File "SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 1/SL-paper2html
File size: 522.78 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p>A student determined the percentage of the active ingredient magnesium hydroxide, Mg(OH)<sub>2</sub>, in a 1.24 g antacid tablet.</p>
<p>The antacid tablet was added to 50.00 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> sulfuric acid, which was in excess.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of H<sub>2</sub>SO<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the reaction of H<sub>2</sub>SO<sub>4</sub> with Mg(OH)<sub>2</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The excess sulfuric acid required 20.80 cm<sup>3</sup> of 0.1133 mol dm<sup>−3</sup> NaOH for neutralization.</p>
<p>Calculate the amount of excess acid present.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of H<sub>2</sub>SO<sub>4</sub> that reacted with Mg(OH)<sub>2</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass of Mg(OH)<sub>2</sub> in the antacid tablet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of magnesium hydroxide in the 1.24 g antacid tablet to three significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following sequence of reactions.</p>
<p class="p1">\[{\text{RC}}{{\text{H}}_3}\xrightarrow{{reaction 1}}{\text{RC}}{{\text{H}}_2}{\text{Br}}\xrightarrow{{reaction 2}}{\text{RC}}{{\text{H}}_2}{\text{OH}}\xrightarrow{{reaction 3}}{\text{RCOOH}}\]</p>
<p class="p1">\({\text{RC}}{{\text{H}}_{\text{3}}}\) is an unknown alkane in which R represents an alkyl group.</p>
</div>
<div class="specification">
<p class="p1">The mechanism in <em>reaction 2 </em>is described as S<sub><span class="s1">N</span></sub>2.</p>
</div>
<div class="specification">
<p class="p1">Propan-1-ol has two structural isomers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The alkane contains 81.7% by mass of carbon. Determine its empirical formula, showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Equal volumes of carbon dioxide and the unknown alkane are found to have the same mass, measured to an accuracy of two significant figures, at the same temperature and pressure. Deduce the molecular formula of the alkane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the reagent and conditions needed for <em>reaction 1</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the reagent(s) and conditions needed for <em>reaction 3</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>Reaction 1 </em>involves a free-radical mechanism. Describe the stepwise mechanism, by giving equations to represent the initiation, propagation and termination steps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the meaning of each of the symbols in S<sub><span class="s1">N</span></sub>2.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Explain the mechanism of this reaction using curly arrows to show the movement of electron pairs, and draw the structure of the transition state.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Deduce the structural formula of each isomer.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Identify the isomer from part (f) (i) which has the higher boiling point and explain your choice. Refer to both isomers in your explanation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following reactions.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_15.38.14.png" alt="N11/4/CHEMI/SP2/ENG/TZ0/07.b"></p>
</div>
<div class="specification">
<p class="p1">An important environmental consideration is the appropriate disposal of cleaning solvents. An environmental waste treatment company analysed a cleaning solvent, <strong>J</strong>, and found it to contain the elements carbon, hydrogen and chlorine only. The chemical composition of <strong>J </strong>was determined using different analytical chemistry techniques.</p>
<p class="p1"><em>Combustion Reaction:</em></p>
<p class="p1">Combustion of 1.30 g of <strong>J </strong>gave 0.872 g \({\text{C}}{{\text{O}}_{\text{2}}}\) and 0.089 g \({{\text{H}}_{\text{2}}}{\text{O}}\).</p>
<p class="p1"><em>Precipitation Reaction with AgNO</em><sub><span class="s1"><em>3</em></span></sub><em>(aq):</em></p>
<p class="p1">0.535 g of <strong>J </strong>gave 1.75 g AgCl precipitate.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One example of a homologous series is the alcohols. Describe <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The IUPAC name of <strong>X </strong>is 4-methylpentan-1-ol. State the IUPAC names of <strong>Y </strong>and <strong>Z</strong>.</p>
<p class="p1"><strong>Y</strong>:</p>
<p class="p1"><strong>Z</strong>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the reagents and reaction conditions used to convert <strong>X </strong>to <strong>Y </strong>and <strong>X </strong>to <strong>Z</strong>.</p>
<p class="p1"><strong>X </strong>to <strong>Y</strong>:</p>
<p class="p1"><strong>X </strong>to <strong>Z</strong>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>Z </strong>is an example of a weak acid. State what is meant by the term <em>weak acid</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss the volatility of <strong>Y </strong>compared to <strong>Z</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of carbon and hydrogen in <strong>J</strong>, using the combustion data.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of chlorine in <strong>J</strong>, using the precipitation data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The molar mass was determined to be \({\text{131.38 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Deduce the molecular formula of <strong>J</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium, another transition metal, has a number of different oxidation states.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of vanadium in each of the following species.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction between VO<sup>2+</sup>(aq) and V<sup>2+</sup>(aq) in acidic solution to form V<sup>3+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An acidic sample of a waste solution containing Sn<sup>2+</sup>(aq) reacted completely with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solution to form Sn<sup>4+</sup>(aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the oxidation half-equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the overall redox equation for the reaction between acidic Sn<sup>2+</sup>(aq) and Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup>(aq), using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage uncertainty for the mass of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(s) from the given data.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sample of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(s) in (i) was dissolved in distilled water to form 0.100 dm<sup>3 </sup>solution. Calculate its molar concentration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>10.0 cm<sup>3</sup> of the waste sample required 13.24 cm<sup>3</sup> of the K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solution. Calculate the molar concentration of Sn<sup>2+</sup>(aq) in the waste sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An organic compound, <strong>X</strong>, with a molar mass of approximately \({\text{88 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) contains 54.5% carbon, 36.3% oxygen and 9.2% hydrogen by mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Distinguish between the terms <em>empirical formula </em>and <em>molecular formula</em>.</p>
<p class="p1">Empirical formula:</p>
<p class="p1">Molecular formula:</p>
<p class="p1">(ii) Determine the empirical formula of <strong>X</strong>.</p>
<p class="p1">(iii) Determine the molecular formula of <strong>X</strong>.</p>
<p class="p1">(iv) <strong>X </strong>is a straight-chain carboxylic acid. Draw its structural formula.</p>
<p class="p1">(v) Draw the structural formula of an isomer of <strong>X </strong>which is an ester.</p>
<p class="p1">(vi) The carboxylic acid contains two different carbon-oxygen bonds. Identify which bond is stronger and which bond is longer.</p>
<p class="p1">Stronger bond:</p>
<p class="p1">Longer bond:</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State and explain which of propan-1-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), and methoxyethane, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{OC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\), is more volatile.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Propan-1-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), and hexan-l-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{4}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), are both alcohols. State and explain which compound is more soluble in water.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Graphite is used as a lubricant and is an electrical conductor. Diamond is hard and does not conduct electricity. Explain these statements in terms of the structure and bonding of these allotropes of carbon.</p>
<p class="p1">Graphite:</p>
<p class="p1">Diamond:</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img src="images/Schermafbeelding_2018-08-09_om_13.51.02.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-09_om_13.52.37.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/01.b_02"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p> KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p> 2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) \( \rightleftharpoons \) (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) Δ<em>H </em>< 0</p>
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch <strong>two </strong>different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img src="images/Schermafbeelding_2018-08-09_om_14.15.23.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/01.g_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img src="images/Schermafbeelding_2018-08-09_om_14.21.30.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/01.h_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>There are many oxides of silver with the formula Ag<sub>x</sub>O<sub>y</sub>. All of them decompose into their elements when heated strongly.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After heating 3.760 g of a silver oxide 3.275 g of silver remained. Determine the empirical formula of Ag<sub>x</sub>O<sub>y</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the final mass of solid obtained by heating 3.760 g of Ag<sub>x</sub>O<sub>y</sub> may be greater than 3.275 g giving one design improvement for your proposed suggestion. Ignore any possible errors in the weighing procedure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Naturally occurring silver is composed of two stable isotopes, <sup>107</sup>Ag and <sup>109</sup>Ag.</p>
<p>The relative atomic mass of silver is 107.87. Show that isotope <sup>107</sup>Ag is more abundant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some oxides of period 3, such as Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>, react with water. A spatula measure of each oxide was added to a separate 100 cm<sup>3</sup> flask containing distilled water and a few drops of bromothymol blue indicator.</p>
<p>The indicator is listed in section 22 of the data booklet.</p>
<p>Deduce the colour of the resulting solution and the chemical formula of the product formed after reaction with water for each oxide.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electrical conductivity of molten Na<sub>2</sub>O and P<sub>4</sub>O<sub>10</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the model of electron configuration deduced from the hydrogen line emission spectrum (Bohr’s model).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Brass is a copper containing alloy with many uses. An analysis is carried out to determine the percentage of copper present in three identical samples of brass. The reactions involved in this analysis are shown below.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Step 1: Cu(s)}} + {\text{2HN}}{{\text{O}}_3}{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}} + {\text{2N}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}} \\ {{\text{Step 2: 4}}{{\text{I}}^ - }{\text{(aq)}} + {\text{2C}}{{\text{u}}^{2 + }}{\text{(aq)}} \to {\text{2CuI(s)}} + {{\text{I}}_2}{\text{(aq)}}} \\ {{\text{Step 3: }}{{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} \to {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}}} \end{array}\]</p>
</div>
<div class="question">
<p class="p1">(a) (i) Deduce the change in the oxidation numbers of copper and nitrogen in step 1.</p>
<p class="p1">Copper:</p>
<p class="p1">Nitrogen:</p>
<p class="p1">(ii) Identify the oxidizing agent in step 1.</p>
<p class="p1">(b) A student carried out this experiment three times, with three identical small brass nails, and obtained the following results.</p>
<p class="p1">\[{\text{Mass of brass}} = 0.456{\text{ g}} \pm 0.001{\text{ g}}\]</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-07_om_10.02.04.png" alt="M10/4/CHEMI/SP2/ENG/TZ1/01.b"></p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the average amount, in mol, of \({{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }\) added in step 3.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Calculate the amount, in mol, of copper present in the brass.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Calculate the mass of copper in the brass.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Calculate the percentage by mass of copper in the brass.</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>The manufacturers claim that the sample of brass contains 44.2% copper by mass. Determine the percentage error in the result.</p>
<p class="p1">(c) <span class="Apple-converted-space"> </span>With reference to its metallic structure, describe how brass conducts electricity.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Biodiesel makes use of plants’ ability to fix atmospheric carbon by photosynthesis. Many companies and individuals are now using biodiesel as a fuel in order to reduce their carbon footprint. Biodiesel can be synthesized from vegetable oil according to the following reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-16_om_07.10.38.png" alt="M09/4/CHEMI/SP2/ENG/TZ1/01"></p>
</div>
<div class="specification">
<p class="p1">The reversible arrows in the equation indicate that the production of biodiesel is an equilibrium process.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the organic functional group present in both vegetable oil and biodiesel.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For part of her extended essay investigation into the efficiency of the process, a student reacted a pure sample of a vegetable oil (where \({\text{R}} = {{\text{C}}_{{\text{17}}}}{{\text{H}}_{{\text{33}}}}\)) with methanol. The raw data recorded for the reaction is below.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{Mass of oil}}}&{ = 1013.0{\text{ g}}} \\ {{\text{Mass of methanol}}}&{ = 200.0{\text{ g}}} \\ {{\text{Mass of sodium hydroxide}}}&{ = 3.5{\text{ g}}} \\ {{\text{Mass of biodiesel produced}}}&{ = 811.0{\text{ g}}} \end{array}\]</p>
<p class="p1">The relative molecular mass of the oil used by the student is 885.6. Calculate the amount (in moles) of the oil and the methanol used, and hence the amount (in moles) of excess methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the term <em>dynamic equilibrium</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the abbreviations [vegetable oil], [methanol], [glycerol] and [biodiesel] deduce the equilibrium constant expression \({\text{(}}{K_{\text{c}}}{\text{)}}\) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest a reason why excess methanol is used in this process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the effect that the addition of the sodium hydroxide catalyst will have on the position of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reactants had to be stirred vigorously because they formed two distinct layers in the reaction vessel. Explain why they form two distinct layers and why stirring increases the rate of reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the percentage yield of biodiesel obtained in this process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A student decided to determine the molecular mass of a solid monoprotic acid, HA, by titrating a solution of a known mass of the acid.</p>
<p class="p2">The following recordings were made.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_15.26.17.png" alt="M13/4/CHEMI/SP2/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the mass of the acid and determine its absolute and percentage uncertainty.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">This known mass of acid, HA, was then dissolved in distilled water to form a \({\text{100.0 c}}{{\text{m}}^{\text{3}}}\) solution in a volumetric flask. A \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) sample of this solution reacted with \({\text{12.1 c}}{{\text{m}}^{\text{3}}}\) of a \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) NaOH solution. Calculate the molar mass of the acid.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The percentage composition of HA is 70.56% carbon, 23.50% oxygen and 5.94% hydrogen. Determine its empirical formula.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A solution of HA is a weak acid. Distinguish between a <em>weak acid </em>and a <em>strong acid</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe an experiment, other than measuring the pH, to distinguish HA from a strong acid of the same concentration and describe what would be observed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the relative atomic mass of argon is greater than the relative atomic mass of potassium, even though the atomic number of potassium is greater than the atomic number of argon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the numbers of protons and electrons in the \({{\text{K}}^ + }\) ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined<br>by titration with a standard solution of sodium hydroxide, NaOH (aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a weak acid and a strong acid.</p>
<p style="padding-left: 30px;">Weak acid:</p>
<p style="padding-left: 30px;">Strong acid:</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is more convenient to express acidity using the pH scale instead of using the concentration of hydrogen ions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)<sub>2</sub>•2H<sub>2</sub>O, was dissolved in water to make 1.00 dm<sup>3</sup> of solution. 25.0 cm<sup>3</sup> samples of this solution were titrated against a 0.100 mol dm<sup>-3</sup> solution of sodium hydroxide using a suitable indicator.</p>
<p style="text-align: center;">(COOH)<sub>2</sub> (aq) + 2NaOH (aq) → (COONa)<sub>2</sub> (aq) + 2H<sub>2</sub>O (l)</p>
<p>The mean value of the titre was 14.0 cm<sup>3</sup>.</p>
<p>(i) Calculate the amount, in mol, of NaOH in 14.0 cm<sup>3</sup> of 0.100 mol dm<sup>-3</sup> solution.</p>
<p>(ii) Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm<sup>3</sup> sample.</p>
<p>(iii) Determine the percentage purity of the hydrated ethanedioic acid sample.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Lewis (electron dot) structure of the ethanedioate ion is shown below.</p>
<p><img src="" alt></p>
<p>Outline why all the C–O bond lengths in the ethanedioate ion are the same length and suggest a value for them. Use section 10 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Iron tablets are often prescribed to patients. The iron in the tablets is commonly present as iron(II) sulfate, \({\text{FeS}}{{\text{O}}_{\text{4}}}\).</p>
<p class="p1">Two students carried out an experiment to determine the percentage by mass of iron in a brand of tablets marketed in Cyprus.</p>
<p class="p1"><em>Experimental Procedure</em>:</p>
<p class="p1">• <span class="Apple-converted-space"> </span>The students took five iron tablets and found that the <strong>total mass </strong>was 1.65 g.</p>
<p class="p1">• <span class="Apple-converted-space"> </span>The five tablets were ground and dissolved in \({\text{100 c}}{{\text{m}}^{\text{3}}}\) dilute sulfuric acid, \({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\). The solution and washings were transferred to a \({\text{250 c}}{{\text{m}}^{\text{3}}}\) volumetric flask and made up to the mark with deionized (distilled) water.</p>
<p class="p1">• <span class="Apple-converted-space"> </span>\({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of this \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) solution was transferred using a pipette into a conical flask. Some dilute sulfuric acid was added.</p>
<p class="p1">• <span class="Apple-converted-space"> </span>A titration was then carried out using a \(5.00 \times {10^{ - 3}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) standard solution of potassium permanganate, \({\text{KMn}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\). The end-point of the titration was indicated by a slight pink colour.</p>
<p class="p1">The following results were recorded.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_08.33.09.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/01"></p>
</div>
<div class="specification">
<p class="p1">This experiment involves the following redox reaction.</p>
<p class="p1">\[{\text{5F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{MnO}}_4^ - {\text{(aq)}} + {\text{8}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{5F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {\text{M}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{4}}{{\text{H}}_2}{\text{O(l)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When the \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) solution was made up in the \({\text{250 c}}{{\text{m}}^{\text{3}}}\) volumetric flask, deionized (distilled) water was added until the bottom of its meniscus corresponded to the graduation mark on the flask. It was noticed that one of the two students measured the volume of the solution from the top of the meniscus instead of from the bottom. State the name of this type of error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the term <em>precision</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When the students recorded the burette readings, following the titration with KMnO<sub><span class="s1">4 </span></sub>(aq),the top of the meniscus was used and not the bottom. Suggest why the students read the top of the meniscus and not the bottom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>reduction </em>in terms of electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of manganese in the \({\text{MnO}}_{\text{4}}^ - {\text{(aq)}}\) ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the amount, in mol, of \({\text{MnO}}_{\text{4}}^ - {\text{(aq)}}\), used in each accurate titre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) ions in \({\text{250 c}}{{\text{m}}^{\text{3}}}\) of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the total mass of iron, in g, in the \({\text{250 c}}{{\text{m}}^{\text{3}}}\) solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of iron in the tablets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One titration was abandoned because a brown precipitate, manganese(IV) oxide, formed. State the chemical formula of this compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Reaction kinetics can be investigated using the iodine clock reaction. The equations for two reactions that occur are given below.</p>
<p class="p1"><span class="Apple-converted-space"> </span>Reaction A: \({{\text{H}}_2}{{\text{O}}_2}{\text{(aq)}} + {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1"><span class="Apple-converted-space"> </span>Reaction B: \({{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} \to {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}}\)</p>
<p class="p1">Reaction B is much faster than reaction A, so the iodine, \({{\text{I}}_{\text{2}}}\), formed in reaction A immediately reacts with thiosulfate ions, \({{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }\), in reaction B, before it can react with starch to form the familiar blue-black, starch-iodine complex.</p>
<p class="p1">In one experiment the reaction mixture contained:</p>
<p class="p1">\(5.0 \pm 0.1{\text{ c}}{{\text{m}}^{\text{3}}}\) of \({\text{2.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrogen peroxide \({\text{(}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{)}}\)</p>
<p class="p1">\(5.0 \pm 0.1{\text{ c}}{{\text{m}}^{\text{3}}}\) of 1% aqueous starch</p>
<p class="p1">\(20.0 \pm 0.1{\text{ c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid (\({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\))</p>
<p class="p1">\(20.0 \pm 0.1{\text{ c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.0100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium thiosulfate (\({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}\))</p>
<p class="p1">\(50.0 \pm 0.1{\text{ c}}{{\text{m}}^{\text{3}}}\) of water with 0.0200 ± 0.0001 g of potassium iodide (KI) dissolved in it.</p>
<p class="p1">After 45 seconds this mixture suddenly changed from colourless to blue-black.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of KI in the reaction mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of \({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\) in the reaction mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The concentration of iodide ions, \({{\text{I}}^ - }\), is assumed to be constant. Outline why this is a valid assumption.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For this mixture the concentration of hydrogen peroxide, \({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\), can also be assumed to be constant. Explain why this is a valid assumption.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the solution suddenly changes colour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apart from the precision uncertainties given, state <strong>one </strong>source of error that could affect this investigation and identify whether this is a random error or a systematic error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the total uncertainty, in \({\text{c}}{{\text{m}}^{\text{3}}}\), of the volume of the reaction mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The colour change occurs when \(1.00 \times {10^{ - 4}}{\text{ mol}}\) of iodine has been formed. Use the total volume of the solution and the time taken, to calculate the rate of the reaction, including appropriate units.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In a second experiment, the concentration of the hydrogen peroxide was decreased to \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) while all other concentrations and volumes remained unchanged. The colour change now occurred after 100 seconds. Explain why the reaction in this experiment is slower than in the original experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In a third experiment, 0.100 g of a black powder was also added while all other concentrations and volumes remained unchanged. The time taken for the solution to change colour was now 20 seconds. Outline why you think the colour change occurred more rapidly and how you could confirm your hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why increasing the temperature also decreases the time required for the colour to change.</p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>The open-chain structure of D-fructose is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_06.44.40.png" alt="N14/4/CHEMI/SP2/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of <strong>two</strong> functional groups in D-fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the empirical formula of D-fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage composition by mass of D-fructose.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the complete combustion of D-fructose.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A student added \(7.40 \times {10^{ - 2}}{\text{ g}}\) of magnesium ribbon to \({\text{15.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{2.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid. The hydrogen gas produced was collected using a gas syringe at 20.0 °C and \(1.01 \times {10^5}{\text{ Pa}}\).</p>
</div>
<div class="specification">
<p class="p1">Calculate the theoretical yield of hydrogen gas:</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction between magnesium and hydrochloric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the limiting reactant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) in mol.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>in \({\text{c}}{{\text{m}}^{\text{3}}}\), under the stated conditions of temperature and pressure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The actual volume of hydrogen measured was lower than the calculated theoretical volume.</p>
<p class="p1">Suggest <strong>two </strong>reasons why the volume of hydrogen gas obtained was less.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Airbags are an important safety feature in vehicles. Sodium azide, potassium nitrate and silicon dioxide have been used in one design of airbag.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_14.35.39.png" alt="N11/4/CHEMI/SP2/ENG/TZ0/01"></p>
<p class="p1">Sodium azide, a toxic compound, undergoes the following decomposition reaction under certain conditions.</p>
<p class="p1">\[{\text{2Na}}{{\text{N}}_{\text{3}}}{\text{(s)}} \to {\text{2Na(s)}} + {\text{3}}{{\text{N}}_{\text{2}}}{\text{(g)}}\]</p>
<p class="p1">Two students looked at data in a simulated computer-based experiment to determine the volume of nitrogen generated in an airbag.</p>
</div>
<div class="specification">
<p class="p1">Using the simulation programme, the students entered the following data into the computer.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_15.10.05.png" alt="N11/4/CHEMI/SP2/ENG/TZ0/01.b"></p>
</div>
<div class="specification">
<p class="p1">The chemistry of the airbag was found to involve three reactions. The first reaction involves the decomposition of sodium azide to form sodium and nitrogen. In the second reaction, potassium nitrate reacts with sodium.</p>
<p class="p1">\[{\text{2KN}}{{\text{O}}_3}{\text{(s)}} + {\text{10Na(s)}} \to {{\text{K}}_2}{\text{O(s)}} + {\text{5N}}{{\text{a}}_2}{\text{O(s)}} + {{\text{N}}_2}{\text{(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">An airbag inflates very quickly.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sodium azide involves ionic bonding, and metallic bonding is present in sodium. Describe ionic and metallic bonding.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the number of significant figures for the temperature, mass and pressure data.</p>
<p class="p1"><em>T</em>:</p>
<p class="p1"><em>m</em>:</p>
<p class="p1"><em>p</em>:</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of sodium azide present.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the volume of nitrogen gas, in \({\text{d}}{{\text{m}}^{\text{3}}}\), produced under these conditions based on this reaction.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why it is necessary for sodium to be removed by this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The metal oxides from the second reaction then react with silicon dioxide to form a silicate in the third reaction.</p>
<p class="p1">\[{{\text{K}}_2}{\text{O(s)}} + {\text{N}}{{\text{a}}_2}{\text{O(s)}} + {\text{Si}}{{\text{O}}_2}{\text{(s)}} \to {\text{N}}{{\text{a}}_2}{{\text{K}}_2}{\text{Si}}{{\text{O}}_4}{\text{(s)}}\]</p>
<p class="p1">Draw the structure of silicon dioxide and state the type of bonding present.</p>
<p class="p1">Structure:</p>
<p class="p1">Bonding:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It takes just 0.0400 seconds to produce nitrogen gas in the simulation. Calculate the average rate of formation of nitrogen in (b) (iii) and state its units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The students also discovered that a small increase in temperature (<em>e.g. </em>10 °C) causes a large increase (<em>e.g. </em>doubling) in the rate of this reaction. State <strong>one </strong>reason for this.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The percentage by mass of calcium carbonate in eggshell was determined by adding excess hydrochloric acid to ensure that all the calcium carbonate had reacted. The excess acid left was then titrated with aqueous sodium hydroxide.</p>
</div>
<div class="question">
<p class="p1">(a) <span class="Apple-converted-space"> </span>A student added \({\text{27.20 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl to 0.188 g of eggshell. Calculate the amount, in mol, of HCl added.</p>
<p class="p1">(b) <span class="Apple-converted-space"> </span>The excess acid requires \({\text{23.80 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) NaOH for neutralization. Calculate the amount, in mol, of acid that is in excess.</p>
<p class="p1">(c) <span class="Apple-converted-space"> </span>Determine the amount, in mol, of HCl that reacted with the calcium carbonate in the eggshell.</p>
<p class="p1">(d) <span class="Apple-converted-space"> </span>State the equation for the reaction of HCl with the calcium carbonate in the eggshell.</p>
<p class="p1">(e) <span class="Apple-converted-space"> </span>Determine the amount, in mol, of calcium carbonate in the sample of the eggshell.</p>
<p class="p1">(f) <span class="Apple-converted-space"> </span>Calculate the mass <strong>and </strong>the percentage by mass of calcium carbonate in the eggshell sample.</p>
<p class="p1">(g) <span class="Apple-converted-space"> </span>Deduce <strong>one </strong>assumption made in arriving at the percentage of calcium carbonate in the eggshell sample.</p>
</div>
<br><hr><br><div class="specification">
<p>Menthol is an organic compound containing carbon, hydrogen and oxygen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete combustion of 0.1595 g of menthol produces 0.4490 g of carbon dioxide and 0.1840 g of water. Determine the empirical formula of the compound showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.150 g sample of menthol, when vaporized, had a volume of 0.0337 dm<sup>3</sup> at 150 °C and 100.2 kPa. Calculate its molar mass showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>\({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ethanoic acid were added to \({\text{30.0 c}}{{\text{m}}^{\text{3}}}\) of a \({\text{0.150 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydrogencarbonate solution, \({\text{NaHC}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\).</p>
</div>
<div class="specification">
<p>The molar mass of a volatile organic liquid, <strong>X</strong>, can be determined experimentally by allowing it to vaporize completely at a controlled temperature and pressure. 0.348 g of <strong>X</strong> was injected into a gas syringe maintained at a temperature of 90 °C and a pressure of \(1.01 \times {10^5}{\text{ Pa}}\). Once it had reached equilibrium, the gas volume was measured as \({\text{95.0 c}}{{\text{m}}^{\text{3}}}\).</p>
</div>
<div class="specification">
<p>Bromoethane, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Br}}\), undergoes a substitution reaction to form ethanol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how electrical conductivity can be used to distinguish between a \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of ethanoic acid, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\), and a \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of hydrochloric acid, HCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State an equation for the reaction of ethanoic acid with a solution of sodium hydrogencarbonate.</p>
<p> </p>
<p> </p>
<p>(ii) Determine which is the limiting reagent. Show your working.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) Calculate the mass, in g, of carbon dioxide produced.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine the amount, in mol, of <strong>X </strong>in the gas syringe.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Calculate the molar mass of <strong>X</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Identify the reagent necessary for this reaction to occur.</p>
<p> </p>
<p>(ii) Deduce the mechanism for the reaction using equations and curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, in kJ mol\(^{ - 1}\), for this reaction, using Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromoethene, \({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHBr}}\), can undergo polymerization. Draw a section of this polymer that contains six carbon atoms.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of magnesium contains three isotopes: magnesium-24, magnesium-25 and magnesium-26, with abundances of 77.44%, 10.00% and 12.56% respectively.</p>
</div>
<div class="specification">
<p>Phosphorus(V) oxide, \({{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}{\text{ }}({M_{\text{r}}} = 283.88)\), reacts vigorously with water \(({M_{\text{r}}} = 18.02)\), according to the equation below.</p>
<p>\[{{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}{\text{(s)}} + {\text{6}}{{\text{H}}_{\text{2}}}{\text{O(l)}} \to {\text{4}}{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the relative atomic mass of this sample of magnesium correct to <strong>two</strong> decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the relative atomic radii of the three magnesium isotopes, giving your reasons.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in magnesium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the reaction of magnesium oxide with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student added 5.00 g of \({{\text{P}}_{\text{4}}}{{\text{O}}_{{\text{10}}}}\) to 1.50 g of water. Determine the limiting reactant, showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of phosphoric(V) acid, \({{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}\), formed in the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the reaction of aqueous \({{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}\) with excess aqueous sodium hydroxide, including state symbols.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the formula of the conjugate base of \({{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Deduce the Lewis structure of \({\text{PH}}_4^ + \).</p>
<p> </p>
<p>(ii) Predict, giving a reason, the bond angle around the phosphorus atom in \({\text{PH}}_4^ + \).</p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) Predict whether or not the P–H bond is polar, giving a reason for your choice.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanol is used as a component in fuel for some vehicles. One fuel mixture contains 10% by mass of ethanol in unleaded petrol (gasoline). This mixture is often referred to as Gasohol E10.</p>
</div>
<div class="specification">
<p class="p1">Assume that the other 90% by mass of Gasohol E10 is octane. 1.00 kg of this fuel mixture was burned.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{OH(l)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{3}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 1367{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{C}}_8}{{\text{H}}_{18}}{\text{(l)}} + {\text{12}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{8C}}{{\text{O}}_2}{\text{(g)}} + {\text{9}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 5470{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the mass, in g, of ethanol and octane in 1.00 kg of the fuel mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of ethanol and octane in 1.00 kg of the fuel mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the total amount of energy, in kJ, released when 1.00 kg of the fuel mixture is completely burned.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the fuel blend was vaporized before combustion, predict whether the amount of energy released would be greater, less or the same. Explain your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The Haber process enables the large-scale production of ammonia needed to make fertilizers.</p>
</div>
<div class="specification">
<p class="p1">The equation for the Haber process is given below.</p>
<p class="p2">\[{{\text{N}}_2}({\text{g)}} + 3{{\text{H}}_2}({\text{g)}} \rightleftharpoons {\text{2N}}{{\text{H}}_3}({\text{g)}}\]</p>
<p class="p1">The percentage of ammonia in the equilibrium mixture varies with temperature.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-30_om_06.30.09.png" alt="N10/4/CHEMI/SP2/ENG/TZ0/06.a"></p>
</div>
<div class="specification">
<p class="p1">Fertilizers may cause health problems for babies because nitrates can change into nitrites in water used for drinking.</p>
</div>
<div class="specification">
<p class="p1">A student decided to investigate the reactions of the two acids with separate samples of \({\text{0.20 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Use the graph to deduce whether the forward reaction is exothermic or endothermic and explain your choice.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State and explain the effect of increasing the pressure on the yield of ammonia.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Explain the effect of increasing the temperature on the rate of reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Define <em>oxidation </em>in terms of oxidation numbers.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Deduce the oxidation states of nitrogen in the nitrate, \({\text{NO}}_{\text{3}}^ - \), and nitrite, \({\text{NO}}_{\text{2}}^ - \), ions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The nitrite ion is present in nitrous acid, HNO<sub><span class="s1">2</span></sub>, which is a weak acid. The nitrate ion is present in nitric acid, HNO<sub><span class="s1">3</span></sub>, which is a strong acid. Distinguish between the terms <em>strong </em>and <em>weak acid </em>and state the equations used to show the dissociation of each acid in aqueous solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A small piece of magnesium ribbon is added to solutions of nitric and nitrous acid of the same concentration at the same temperature. Describe <strong>two </strong>observations that would allow you to distinguish between the two acids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the volume of the sodium hydroxide solution required to react exactly with a \({\text{15.0 c}}{{\text{m}}^{\text{3}}}\) solution of \({\text{0.10 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) nitric acid.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>The following hypothesis was suggested by the student: “Since nitrous acid is a weak acid it will react with a smaller volume of the \({\text{0.20 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution.” Comment on whether or not this is a valid hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph below shows how the conductivity of the two acids changes with concentration.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-30_om_08.07.40.png" alt="N10/4/CHEMI/SP2/ENG/TZ0/06.f"></p>
<p class="p1">Identify <strong>Acid 1 </strong>and explain your choice.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Nitric acid reacts with silver in a redox reaction.</p>
<p class="p2" style="text-align: center;">__ \({\text{Ag(s)}} + \) __ \({\text{NO}}_3^ - {\text{(aq)}} + \) ___ \( \to \) ___\({\text{A}}{{\text{g}}^ + }{\text{(aq)}} + \) __ \({\text{NO(g)}} + \) ____</p>
<p class="p1">Using oxidation numbers, deduce the complete balanced equation for the reaction showing all the reactants and products.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The data below is from an experiment used to determine the percentage of iron present in a sample of iron ore. This sample was dissolved in acid and all of the iron was converted to \({\text{F}}{{\text{e}}^{{\text{2 + }}}}\). The resulting solution was titrated with a standard solution of potassium manganate(VII), \({\text{KMn}}{{\text{O}}_{\text{4}}}\). This procedure was carried out three times. In acidic solution, \({\text{MnO}}_4^ - \) reacts with \({\text{F}}{{\text{e}}^{2 + }}\) ions to form \({\text{M}}{{\text{n}}^{2 + }}\) and \({\text{F}}{{\text{e}}^{3 + }}\) and the end point is indicated by a slight pink colour.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-04_om_09.33.47.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/01_1"></p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-04_om_09.35.22.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/01_2"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the balanced redox equation for this reaction in <strong>acidic </strong>solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the reducing agent in the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in moles, of \({\text{MnO}}_4^ - \) used in the titration.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in moles, of Fe present in the \(3.682 \times {10^{ - 1}}{\text{ g}}\) sample of iron ore.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of Fe present in the \(3.682 \times {10^{ - 1}}{\text{ g}}\) sample of iron ore.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alkenes, alcohols and esters are three families of organic compounds with many commercial uses.</p>
</div>
<div class="specification">
<p class="p1">Esters are often used in perfumes. Analysis of a compound containing the ester functional group only, gives a percentage composition by mass of C: 62.0% and H: 10.4%.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the meaning of the term <em>structural isomers</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>X </strong>is an isomer of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">8 </span></sub>and has the structural formula shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_13.10.03.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/06.a.iii"></p>
<p class="p1">Apply IUPAC rules to name this isomer. Deduce the structural formulas of <strong>two</strong> other isomers of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">8</span></sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced chemical equation for the reaction of <strong>X </strong>with HBr to form <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>Y </strong>reacts with aqueous sodium hydroxide, NaOH(aq), to form an alcohol, <strong>Z</strong>. Identify whether <strong>Z </strong>is a primary, secondary or tertiary alcohol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain <strong>one </strong>suitable mechanism for the reaction in (v) using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the structural formula of the organic product formed when <strong>Z </strong>is oxidized by heating under reflux with acidified potassium dichromate(VI) <strong>and </strong>state the name of the functional group of this organic product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the ester functional group.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the empirical formula of the ester, showing your working.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The molar mass of the ester is \({\text{116.18 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Determine its molecular formula.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aspirin, one of the most widely used drugs in the world, can be prepared according to the equation given below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_08.15.13.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01"></p>
</div>
<div class="specification">
<p class="p1">A student reacted some salicylic acid with excess ethanoic anhydride. Impure solid aspirin was obtained by filtering the reaction mixture. Pure aspirin was obtained by recrystallization. The following table shows the data recorded by the student.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_08.18.46.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the names of the <strong>three </strong>organic functional groups in aspirin.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the amount, in mol, of salicylic acid, \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{(OH)COOH}}\), used.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the theoretical yield, in g, of aspirin, \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{(OCOC}}{{\text{H}}_{\text{3}}}{\text{)COOH}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage yield of pure aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the number of significant figures associated with the mass of pure aspirin obtained, and calculate the percentage uncertainty associated with this mass.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another student repeated the experiment and obtained an experimental yield of 150%. The teacher checked the calculations and found no errors. Comment on the result.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The following is a three-dimensional computer-generated representation of aspirin.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_09.08.18.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b.vi_1"></p>
<p class="p1">A third student measured selected bond lengths in aspirin, using this computer program and reported the following data.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_09.09.34.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b.vi_2"></p>
<p class="p1">The following hypothesis was suggested by the student: “<em>Since all the measured </em><em>carbon-carbon bond lengths are equal, all the carbon-oxygen bond lengths must </em><em>also be equal in aspirin. Therefore, the C8–O4 bond length must be 1.4 </em>\( \times \)<em> 10</em><sup><span class="s1"><em>–10 </em></span></sup><em>m</em>”. Comment on whether or not this is a valid hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The other product of the reaction is ethanoic acid, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\). Define an acid according to the Brønsted-Lowry theory and state the conjugate base of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\).</p>
<p class="p1">Brønsted-Lowry definition of an acid:</p>
<p class="p1">Conjugate base of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.vii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the nuclear symbol notation, \({}_Z^AX\), for magnesium-26.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectroscopic analysis of a sample of magnesium gave the following results:</p>
<p><img src="" alt></p>
<p>Calculate the relative atomic mass, <em>A</em><sub>r</sub>, of this sample of magnesium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium burns in air to form a white compound, magnesium oxide. Formulate an equation for the reaction of magnesium oxide with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the trend in acid-base properties of the oxides of period 3, sodium to chlorine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In addition to magnesium oxide, magnesium forms another compound when burned in air. Suggest the formula of this compound</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the structure and bonding in solid magnesium oxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922 K and 987 K respectively.</p>
<p style="padding-left: 30px;">Anode (positive electrode):</p>
<p style="padding-left: 30px;">Cathode (negative electrode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a Lewis (electron dot) structure of phosphine.</p>
<p>(ii) Outline whether you expect the bonds in phosphine to be polar or non-polar, giving a brief reason.</p>
<p>(iii) Explain why the phosphine molecule is not planar.</p>
<p>(iv) Phosphine has a much greater molar mass than ammonia. Explain why phosphine has a significantly lower boiling point than ammonia.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide. The equation for the reaction is:</p>
<p style="text-align: center;">P4 (s) + 3OH<sup>−</sup> (aq) + 3H<sub>2</sub>O (l) → PH<sub>3</sub> (g) + 3H<sub>2</sub>PO<sub>2</sub><sup>−</sup> (aq)</p>
<p>(i) Identify one other element that has allotropes and list <strong>two</strong> of its allotropes.</p>
<p>Element:</p>
<p>Allotrope 1:</p>
<p>Allotrope 2:</p>
<p>(ii) The first reagent is written as P<sub>4</sub>, not 4P. Describe the difference between P<sub>4</sub> and 4P.</p>
<p>(iii) The ion H<sub>2</sub>PO<sub>2</sub><sup>−</sup> is amphiprotic. Outline what is meant by amphiprotic, giving the formulas of both species it is converted to when it behaves in this manner.</p>
<p>(iv) State the oxidation state of phosphorus in P<sub>4</sub> and H<sub>2</sub>PO<sub>2</sub><sup>−</sup>.</p>
<p>P<sub>4</sub>:</p>
<p>H<sub>2</sub>PO<sub>2</sub><sup>−</sup>:</p>
<p>(v) Oxidation is now defined in terms of change of oxidation number. Explore how earlier definitions of oxidation and reduction may have led to conflicting answers for the conversion of P<sub>4</sub> to H<sub>2</sub>PO<sub>2</sub><sup>−</sup> and the way in which the use of oxidation numbers has resolved this.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.478 g of white phosphorus was used to make phosphine according to the equation:</p>
<p style="text-align: center;">P<sub>4</sub>(s) +3OH<sup>−</sup>(aq)+3H<sub>2</sub>O(l) → PH<sub>3</sub>(g)+3H<sub>2</sub>PO<sub>2</sub><sup>−</sup>(aq)</p>
<p>(i) Calculate the amount, in mol, of white phosphorus used.</p>
<p>(ii) This phosphorus was reacted with 100.0 cm<sup>3</sup> of 5.00 mol dm<sup>−3</sup> aqueous sodium hydroxide. Deduce, showing your working, which was the limiting reagent.</p>
<p>(iii) Determine the excess amount, in mol, of the other reagent.</p>
<p>(iv) Determine the volume of phosphine, measured in cm<sup>3</sup> at standard temperature and pressure, that was produced.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The boiling points of the isomers of pentane, \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\), shown are 10, 28 and 36 °C, but not necessarily in that order.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-04_om_09.39.27.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/04.a"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the boiling points for each of the isomers <strong>A</strong>, <strong>B </strong>and <strong>C </strong>and state a reason for your answer.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-05_om_15.50.19.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/04.a.i"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the IUPAC names of isomers <strong>B </strong>and <strong>C</strong>.</p>
<p class="p1"><strong>B</strong>:</p>
<p class="p1"><strong>C</strong>:</p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Both \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\) and \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{11}}}}{\text{OH}}\) can be used as fuels. Predict which compound would release a greater amount of heat per gram when it undergoes complete combustion. Suggest <strong>two</strong> reasons to support your prediction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In many cities around the world, public transport vehicles use diesel, a liquid hydrocarbon fuel, which often contains sulfur impurities and undergoes incomplete combustion. All public transport vehicles in New Delhi, India, have been converted to use compressed natural gas (CNG) as fuel. Suggest <strong>two </strong>ways in which this improves air quality, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">If white anhydrous copper(II) sulfate powder is left in the atmosphere it slowly absorbs water vapour giving the blue pentahydrated solid.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_04.56.53.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01_1"></p>
<p class="p1">It is difficult to measure the enthalpy change for this reaction directly. However, it is possible to measure the heat changes directly when both anhydrous and pentahydrated copper(II) sulfate are separately dissolved in water, and then use an energy cycle to determine the required enthalpy change value, <span class="s1">\(\Delta {H_{\text{x}}}\)</span>, indirectly.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_04.57.32.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01_2"></p>
</div>
<div class="specification">
<p class="p1">To determine \(\Delta {H_1}\) a student placed 50.0 g of water in a cup made of expanded polystyrene and used a data logger to measure the temperature. After two minutes she dissolved 3.99 g of anhydrous copper(II) sulfate in the water and continued to record the temperature while continuously stirring. She obtained the following results.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_05.00.06.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01.a"></p>
</div>
<div class="specification">
<p class="p1">To determine \(\Delta {H_2}\), 6.24 g of pentahydrated copper(II) sulfate was dissolved in 47.75 g of water. It was observed that the temperature of the solution decreased by 1.10 °C.</p>
</div>
<div class="specification">
<p class="p1">The magnitude (the value without the \( + \) or \( - \) sign) found in a data book for \(\Delta {H_{\text{x}}}\) is \({\text{78.0 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of anhydrous copper(II) sulfate dissolved in the 50.0 g of water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine what the temperature rise would have been, in °C, if no heat had been lost to the surroundings.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the heat change, in kJ, when 3.99 g of anhydrous copper(II) sulfate is dissolved in the water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of \(\Delta {H_1}{\text{ in kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of water in 6.24 g of pentahydrated copper(II) sulfate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of \(\Delta {H_2}\) in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the values obtained for \(\Delta {H_1}\) in (a) (iv) and \(\Delta {H_2}\) in (b) (ii), determine the value for \(\Delta {H_{\text{x}}}\) in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the percentage error obtained in this experiment. (If you did not obtain an answer for the experimental value of \(\Delta {H_{\text{x}}}\) then use the value \({\text{70.0 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), but this is <strong>not </strong>the true value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The student recorded in her qualitative data that the anhydrous copper(II) sulfate she used was pale blue rather than completely white. Suggest a reason why it might have had this pale blue colour and deduce how this would have affected the value she obtained for \(\Delta {H_{\text{x}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two groups of students (Group A and Group B) carried out a project* on the chemistry of some group 7 elements (the halogens) and their compounds.</p>
<p class="p1"> </p>
<p class="p1"><span class="s1"><em>* </em></span><em>Adapted from J Derek Woollins, (2009), Inorganic Experiments and Open University, (2008), Exploring the Molecular World.</em></p>
</div>
<div class="specification">
<p class="p1">In the first part of the project, the two groups had a sample of iodine monochloride (a corrosive brown liquid) prepared for them by their teacher using the following reaction.</p>
<p class="p1">\[{{\text{I}}_{\text{2}}}{\text{(s)}} + {\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{2ICl(l)}}\]</p>
<p class="p1">The following data were recorded.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_06.15.25.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/01.a"></p>
</div>
<div class="specification">
<p class="p1">The students reacted ICl(l) with CsBr(s) to form a yellow solid, \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), as one of the products. \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\) has been found to produce very pure CsCl(s) which is used in cancer treatment.</p>
<p class="p1">To confirm the composition of the yellow solid, Group A determined the amount of iodine in 0.2015 g of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\) by titrating it with \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\). The following data were recorded for the titration.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_06.22.04.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/01.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the number of significant figures for the masses of \({{\text{I}}_{\text{2}}}{\text{(s)}}\) and ICl(l).</p>
<p class="p2"> </p>
<p class="p1">\({{\text{I}}_{\text{2}}}{\text{(s)}}\):</p>
<p class="p2"> </p>
<p class="p1">ICl (l):</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>The iodine used in the reaction was in excess. Determine the theoretical yield, in g, of ICl(l).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Calculate the percentage yield of ICl(l).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Using a digital thermometer, the students discovered that the reaction was exothermic. State the sign of the enthalpy change of the reaction, \(\Delta H\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Although the molar masses of ICl and <span class="s1">\({\rm{B}}{{\rm{r}}_2}\) </span>are very similar, the boiling point of ICl is 97.4 °C and that of <span class="s1">\({\rm{B}}{{\rm{r}}_2}\) </span>is 58.8 °C. Explain the difference in these boiling points in terms of the intermolecular forces present in each liquid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the percentage of iodine by mass in \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), correct to <strong>three</strong> significant figures.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the volume, in \({\text{c}}{{\text{m}}^{\text{3}}}\), of \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\) used in the titration.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Determine the amount, in mol, of \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\) added in the titration.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>The overall reaction taking place during the titration is:</p>
<p class="p1">\[{\text{CsICl(s)}} + {\text{2N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}{\text{(aq)}} \to {\text{NaCl(aq)}} + {\text{N}}{{\text{a}}_2}{{\text{S}}_4}{{\text{O}}_6}{\text{(aq)}} + {\text{CsCl(aq)}} + {\text{NaI(aq)}}\]</p>
<p class="p1">Calculate the amount, in mol, of iodine atoms, I, present in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\).</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Calculate the mass of iodine, in g, present in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}\)</p>
<p class="p1">(vi) <span class="Apple-converted-space"> </span>Determine the percentage by mass of iodine in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), correct to <strong>three </strong>significant figures, using your answer from (v).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethene belongs to the homologous series of the alkenes.</p>
</div>
<div class="specification">
<p class="p1">A bromoalkane, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\), reacts with a warm, aqueous sodium hydroxide solution, NaOH.</p>
</div>
<div class="specification">
<p class="p1">The time taken to produce a certain amount of product using different initial concentrations of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) and NaOH is measured. The results are shown in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_16.46.57.png" alt="M13/4/CHEMI/SP2/ENG/TZ1/08.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>three </strong>features of a homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a test to distinguish ethene from ethane, including what is observed in <strong>each </strong>case.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromoethane can be produced either from ethene or from ethane. State an equation for <strong>each </strong>reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) with NaOH.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest what would happen to the pH of the solution as the reaction proceeds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the effect of the concentration of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) and NaOH on the rate of reaction.</p>
<p class="p2"> </p>
<p class="p1">C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">NaOH:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why <strong>warm </strong>sodium hydroxide solution is used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce whether C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br is a primary or tertiary halogenoalkane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the structural formula of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe, using an equation, how \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) can be converted into \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{\text{B}}{{\text{r}}_{\text{2}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the mechanism for the reaction in (c) of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) with NaOH, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium has three stable isotopes, \(^{{\text{24}}}{\text{Mg}}\), \(^{{\text{25}}}{\text{Mg}}\) and \(^{{\text{26}}}{\text{Mg}}\). The relative abundance of each isotope is 78.99%, 10.00% and 11.01% respectively, and can be determined using a mass spectrometer.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_12.07.33.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/02"></p>
</div>
<div class="question">
<p>(i) Define the term <em>relative atomic mass</em>.</p>
<p> </p>
<p> </p>
<p>(ii) Calculate, showing your working, the relative atomic mass, \({A_{\text{r}}}\), of magnesium, giving your answer to <strong>two</strong> decimal places.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Both sodium and sodium chloride can conduct electricity.</p>
<p class="p1" style="text-align: left;"> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare how electric current passes through sodium and sodium chloride by completing the table below.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-14_om_17.26.11.png" alt="M13/4/CHEMI/SP2/ENG/TZ1/03.a"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sodium can be obtained by electrolysis from molten sodium chloride. Describe, using a diagram, the essential components of this electrolytic cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Methanol is made in large quantities as it is used in the production of polymers and in fuels. The enthalpy of combustion of methanol can be determined theoretically or experimentally.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_3}{\text{OH(l)}} + {\text{1}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">The enthalpy of combustion of methanol can also be determined experimentally in a school laboratory. A burner containing methanol was weighed and used to heat water in a test tube as illustrated below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-25_om_06.34.49.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/01.b_1"></p>
<p class="p1">The following data were collected.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-25_om_06.36.09.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/01.b.2"></p>
</div>
<div class="specification">
<p class="p1">The Data Booklet value for the enthalpy of combustion of methanol is \( - {\text{726 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Suggest why this value differs from the values calculated in parts (a) and (b).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the information from Table 10 of the Data Booklet, determine the theoretical enthalpy of combustion of methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of methanol burned.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the heat absorbed, in kJ, by the water.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the combustion of 1 mole of methanol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Part (a)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Part (b)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph below shows pressure and volume data collected for a sample of carbon dioxide gas at 330 K.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_06.19.42.png" alt="N14/4/CHEMI/SP2/ENG/TZ0/02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a best-fit curve for the data on the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the relationship between the pressure and volume of the sample of carbon dioxide gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the data point labelled <strong>X</strong> to determine the amount, in mol, of carbon dioxide gas in the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The element antimony, Sb, is usually found in nature as its sulfide ore, stibnite, \({\text{S}}{{\text{b}}_{\text{2}}}{{\text{S}}_{\text{3}}}\). This ore was used two thousand years ago by ancient Egyptian women as a cosmetic to darken their eyes and eyelashes.</p>
</div>
<div class="specification">
<p class="p1">One method of extracting antimony from its sulfide ore is to roast the stibnite in air. This forms antimony oxide and sulfur dioxide. The antimony oxide is then reduced by carbon to form the free element.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of antimony in stibnite.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce <strong>one </strong>other common oxidation number exhibited by antimony in some of its compounds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the chemical equations for these <strong>two </strong>reactions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol has many industrial uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State an equation for the formation of ethanol from ethene and the necessary reaction conditions.</p>
<p> </p>
<p>Equation:</p>
<p> </p>
<p>Conditions:</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the volume of ethanol, in dm<sup>3</sup>, produced from \({\text{1.5 d}}{{\text{m}}^{\text{3}}}\) of ethene, assuming both are gaseous and at the same temperature and pressure.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol can be used as a fuel. Determine the enthalpy of combustion of ethanol at 298 K, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using the values in table 10 of the data booklet, assuming all reactants and products are gaseous.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the value of the enthalpy of combustion of ethanol quoted in table 12 of the data booklet is different to that calculated using bond enthalpies.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction is exothermic in terms of the bonds involved.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the homologous series to which ethanol belongs and state <strong>two </strong>features of a homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Cortisone is a therapeutic drug whose three-dimensional structure is represented below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_09.18.01.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/07.a"></p>
</div>
<div class="specification">
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_09.20.50.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/c.i"></p>
<p style="text-align: center;"><strong>P</strong></p>
</div>
<div class="specification">
<p class="p1">Menthol can be used in cough medicines. The compound contains 76.84% C, 12.92% H and 10.24% O by mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the names of <strong>two </strong>functional groups present in cortisone.</p>
<p class="p2"> </p>
<p class="p1">1.</p>
<p class="p2"> </p>
<p class="p1">2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a circle around each of these <strong>two </strong>functional groups in the structure above and label them 1 and 2 as identified in (a) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the term <em>structural isomers</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of <strong>P</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>X </strong>is a straight-chain structural isomer of <strong>P</strong>. Draw the structure of <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><img src="images/Schermafbeelding_2016-09-19_om_07.55.59.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/07.c.iii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify a suitable catalyst used in the reaction to form <strong>R</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>P</strong>, CH<sub><span class="s1">3</span></sub>CH=CHCH<sub><span class="s1">3</span></sub>, reacts with HBr to form CH<sub><span class="s1">3</span></sub>CHBrCH<sub><span class="s1">2</span></sub>CH<sub><span class="s1">3</span></sub>. Suggest <strong>one </strong>suitable mechanism for the reaction of CH<sub><span class="s1">3</span></sub>CHBrCH<sub><span class="s1">2</span></sub>CH<sub><span class="s1">3 </span></sub>with aqueous sodium hydroxide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the structural formula of the organic product formed, <strong>S</strong>, when <strong>Q </strong>is heated under reflux with acidified potassium dichromate(VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of this product, <strong>S</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>P </strong>can undergo a polymerization reaction. Draw <strong>two </strong>repeating units of the resulting polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.viii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine its empirical formula.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine its molecular formula given that its molar mass is \(M = 156.30{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>0.100 g of magnesium ribbon is added to \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid to produce hydrogen gas and magnesium sulfate.</p>
<p>\[{\text{Mg(s)}} + {{\text{H}}_2}{\text{S}}{{\text{O}}_4}{\text{(aq)}} \to {{\text{H}}_2}{\text{(g)}} + {\text{MgS}}{{\text{O}}_4}{\text{(aq)}}\]</p>
</div>
<div class="specification">
<p>Magnesium sulfate can exist in either the hydrated form or in the anhydrous form. Two students wished to determine the enthalpy of hydration of anhydrous magnesium sulfate. They measured the initial and the highest temperature reached when anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}{\text{(s)}}\), was dissolved in water. They presented their results in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_10.27.16.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.0b"></p>
</div>
<div class="specification">
<p>The students repeated the experiment using 6.16 g of solid hydrated magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}} \bullet {\text{7}}{{\text{H}}_{\text{2}}}{\text{O(s)}}\), and \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. They found the enthalpy change, \(\Delta {H_2}\), to be \( + 18{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<p>The enthalpy of hydration of solid anhydrous magnesium sulfate is difficult to determine experimentally, but can be determined using the diagram below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_11.08.23.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.c"></p>
</div>
<div class="specification">
<p>Magnesium sulfate is one of the products formed when acid rain reacts with dolomitic limestone. This limestone is a mixture of magnesium carbonate and calcium carbonate.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The graph shows the volume of hydrogen produced against time under these experimental conditions.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_10.18.50.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.a"></p>
<p>Sketch two curves, labelled <strong>I</strong> and <strong>II</strong>, to show how the volume of hydrogen produced (under the same temperature and pressure) changes with time when:</p>
<p>I. using the same mass of magnesium powder instead of a piece of magnesium ribbon;</p>
<p>II. 0.100 g of magnesium ribbon is added to \({\text{50 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid.</p>
<p>(ii) Outline why it is better to measure the volume of hydrogen produced against time rather than the loss of mass of reactants against time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the amount, in mol, of anhydrous magnesium sulfate.</p>
<p> </p>
<p> </p>
<p>(ii) Calculate the enthalpy change, \(\Delta {H_1}\), for anhydrous magnesium sulfate dissolving in water, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). State your answer to the correct number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the hydration of solid anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}\).</p>
<p> </p>
<p> </p>
<p>(ii) The literature value for the enthalpy of hydration of anhydrous magnesium sulfate is \( - 103{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the percentage difference between the literature value and the value determined from experimental results, giving your answer to <strong>one</strong> decimal place. (If you did not obtain an answer for the experimental value in (c)(i) then use the value of \( - 100{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), but this is <strong>not</strong> the correct value.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another group of students experimentally determined an enthalpy of hydration of \( - 95{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Outline two reasons which may explain the variation between the experimental and literature values.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the reaction of sulfuric acid with magnesium carbonate.</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the Lewis (electron dot) structure of the carbonate ion, giving the shape and the oxygen-carbon-oxygen bond angle.</p>
<p> </p>
<p>Lewis (electron dot) structure:</p>
<p> </p>
<p>Shape:</p>
<p> </p>
<p>Bond angle:</p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Smog is common in cities throughout the world. One component of smog is PAN (peroxyacylnitrate) which consists of 20.2% C, 11.4% N, 65.9% O and 2.50% H by mass. Determine the empirical formula of PAN, showing your working.</p>
</div>
<br><hr><br><div class="specification">
<p>Impurities cause phosphine to ignite spontaneously in air to form an oxide of phosphorus and water.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below.</p>
<p>Standard enthalpy of combustion of phosphine, <img src="" alt><br>Specific heat capacity of air = 1.00Jg<sup>−1</sup>K<sup>−1</sup> = 1.00 kJkg<sup>−1</sup>K<sup>−1</sup></p>
<p>(ii) The oxide formed in the reaction with air contains 43.6 % phosphorus by mass. Determine the empirical formula of the oxide, showing your method.</p>
<p>(iii) The molar mass of the oxide is approximately 285gmol<sup>−1</sup>. Determine the molecular formula of the oxide.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the reaction of this oxide of phosphorus with water.</p>
<p>(ii) Predict how dissolving an oxide of phosphorus would affect the pH and electrical conductivity of water.</p>
<p>pH:</p>
<p>Electrical conductivity:</p>
<p>(iii) Suggest why oxides of phosphorus are not major contributors to acid deposition.</p>
<p>(iv) The levels of sulfur dioxide, a major contributor to acid deposition, can be minimized by either pre-combustion and post-combustion methods. Outline <strong>one</strong> technique of each method.</p>
<p>Pre-combustion:</p>
<p>Post-combustion:</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of students investigated the rate of the reaction between aqueous sodium thiosulfate and hydrochloric acid according to the equation below.</p>
<p>\[{\text{N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}{\text{(aq)}} + {\text{2HCl(aq)}} \to {\text{2NaCl(aq)}} + {\text{S}}{{\text{O}}_2}{\text{(g)}} + {\text{S(s)}} + {{\text{H}}_2}{\text{O(l)}}\]</p>
<p>The two reagents were rapidly mixed together in a beaker and placed over a mark on a piece of paper. The time taken for the precipitate of sulfur to obscure the mark when viewed through the reaction mixture was recorded.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_14.58.16.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/05"></p>
<p>Initially they measured out \({\text{10.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid and then added \({\text{40.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.0200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous sodium thiosulfate. The mark on the paper was obscured 47 seconds after the solutions were mixed.</p>
</div>
<div class="specification">
<p>The teacher asked the students to measure the effect of halving the concentration of sodium thiosulfate on the rate of reaction.</p>
</div>
<div class="specification">
<p>The teacher asked the students to devise another technique to measure the rate of this reaction.</p>
</div>
<div class="specification">
<p>Another group suggested collecting the sulfur dioxide and drawing a graph of the volume of gas against time.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher made up \({\text{2.50 d}}{{\text{m}}^{\text{3}}}\) of the sodium thiosulfate solution using sodium thiosulfate pentahydrate crystals, \({\text{N}}{{\text{a}}_2}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} \bullet {\text{5}}{{\text{H}}_{\text{2}}}{\text{O}}\). Calculate the required mass of these crystals.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the volumes of the liquids that should be mixed.</p>
<p><img src="images/Schermafbeelding_2016-08-17_om_15.16.17.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/05.b.i"></p>
<p>(ii) State why it is important that the students use a similar beaker for both reactions.</p>
<p> </p>
<p> </p>
<p>(iii) Explain, in terms of the collision theory, how decreasing the concentration of sodium thiosulfate would affect the time taken for the mark to be obscured.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch and label, indicating an approximate activation energy, the Maxwell–Boltzmann energy distribution curves for two temperatures, \({T_1}\) and \({T_2}{\text{ }}({T_2} > {T_1})\), at which the rate of reaction would be significantly different.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_15.24.40.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/05.c.i"></p>
<p>(ii) Explain why increasing the temperature of the reaction mixture would significantly increase the rate of the reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) One group suggested recording how long it takes for the pH of the solution to change by one unit. Calculate the initial pH of the original reaction mixture.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Deduce the percentage of hydrochloric acid that would have to be used up for the pH to change by one unit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the volume of sulfur dioxide, in \({\text{c}}{{\text{m}}^{\text{3}}}\), that the original reaction mixture would produce if it were collected at \(1.00 \times {10^5}{\text{ Pa}}\) and 300 K.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Suggest why it is better to use a gas syringe rather than collecting the gas in a measuring cylinder over water.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of chloromethane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the shape of the chloromethane molecule and the H–C–H bond angle.</p>
<p> </p>
<p>Shape:</p>
<p> </p>
<p> </p>
<p>Bond angle:</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why chloromethane is a polar molecule.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methanol has a lower molar mass than chloromethane. Explain why the boiling point of methanol is higher than that of chloromethane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction between potassium and chlorine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the nature of the metallic bonding present in potassium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the covalent bond present in the chlorine molecule and how it is formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the ionic bonding present in potassium chloride and how the ions are formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Potassium also reacts with water to form hydrogen gas. Determine the volume, in \({\text{c}}{{\text{m}}^{\text{3}}}\), of hydrogen gas that could theoretically be produced at 273 K and \(1.01 \times {10^5}{\text{ Pa}}\) when 0.0587 g of potassium reacts with excess water.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the acid-base character of the oxides of each of the elements from sodium to chlorine in period 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equations for the separate reactions of sodium oxide and phosphorus(V) oxide with water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A hydrocarbon has the empirical formula \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\). When 1.17 g of the compound is heated to 85 °C at a pressure of 101 kPa it occupies a volume of \({\text{400 c}}{{\text{m}}^{\text{3}}}\).</p>
<p>(i) Calculate the molar mass of the compound, showing your working.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Deduce the molecular formula of the compound.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\) exists as three isomers. Identify the structure of the isomer with the <strong>lowest</strong> boiling point and explain your choice.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol is a primary alcohol that can be oxidized by acidified potassium dichromate(VI). Distinguish between the reaction conditions needed to produce ethanal and ethanoic acid.</p>
<p> </p>
<p>Ethanal:</p>
<p> </p>
<p> </p>
<p>Ethanoic acid:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation number of carbon in ethanol and ethanal.</p>
<p> </p>
<p>Ethanol:</p>
<p> </p>
<p>Ethanal:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the half-equation for the oxidation of ethanol to ethanal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the overall redox equation for the reaction of ethanol to ethanal with acidified potassium dichromate(VI) by combining your answer to part (c) (iii) with the following half-equation:</p>
<p>\[{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }{\text{(aq)}} + {\text{14}}{{\text{H}}^ + }{\text{(aq)}} + {\text{6}}{{\text{e}}^ - } \to {\text{2C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {\text{7}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two </strong>characteristics of a reaction at equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how a catalyst increases the rate of a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of a catalyst on the position of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanoic acid reacts with ethanol to form the ester ethyl ethanoate.</p>
<p>\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(l)}} + {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(l)?????C}}{{\text{H}}_{\text{3}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{\text{(l)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<p>The esterification reaction is exothermic. State the effect of increasing temperature on the value of the equilibrium constant (\({K_{\text{c}}}\)) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanedioic acid is a diprotic acid. A student determined the value of x in the formula of hydrated ethanedioic acid, \({\text{HOOC}}\)–\({\text{COOH}} \bullet {\text{x}}{{\text{H}}_{\text{2}}}{\text{O}}\), by titrating a known mass of the acid with a \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of \({\text{NaOH(aq)}}\).</p>
<p>0.795 g of ethanedioic acid was dissolved in distilled water and made up to a total volume of \({\text{250 c}}{{\text{m}}^{\text{3}}}\) in a volumetric flask.</p>
<p>\({\text{25 c}}{{\text{m}}^{\text{3}}}\) of this ethanedioic acid solution was pipetted into a flask and titrated against aqueous sodium hydroxide using phenolphthalein as an indicator.</p>
<p>The titration was then repeated twice to obtain the results below.</p>
<p><img src="images/Schermafbeelding_2016-08-09_om_11.19.20.png" alt="M15/4/CHEMI/SP2/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the uncertainty of the volume of NaOH added in \({\text{c}}{{\text{m}}^{\text{3}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the average volume of NaOH added, in \({\text{c}}{{\text{m}}^{\text{3}}}\), in titrations 2 and 3, and then calculate the amount, in mol, of NaOH added.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The equation for the reaction taking place in the titration is:</p>
<p style="text-align: center;">\({\text{HOOC}}\)−\({\text{COOH(aq)}} + {\text{2NaOH(aq)}} \to {\text{NaOOC}}\)−\({\text{COONa(aq)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\)</p>
<p>Determine the amount, in mol, of ethanedioic acid that reacts with the average volume of \({\text{NaOH(aq)}}\).</p>
<p> </p>
<p> </p>
<p>(ii) Determine the amount, in mol, of ethanedioic acid present in \({\text{250 c}}{{\text{m}}^{\text{3}}}\) of the original solution.</p>
<p> </p>
<p> </p>
<p>(ii) Determine the molar mass of hydrated ethanedioic acid.</p>
<p> </p>
<p> </p>
<p>(iv) Determine the value of x in the formula \({\text{HOOC}}\)−\({\text{COOH}} \bullet {\text{x}}{{\text{H}}_{\text{2}}}{\text{O}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest intermolecular force in solid ethanedioic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the Lewis (electron dot) structure of ethanedioic acid, HOOC−COOH.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In December 2010, researchers in Sweden announced the synthesis of N,N–dinitronitramide, \({\text{N(N}}{{\text{O}}_{\text{2}}}{{\text{)}}_{\text{3}}}\). They speculated that this compound, more commonly called trinitramide, may have significant potential as an environmentally friendly rocket fuel oxidant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Methanol reacts with trinitramide to form nitrogen, carbon dioxide and water. Deduce the coefficients required to balance the equation for this reaction.</p>
<p class="p1" style="text-align: center;">___ \({\text{N(N}}{{\text{O}}_2}{{\text{)}}_3}{\text{(g)}} + \) ___ \({\text{C}}{{\text{H}}_3}{\text{OH(l)}} \to \) ___ \({{\text{N}}_2}{\text{(g)}} + \) ___ \({\text{C}}{{\text{O}}_2}{\text{(g)}} + \) ___ \({{\text{H}}_2}{\text{O(l)}}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), when one mole of trinitramide decomposes to its elements, using bond enthalpy data from Table 10 of the Data Booklet. Assume that all the N–O bonds in this molecule have a bond enthalpy of \({\text{305 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how the length of the N–N bond in trinitramide compares with the N–N bond in nitrogen gas, \({{\text{N}}_{\text{2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the N–N–N bond angle in trinitramide and explain your reasoning.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with an explanation, the polarity of the trinitramide molecule.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Methanol can also be burnt as a fuel. Describe an experiment that would allow the molar enthalpy change of combustion to be calculated from the results.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the results of this experiment could be used to calculate the molar enthalpy change of combustion of methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with an explanation, how the result obtained would compare with the value in Table 12 of the Data Booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chlorine occurs in Group 7, the halogens.</p>
</div>
<div class="specification">
<p class="p1">Two stable isotopes of chlorine are \(^{{\text{35}}}{\text{Cl}}\) and \(^{{\text{37}}}{\text{Cl}}\) with mass numbers 35 and 37 respectively.</p>
</div>
<div class="specification">
<p class="p1">Chlorine has an electronegativity value of 3.2 on the Pauling scale.</p>
</div>
<div class="specification">
<p class="p1">Chloroethene, H<sub><span class="s1">2</span></sub>C=CHCl, the monomer used in the polymerization reaction in the manufacture of the polymer poly(chloroethene), PVC, can be synthesized in the following two-stage reaction pathway.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Stage 1:}}}&{{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}}} \\ {{\text{Stage 2:}}}&{{\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}} + {\text{HC=CHCl(g)}} + {\text{HCl(g)}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>isotopes of an element</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the number of protons, neutrons and electrons in the isotopes <sup><span class="s1">35</span></sup>Cl and <sup><span class="s1">37</span></sup>Cl.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-19_om_06.41.13.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/06.a.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the mass numbers of the two isotopes and the relative atomic mass of chlorine from Table 5 of the Data Booklet, determine the percentage abundance of each isotope.</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">35</span></sup>Cl:</p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">37</span></sup>Cl:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>electronegativity</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using Table 7 of the Data Booklet, explain the trends in electronegativity values of the Group 7 elements from F to I.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced chemical equation for the reaction of potassium bromide, KBr(aq), with chlorine, Cl<sub><span class="s1">2</span></sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change likely to be observed in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for stage 1 using average bond enthalpy data from Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether the reaction given in stage 1 is exothermic or endothermic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structure of poly(chloroethene) showing <strong>two </strong>repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why monomers are often gases or volatile liquids whereas polymers are solids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p>A class studied the equilibrium established when ethanoic acid and ethanol react together in the presence of a strong acid, using propanone as an inert solvent. The equation is given below.</p>
<p>\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} + {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} + {{\text{H}}_{\text{2}}}{\text{O}}\]</p>
<p>One group made the following <strong>initial mixture</strong>:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_07.42.39.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/01"></p>
</div>
<div class="specification">
<p>After one week, a \(5.00 \pm 0.05{\text{ c}}{{\text{m}}^{\text{3}}}\) sample of the final equilibrium mixture was pipetted out and titrated with \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 2}}\) aqueous sodium hydroxide to determine the amount of ethanoic acid remaining. The following titration results were obtained:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_07.59.45.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/01.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of ethanoic acid is \({\text{1.05 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\). Determine the amount, in mol, of ethanoic acid present in the initial mixture.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrochloric acid does not appear in the balanced equation for the reaction. State its function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the liquid whose volume has the greatest percentage uncertainty.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the absolute uncertainty of the titre for Titration 1 (\({\text{27.60 c}}{{\text{m}}^{\text{3}}}\)).</p>
<p> </p>
<p>(ii) Suggest the average volume of alkali, required to neutralize the \({\text{5.00 c}}{{\text{m}}^{\text{3}}}\) sample, that the student should use.</p>
<p> </p>
<p> </p>
<p>(iii) \({\text{23.00 c}}{{\text{m}}^{\text{3}}}\) of this \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous sodium hydroxide reacted with the ethanoic acid in the \({\text{5.00 c}}{{\text{m}}^{\text{3}}}\) sample. Determine the amount, in mol, of ethanoic acid present in the \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of final equilibrium mixture.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Referring back to your answer for part (a), calculate the percentage of ethanoic acid converted to ethyl ethanoate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the equilibrium constant expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how you could establish that the system had reached equilibrium at the end of one week.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why changing the temperature has only a very small effect on the value of the equilibrium constant for this equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how adding some ethyl ethanoate to the initial mixture would affect the amount of ethanoic acid converted to product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Propanone is used as the solvent because one compound involved in the equilibrium is insoluble in water. Identify this compound and explain why it is insoluble in water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> other reason why using water as a solvent would make the experiment less successful.</p>
<div class="marks">[1]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>A student carried out an experiment to determine the concentration of a hydrochloric acid solution and the enthalpy change of the reaction between aqueous sodium hydroxide and this acid by thermometric titration.</p>
<p>She added \({\text{5.0 c}}{{\text{m}}^{\text{3}}}\) portions of hydrochloric acid to \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution in a glass beaker until the total volume of acid added was \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\), measuring the temperature of the mixture each time. Her results are plotted in the graph below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-09_om_18.48.41.png" alt="M15/4/CHEMI/SP2/ENG/TZ2/01"></p>
<p>The initial temperature of both solutions was the same.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By drawing appropriate lines, determine the volume of hydrochloric acid required to completely neutralize the \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of sodium hydroxide solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of the hydrochloric acid, including units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in temperature, \(\Delta T\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of hydrochloric acid and sodium hydroxide solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The accepted theoretical value from the literature of this enthalpy change is \( - 58{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the percentage error correct to <strong>two </strong>significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the major source of error in the experimental procedure <strong>and </strong>an improvement that could be made to reduce it.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Soluble acids and bases ionize in water.</p>
</div>
<div class="specification">
<p>Sodium hypochlorite ionizes in water.</p>
<p style="text-align: center;">OCl<sup>–</sup>(aq) + H<sub>2</sub>O(l) \( \rightleftharpoons \) OH<sup>–</sup>(aq) + HOCl(aq)</p>
</div>
<div class="specification">
<p>A solution containing 0.510 g of an unknown monoprotic acid, HA, was titrated with 0.100 mol dm<sup>–3</sup> NaOH(aq). 25.0 cm<sup>3</sup> was required to reach the equivalence point.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the amphiprotic species.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one conjugate acid-base pair in the reaction.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of NaOH(aq) used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the molar mass of the acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate [H<sup>+</sup>] in the NaOH solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium is a transition metal.</p>
</div>
<div class="specification">
<p>TiCl<sub>4</sub> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p style="text-align: center;"><img src=""></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the \({}_{22}^{48}{\text{Ti}}\) atom.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the \({}_{22}^{48}{\text{Ti}}\)<sup>2+</sup> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, TiCl<sub>4</sub>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, N<sub>2</sub>H<sub>4</sub>. One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-22_om_18.03.06.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/04"></p>
</div>
<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(aq) + O<sub>2</sub>(aq) → N<sub>2</sub>(g) + 2H<sub>2</sub>O(l)</p>
<p>The concentration of dissolved oxygen in a sample of water is 8.0 × 10<sup>−3</sup> g\(\,\)dm<sup>−3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.</p>
<p style="text-align: center;">NH<sub>3</sub>(g) + H<sub>2</sub>O(l) \( \rightleftharpoons \) NH<sub>4</sub><sup>+</sup>(aq) + OH<sup>−</sup>(aq)</p>
<p>Explain the effect of adding H<sup>+</sup>(aq) ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. Deduce an equation for the reaction of hydrazine with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine has been used as a rocket fuel. The propulsion reaction occurs in several stages but the overall reaction is:</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<p>Suggest why this fuel is suitable for use at high altitudes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, Δ<em>H</em>, in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(g) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of N<sub>2</sub>H<sub>4</sub>(l) is +50.6 kJ\(\,\)mol<sup>−1</sup>. Calculate the enthalpy of vaporization, Δ<em>H</em><sub>vap</sub>, of hydrazine in kJ\(\,\)mol<sup>−1</sup>.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>H<sub>4</sub>(g)</p>
<p>(If you did not get an answer to (f), use −85 kJ but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from 1000 dm<sup>3</sup> of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in dm<sup>3</sup>, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = 24.8 dm<sup>3</sup> at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, C<sub>2</sub>H<sub>6</sub>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p style="text-align: center;">carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H\(\,\)NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, C<sub>2</sub>H<sub>3</sub>Cl, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.</p>
<p style="text-align: center;">Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (aq) + 2HCl (aq) → S (s) + SO<sub>2 </sub>(g) + 2NaCl (aq) + X</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the formula and state symbol of X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the experiment should be carried out in a fume hood or in a well-ventilated laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">10.0 cm<sup>3</sup> of 2.00 mol dm<sup>-3</sup> hydrochloric acid was added to a 50.0 cm<sup>3</sup> solution of sodium thiosulfate at temperature, T1. Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.</p>
<p style="text-align: left;"><img src="" alt></p>
<p style="text-align: left;">Show that the hydrochloric acid added to the flask in experiment 1 is in excess.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line of \(\frac{1}{{\rm{t}}}\) against concentration of sodium thiosulfate on the axes provided.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student decided to carry out another experiment using 0.075 mol dm<sup>-3</sup> solution of sodium thiosulfate under the same conditions. Determine the time taken for the mark to be no longer visible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An additional experiment was carried out at a higher temperature, T<sub>2</sub>.</p>
<p>(i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2 </sub>> T<sub>1</sub>.</p>
<p><img src="" alt></p>
<p>(ii) Explain why a higher temperature causes the rate of reaction to increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the values of rates of reactions obtained at higher temperatures may be less accurate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A student titrated an ethanoic acid solution, CH<sub>3</sub>COOH (aq), against 50.0 cm<sup>3</sup> of 0.995 mol dm<sup>–3</sup> sodium hydroxide, NaOH (aq), to determine its concentration.</p>
<p>The temperature of the reaction mixture was measured after each acid addition and plotted against the volume of acid.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Curves <strong>X</strong> and <strong>Y</strong> were obtained when a metal carbonate reacted with the same volume of ethanoic acid under two different conditions.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph, estimate the initial temperature of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum temperature reached in the experiment by analysing the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of ethanoic acid, CH<sub>3</sub>COOH, in mol dm<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the heat change, <em>q</em>, in kJ, for the neutralization reaction between ethanoic acid and sodium hydroxide.</p>
<p>Assume the specific heat capacities of the solutions and their densities are those of water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em>, in kJ mol<sup>–1</sup>, for the reaction between ethanoic acid and sodium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the shape of curve <strong>X</strong> in terms of the collision theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> possible reason for the differences between curves <strong>X</strong> and <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br>