File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 3 HTML/SL-paper2html
File size: 211.79 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A sample of vegetable oil, initially in the liquid state, is placed in a freezer that transfers thermal energy from the sample at a constant rate. The graph shows how temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> of the sample varies with time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="515" height="299"></p>
<p>The following data are available.</p>
<p style="padding-left: 30px;">Mass of the sample <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>0</mn><mo>.</mo><mn>32</mn><mo> </mo><mi>kg</mi></math><br>Specific latent heat of fusion of the oil <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>130</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math><br>Rate of thermal energy transfer <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>15</mn><mo> </mo><mi mathvariant="normal">W</mi></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the thermal energy transferred from the sample during the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sample begins to freeze during the thermal energy transfer. Explain, in terms of the molecular model of matter, why the temperature of the sample remains constant during freezing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of the oil that remains unfrozen after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A mass of 1.0 kg of water is brought to its boiling point of 100 °C using an electric heater of&nbsp;power 1.6 kW.</p>
</div>

<div class="specification">
<p>A mass of 0.86 kg of water remains after it has boiled for 200 s.</p>
</div>

<div class="specification">
<p>The electric heater has two identical resistors connected in parallel.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The circuit transfers 1.6 kW when switch A only is closed. The external voltage is 220 V.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The molar mass of water is 18 g mol<sup>−1</sup>. Estimate the average speed of the water&nbsp;molecules in the vapor produced. Assume the vapor behaves as an ideal gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific latent heat of vaporization of water. State an appropriate&nbsp;unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the temperature of water remains at 100 °C during this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The heater is removed and a mass of 0.30 kg of pasta at −10 °C is added to the boiling&nbsp;water.</p>
<p>Determine the equilibrium temperature of the pasta and water after the pasta is added.&nbsp;Other heat transfers are negligible.</p>
<p style="padding-left:180px;">Specific heat capacity of pasta = 1.8 kJ kg<sup>−1</sup> K<sup>−1</sup><br>Specific heat capacity of water = 4.2 kJ kg<sup>−1</sup> K<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that each resistor has a resistance of about 30 Ω.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the power transferred by the heater when both switches are closed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Cold milk enters a small sterilizing unit and flows over an electrical heating element.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The temperature of the milk is raised from 11&thinsp;&deg;C to 84&thinsp;&deg;C. A mass of 55&thinsp;g of milk enters&nbsp;the sterilizing unit every second.</p>
<p style="padding-left: 210px;">Specific heat capacity of milk = 3.9&thinsp;kJ&thinsp;kg<sup>&minus;1&thinsp;</sup>K<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The milk flows out through an insulated metal pipe. The pipe is at a temperature&nbsp;of 84&thinsp;&deg;C. A small section of the insulation has been removed from around the pipe.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power input to the heating element. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether your answer to (a) is likely to overestimate or underestimate the power input.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, with reference to the molecules in the liquid, the difference between milk at 11 °C and milk at 84 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how energy is transferred from the inside of the metal pipe to the outside of the metal pipe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The missing section of insulation is 0.56 m long and the external radius of the pipe is 0.067 m. The emissivity of the pipe surface is 0.40. Determine the energy lost every second from the pipe surface. Ignore any absorption of radiation by the pipe surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> other method by which significant amounts of energy can be transferred from the pipe to the surroundings.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>internal energy.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.46 mole of an ideal monatomic gas is trapped in a cylinder. The gas has a volume of 21 m<sup>3</sup> and a pressure of 1.4 Pa.</p>
<p>(i) State how the internal energy of an ideal gas differs from that of a real gas.</p>
<p>(ii) Determine, in kelvin, the temperature of the gas in the cylinder.</p>
<p>(iii) The kinetic theory of ideal gases is one example of a scientific model. Identify <strong>one</strong> reason why scientists find such models useful.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A large cube is formed from ice. A light ray is incident from a vacuum at an angle&nbsp;of 46˚ to the normal on one surface of the cube. The light ray is parallel to the plane&nbsp;of one of the sides of the cube. The angle of refraction inside the cube is 33˚.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Each side of the ice cube is 0.75 m in length. The initial temperature of the ice cube&nbsp;is –20 °C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of light inside the ice cube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that no light emerges from side AB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the diagram, the subsequent path of the light ray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the energy required to melt all of the ice from –20 °C to water at a temperature of 0 °C.</p>
<p>Specific latent heat of fusion of ice  = 330 kJ kg<sup>–1</sup><br>Specific heat capacity of ice            = 2.1 kJ kg<sup>–1</sup> k<sup>–1</sup><br>Density of ice                                = 920 kg m<sup>–3</sup></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the difference between the molecular structure of a solid and a liquid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds.&nbsp;They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>86</mn>
    </mrow>
    <mrow>
      <mn>226</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ra</mtext>
  </mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the missing values in the nuclear equation for this decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds put some pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a larger closed cylinder B.</p>
<p><img src=""></p>
<p>At the start of the experiment all the air was removed from cylinder B. The alpha particles combined with electrons as they moved through the wall of cylinder A to form helium gas in cylinder B.</p>
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds expected 2.7 x&nbsp;10<sup>15</sup> alpha particles to be emitted during the&nbsp;experiment. The experiment was carried out at a temperature of 18 °C. The volume of&nbsp;cylinder B was 1.3 x&nbsp;10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible. Calculate the&nbsp;pressure of the helium gas that was collected in cylinder B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rutherford and Royds identified the helium gas in cylinder B by observing its&nbsp;emission spectrum. Outline, with reference to atomic energy levels, how an&nbsp;emission spectrum is formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work was first reported in a peer-reviewed scientific journal. Outline why Rutherford and Royds chose to publish their work in this way.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A closed box of fixed volume 0.15 m<sup>3</sup> contains 3.0 mol of an ideal monatomic gas. The temperature of the gas is 290 K.</p>
</div>

<div class="specification">
<p>When the gas is supplied with 0.86 kJ of energy, its temperature increases by 23 K. The specific heat capacity of the gas is 3.1 kJ kg<sup>–1</sup> K<sup>–1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pressure of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in kg, the mass of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the average kinetic energy of the particles of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the kinetic model of an ideal gas, how an increase in temperature of the gas leads to an increase in pressure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows part of a downhill ski course which starts at point A, 50 m above&nbsp;level ground. Point B is 20 m above level ground.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A skier of mass 65 kg starts from rest at point A and during the ski course some of the&nbsp;gravitational potential energy transferred to kinetic energy.</p>
</div>

<div class="specification">
<p>At the side of the course flexible safety nets are used. Another skier of mass 76 kg falls normally into the safety net with speed 9.6 m s<sup>–1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From A to B, 24 % of the gravitational potential energy transferred to kinetic&nbsp;energy. Show that the velocity at B is 12 m s<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some of the gravitational potential energy transferred into internal energy of the&nbsp;skis, slightly increasing their temperature. Distinguish between internal energy&nbsp;and temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The dot on the following diagram represents the skier as she passes point B.<br>Draw and label the vertical forces acting on the skier.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hill at point B has a circular shape with a radius of 20 m. Determine whether the skier will lose contact with the ground at point B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The skier reaches point C with a speed of 8.2 m s<sup>–1</sup>. She stops after a distance of 24 m at point D.</p>
<p>Determine the coefficient of dynamic friction between the base of the skis and the snow. Assume that the frictional force is constant and that air resistance can be neglected.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the impulse required from the net to stop the skier and state an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to change in momentum, why a flexible safety net is less likely to harm the skier than a rigid barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An ideal monatomic gas is kept in a container of volume 2.1 × 10<sup>–4</sup> m<sup>3</sup>, temperature&nbsp;310 K and pressure 5.3 × 10<sup>5</sup> Pa.</p>
</div>

<div class="specification">
<p>The volume of the gas in (a) is increased to 6.8 × 10<sup>–4</sup> m<sup>3</sup> at constant temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of atoms in the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the internal energy of the gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in Pa, the new pressure of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of molecular motion, this change in pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid oxygen at its boiling point is stored in an insulated tank. Gaseous oxygen is produced&nbsp;from the tank when required using an electrical heater placed in the liquid.</p>
<p>The following data are available.</p>
<p style="padding-left: 60px;">Mass of 1.0 mol of oxygen&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 32 g</p>
<p style="padding-left: 60px;">Specific latent heat of vaporization of oxygen&nbsp; &nbsp;= 2.1 × 10<sup>5</sup> J kg<sup>–1</sup></p>
</div>

<div class="specification">
<p>An oxygen flow rate of 0.25 mol s<sup>–1</sup> is needed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between the internal energy of the oxygen at the boiling point when it is in its liquid phase and when it is in its gas phase.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in kW, the heater power required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the oxygen produced in one second when it is allowed to expand to a pressure of 0.11 MPa and to reach a temperature of 260 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas that does not apply to oxygen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the variation with temperature <em>T</em> of the pressure <em>P</em> of a fixed mass of helium&nbsp;gas trapped in a container with a fixed volume of 1.0 × 10<sup>−3 </sup>m<sup>3</sup>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether helium behaves as an ideal gas over the temperature range 250 K&nbsp;to 500 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Helium has a molar mass of 4.0 g. Calculate the mass of gas in the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second container, of the same volume as the original container, contains twice as&nbsp;many helium atoms. The graph of the variation of <em>P</em> with <em>T</em> is determined for the gas&nbsp;in the second container.</p>
<p>Predict how the graph for the second container will differ from the graph for the first&nbsp;container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quantity of 0.24&thinsp;mol of an ideal gas of constant volume 0.20&thinsp;m<sup>3</sup> is kept at a&nbsp;temperature of 300&thinsp;K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the internal energy of an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pressure of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The temperature of the gas is increased to 500 K. Sketch, on the axes, a graph to show the variation with temperature <em>T</em> of the pressure <em>P</em> of the gas during this change.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A container is filled with 1 mole of helium (molar mass 4 g mol<sup>−1</sup>) and 1 mole of neon (molar mass 20 g mol<sup>−1</sup>). Compare the average kinetic energy of helium atoms to that of neon atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A container of volume 3.2 × 10-6 m<sup>3</sup> is filled with helium gas at a pressure of 5.1 × 10<sup>5</sup> Pa and temperature 320 K. Assume that this sample of helium gas behaves as an ideal gas.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">A helium atom has a volume of 4.9 × 10<sup>-31</sup> m<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The molar mass of helium is 4.0 g mol<sup>-1</sup>. Show that the mass of a helium atom is 6.6 × 10<sup>-27</sup> kg.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Estimate the average speed of the helium atoms in the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the number of helium atoms in the container is about 4 × 10<sup>20</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the ratio &nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{total volume of helium atoms}}}}{{{\text{volume of helium gas}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>total volume of helium atoms</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>volume of helium gas</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain, using your answer to (d)(i) and with reference to the kinetic model, why this sample of helium can be assumed to be an ideal gas.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">dii.</div>
</div>
<br><hr><br><div class="specification">
<p>A tube of constant circular cross-section, sealed at one end, contains an ideal gas trapped by a cylinder of mercury of length 0.035 m. The whole arrangement is in the Earth’s atmosphere. The density of mercury is 1.36 × 10<sup>4</sup> kg m<sup>–3</sup>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">When the mercury is above the gas column the length of the gas column is 0.190 m.</p>
</div>

<div class="specification">
<p>The tube is slowly rotated until the gas column is above the mercury.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The length of the gas column is now 0.208 m. The temperature of the trapped gas does not change during the process.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align:left;">A solid cylinder of height <em>h</em> and density <em>ρ</em> rests on a flat surface.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Show that the pressure <em>p</em><sub>c</sub>&nbsp;exerted by the cylinder on the surface is given by <em>p</em><sub>c</sub>&nbsp;= <em>ρgh</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that (<em>p</em><sub>o</sub> + <em>p</em><sub>m</sub>)&nbsp;×<sub>&nbsp;</sub>0.190 = <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{nRT}}{A}">
  <mfrac>
    <mrow>
      <mi>n</mi>
      <mi>R</mi>
      <mi>T</mi>
    </mrow>
    <mi>A</mi>
  </mfrac>
</math></span></span>&nbsp; where</p>
<p><em>p</em><sub>o</sub> = atmospheric pressure</p>
<p><em>p</em><sub>m</sub> = pressure due to the mercury column</p>
<p><em>T</em> = temperature of the trapped gas</p>
<p><em>n</em> = number of moles of the trapped gas</p>
<p><em>A</em> = cross-sectional area of the tube.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the atmospheric pressure. Give a suitable unit for your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the gas particles in the tube hit the mercury surface less often after the tube has been rotated.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A fixed mass of an ideal gas is contained in a cylinder closed with a frictionless piston.&nbsp;The volume of the gas is 2.5 &times; 10<sup>&minus;3&thinsp;</sup>m<sup>3</sup> when the temperature of the gas is 37&thinsp;&deg;C and the&nbsp;pressure of the gas is 4.0 &times; 10<sup>5&thinsp;</sup>Pa.</p>
</div>

<div class="specification">
<p>Energy is now supplied to the gas and the piston moves to allow the gas to expand.&nbsp;The temperature is held constant.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of gas particles in the cylinder.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, for this process, the changes that occur in the density of the gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, for this process, the changes that occur in the internal energy of the gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The air in a kitchen has pressure 1.0 × 10<sup>5</sup> Pa and temperature 22°C. A refrigerator of internal volume 0.36 m<sup>3</sup> is installed in the kitchen.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The refrigerator door is closed. The air in the refrigerator is cooled to 5.0°C and the number of air molecules in the refrigerator stays the same.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">With the door open the air in the refrigerator is initially at the same temperature and pressure as the air in the kitchen. Calculate the number of molecules of air in the refrigerator.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the pressure of the air inside the refrigerator.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The door of the refrigerator has an area of 0.72 m<sup>2</sup>. Show that the minimum force needed to open the refrigerator door is about 4 kN.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the magnitude of the force in (b)(ii).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br>