36}}} \right) - 32\) where <em>x</em> and <em>y</em> are both measured in cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The top of the channel is level with the ground and has a width of 24 cm. The maximum depth of the channel is 16 cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the width of the water surface in the channel when the water depth is 10 cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give your answer in the form \(a\arccos b\) where \(a,{\text{ }}b \in \mathbb{R}\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">In the triangle ABC, </span><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\rm{A\hat BC}} = 90^\circ\)</span> , \({\text{AC}} = \sqrt {\text{2}}\) and AB = BC + 1.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that cos \(\hat A - \sin \hat A = \frac{1}{{\sqrt 2 }}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">By squaring both sides of the equation in part (a), solve the equation to find the angles in the triangle.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Apply Pythagoras’ theorem in the triangle ABC to find BC, and hence show that \(\sin \hat A = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, calculate the length of the perpendicular from B to [AC].</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a curve with equation \(y = 1 + k\sin x\) , defined for \(0 \leqslant x \leqslant 3\pi \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point \({\text{A}}\left( {\frac{\pi }{6}, - 2} \right)\) lies on the curve and \({\text{B}}(a,{\text{ }}b)\) is the maximum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that <em>k</em> = – 6 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence, find the values of <em>a</em> and <em>b</em> .</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Show that \({(1 + {\text{i}}\tan \theta )^n} + {(1 - {\text{i}}\tan \theta )^n} = \frac{{2\cos n\theta }}{{{{\cos }^n}\theta }},\;\;\;\cos \theta \ne 0\).</p>
<p>(ii) Hence verify that \({\text{i}}\tan \frac{{3\pi }}{8}\) is a root of the equation \({(1 + z)^4} + {(1 - z)^4} = 0,\;\;\;z \in \mathbb{C}\).</p>
<p>(iii) State another root of the equation \({(1 + z)^4} + {(1 - z)^4} = 0,\;\;\;z \in \mathbb{C}\).</p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Use the double angle identity \(\tan 2\theta = \frac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\) to show that \(\tan \frac{\pi }{8} = \sqrt 2 - 1\).</p>
<p>(ii) Show that \(\cos 4x = 8{\cos ^4}x - 8{\cos ^2}x + 1\).</p>
<p>(iii) Hence find the value of \(\int_0^{\frac{\pi }{8}} {\frac{{2\cos 4x}}{{{{\cos }^2}x}}{\text{d}}x} \).</p>
<div class="marks">[13]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In the triangle PQR, PQ = 6 , PR = <em>k </em>and <span style="font-family: 'times new roman', times; font-size: medium;">\({\rm{P\hat QR}} = 30^\circ \) .</span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For the case <em>k </em>= 4 , find the two possible values of QR.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the values of <em>k </em>for which the conditions above define a unique triangle.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The following diagram shows a sector of a circle where \({\rm{A\hat OB}} = x\) radians and the length of the \({\text{arc AB}} = \frac{2}{x}{\text{ cm}}\).</p>
<p class="p1">Given that the area of the sector is \(16{\text{ c}}{{\text{m}}^2}\), find the length of the arc \(AB\)<span class="s1">.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2016-01-28_om_15.11.09.png" alt></span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\frac{\pi }{2} < \alpha < \pi \) and \(\cos \alpha = - \frac{3}{4}\), find the value of sin 2<span style="font: 12.5px Times;">α </span>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The vectors <strong><em>a</em></strong> , <strong><em>b</em></strong> , <strong><em>c</em></strong> satisfy the equation <strong><em>a</em></strong> + <strong><em>b</em></strong> + <strong><em>c</em></strong> = <strong>0</strong> . Show that <strong><em>a</em></strong> \( \times \) <strong><em>b</em></strong> = <strong><em>b</em></strong> \( \times \) <strong><em>c</em></strong> = <strong><em>c</em></strong> \( \times \) <strong><em>a</em></strong> .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(h(x) = \arctan (x),{\text{ }}x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(g(x) = \frac{1}{x}\), \(x\in \mathbb{R}\)</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">, \({\text{ }}x \ne 0\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = h(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(h \circ g(x)\) and state its domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = h(x) + h \circ g(x)\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) find \(f'(x)\) in simplified form;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) show that \(f(x) = \frac{\pi }{2}\) for \(x > 0\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Nigel states that \(f\) is an odd function and Tom argues that \(f\) is an even function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State who is correct and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find the value of \(f(x)\) for \(x < 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\sin \left( {\theta + \frac{\pi }{2}} \right) = \cos \theta \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider \(f(x) = \sin (ax)\) where \(a\) is a constant. Prove by mathematical induction that \({f^{(n)}}(x) = {a^n}\sin \left( {ax + \frac{{n\pi }}{2}} \right)\) where \(n \in {\mathbb{Z}^ + }\) and \({f^{(n)}}(x)\) represents the \({{\text{n}}^{{\text{th}}}}\) derivative of \(f(x)\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation \({\sec ^2}x + 2\tan x = 0,{\text{ }}0 \leqslant x \leqslant 2\pi \).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(\sin 2nx = \sin \left( {(2n + 1)x} \right)\cos x - \cos \left( {(2n + 1)x} \right)\sin x\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>Hence</strong> prove, by induction, that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\cos x + \cos 3x + \cos 5x + \ldots + \cos \left( {(2n - 1)x} \right) = \frac{{\sin 2nx}}{{2\sin x}},\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for all \(n \in {\mathbb{Z}^ + }{\text{, }}\sin x \ne 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Solve the equation \(\cos x + \cos 3x = \frac{1}{2},{\text{ }}0 < x < \pi \).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A triangle has sides of length \(({n^2} + n + 1)\), \((2n + 1)\) and \(({n^2} - 1)\) where \(n > 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Explain why the side \(({n^2} + n + 1)\) must be the longest side of the triangle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that the largest angle, \(\theta \), of the triangle is \(120^\circ \).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\sin x + \cos x = \frac{2}{3}\), find \(\cos 4x\).</span></p>
</div>
<br><hr><br><div class="question">
<p>Find all solutions to the equation \(\tan x + \tan 2x = 0\) where \(0^\circ \le x < 360^\circ\).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows two straight lines intersecting at O and two circles, each with centre O. The outer circle has radius <em>R</em> and the inner circle has radius <em>r</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the shaded regions with areas <em>A</em> and <em>B</em> . Given that \(A:B = 2:1\), find the <strong>exact</strong> value of the ratio \(R:r\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following system of equations:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[x + y + z = 1\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[2x + 3y + z = 3\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[x + 3y - z = \lambda \]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where \(\lambda \in \mathbb{R}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that this system does not have a unique solution for any value of \(\lambda \) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Determine the value of \(\lambda \) for which the system is consistent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) For this value of \(\lambda \) , find the general solution of the system.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = \left| {\cos \left( {\frac{x}{4}} \right)} \right|\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve \(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In triangle ABC, AB = 9 cm , AC = 12 cm , and \(\hat B\) is twice the size of \({\hat C}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the cosine of \({\hat C}\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider \(w = 2\left( {{\text{cos}}\frac{\pi }{3} + {\text{i}}\,{\text{sin}}\frac{\pi }{3}} \right)\)</p>
</div>
<div class="specification">
<p>These four points form the vertices of a quadrilateral, <em>Q</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <em>w</em><sup>2</sup> and <em>w</em><sup>3</sup> in modulus-argument form.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch on an Argand diagram the points represented by <em>w</em><sup>0</sup> , <em>w</em><sup>1</sup> , <em>w</em><sup>2</sup> and <em>w</em><sup>3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of the quadrilateral <em>Q</em> is \(\frac{{21\sqrt 3 }}{2}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(z = 2\left( {{\text{cos}}\frac{\pi }{n} + {\text{i}}\,{\text{sin}}\frac{\pi }{n}} \right),\,\,n \in {\mathbb{Z}^ + }\). The points represented on an Argand diagram by \({z^0},\,\,{z^1},\,\,{z^2},\, \ldots \,,\,\,{z^n}\) form the vertices of a polygon \({P_n}\).</p>
<p>Show that the area of the polygon \({P_n}\) can be expressed in the form \(a\left( {{b^n} - 1} \right){\text{sin}}\frac{\pi }{n}\), where \(a,\,\,b\, \in \mathbb{R}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Let \(a = {\text{sin}}\,b,\,\,0 < b < \frac{\pi }{2}\).</p>
<p>Find, in terms of <em>b</em>, the solutions of \({\text{sin}}\,2x = - a,\,\,0 \leqslant x \leqslant \pi \).</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find all values of <em>x</em> for \(0.1 \leqslant x \leqslant 1\) such that \(\sin (\pi {x^{ - 1}}) = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int_{\frac{1}{{n + 1}}}^{\frac{1}{n}} {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}}){\text{d}}x} \), showing that it takes different integer values when <em>n</em> is even and when <em>n</em> is odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Evaluate \(\int_{0.1}^1 {\left| {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}})} \right|{\text{d}}x} \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>x</em> satisfies the equation \(\sin \left( {x + \frac{\pi }{3}} \right) = 2\sin x\sin \left( {\frac{\pi }{3}} \right)\), show that \(11\tan x = a + b\sqrt 3 \), where <em>a</em>, <em>b</em> \( \in {\mathbb{Z}^ + }\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = 1 + \sin x,{\text{ }}0 \leqslant x \leqslant \frac{{3\pi }}{2}\),</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch the graph of \(f\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 31px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the volume of the solid formed when the graph of <em>f</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined on the domain \(\left[ {0,\,\frac{{3\pi }}{2}} \right]\) by \(f(x) = {e^{ - x}}\cos x\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the two zeros of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the graph, the <em>x</em>-axis and the <em>y</em>-axis is denoted by <em>A </em>and the region bounded by the graph and the <em>x</em>-axis is denoted by <em>B </em>. Show that the ratio of the area of <em>A </em>to the area of <em>B </em>is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{e^\pi }\left( {{e^{\frac{\pi }{2}}} + 1} \right)}}{{{e^\pi } + 1}}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{1}{{4{x^2} - 4x + 5}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(4{x^2} - 4x + 5\) in the form \(a{(x - h)^2} + k\) where <em>a</em>, <em>h</em>, \(k \in \mathbb{Q}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} - 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Sketch the graphs of \(y = \sin x\) and \(y = \sin 2x\) , on the same set of axes, for \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the x-coordinates of the points of intersection of the graphs in the domain \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the area enclosed by the graphs.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution \(x = 4{\sin ^2}\theta \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The increasing function <em>f</em> satisfies \(f(0) = 0\) and \(f(a) = b\) , where \(a > 0\) and \(b > 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) By reference to a sketch, show that \(\int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} } \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <strong>Hence</strong> find the value of \(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x} \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(\arctan \left( {\frac{1}{2}} \right) + \arctan \left( {\frac{1}{3}} \right) = \frac{\pi }{4}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence, or otherwise, find the value of \(\arctan (2) + \arctan (3)\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Sketch the curve \(f(x) = \sin 2x\) , \(0 \leqslant x \leqslant \pi \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence sketch on a separate diagram the graph of \(g(x) = \csc 2x\) , \(0 \leqslant x \leqslant \pi \) , clearly stating the coordinates of any local maximum or minimum points and the equations of any asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Show that tan \(x + \cot x \equiv 2\csc 2x\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Hence or otherwise, find the coordinates of the local maximum and local minimum points on the graph of \(y = \tan 2x + \cot 2x\) , \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Find the solution of the equation \(\csc 2x = 1.5\tan x - 0.5\) , \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
</div>
<br><hr><br>