File "HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 6/HL-paper1html
File size: 307.44 KB
MIME-type: application/octet-stream
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the points (0, 0) and (\(\sqrt {2\pi } \) , \( - \sqrt {2\pi } \)) on the curve \({{\text{e}}^{\left( {x + y} \right)}} = \cos \left( {xy} \right)\) have a</span> <span style="font-family: times new roman,times; font-size: medium;">common tangent.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \sqrt {\frac{x}{{1 - x}}} ,{\text{ }}0 &lt; x &lt; 1\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f'(x) = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\)&nbsp;and deduce that <em>f </em>is an increasing function.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the curve&nbsp;\(y = f(x)\)&nbsp;has one point of inflexion, and find its coordinates.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(x = {\sin ^2}\theta \)&nbsp;to show that \(\int {f(x){\text{d}}x} &nbsp;= \arcsin \sqrt x &nbsp;- \sqrt {x - {x^2}} &nbsp;+ c\)&nbsp;.</span></p>
<p>&nbsp;</p>
<div class="marks">[11]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The first set of axes below shows the graph of \(y = {\text{ }}f(x)\) for \( - 4 \leqslant x \leqslant 4\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-11_om_12.03.04.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g(x) = \int_{ - 4}^x {f(t){\text{d}}t} \) for \( - 4 \leqslant x \leqslant 4\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; State the value of <em>x </em>at which \(g(x)\) is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; On the second set of axes, sketch the graph of \(y = g(x)\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = {{\text{e}}^{{x^2} - 2x - 1.5}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; You are given that \(y = \frac{{f(x)}}{{x - 1}}\) has a local minimum at <em>x</em> = <em>a</em>, <em>a</em> &gt; 1. Find the</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">value of <em>a</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the graph of \(y = \frac{{{{(\ln x)}^2}}}{x},{\text{ }}x &gt; 0\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_06.37.32.png" alt="M16/5/MATHL/HP1/ENG/TZ1/13"></p>
</div>

<div class="specification">
<p class="p1">The region \(R\) is enclosed by the curve, the \(x\)-axis and the line \(x = e\).</p>
</div>

<div class="specification">
<p class="p1">Let \({I_n} = \int_1^{\text{e}} {\frac{{{{(\ln x)}^n}}}{{{x^2}}}{\text{d}}x,{\text{ }}n \in \mathbb{N}} \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the curve passes through the point \((a,{\text{ }}0)\)<span class="s1">, state the value of \(a\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the substitution \(u = \ln x\) to find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the value of \({I_0}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Prove that \({I_n} = \frac{1}{{\text{e}}} + n{I_{n - 1}},{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Hence find the value of \({I_1}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the volume of the solid formed when the region \(R\) <span class="s1">is rotated through \(2\pi \) </span>about the \(x\)-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;\(f,\,\,g,\)&nbsp;defined for&nbsp;\(x \in \mathbb{R}\), given by \(f\left( x \right) = {{\text{e}}^{ - x}}\,{\text{sin}}\,x\) and \(g\left( x \right) = {{\text{e}}^{ - x}}\,{\text{cos}}\,x\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f'\left( x \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'\left( x \right)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find \(\int\limits_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A drinking glass is modelled by rotating the graph of \(y = {{\text{e}}^x}\) about the <em>y</em>-axis, for \(1 \leqslant y \leqslant 5\) . Find the volume of the glass.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A curve is defined by \(xy = {y^2} + 4\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that there is no point where the tangent to the curve is horizontal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of the points where the tangent to the curve is vertical.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = x\sqrt {1 - {x^2}} \) <span class="s1">on the domain \( - 1 \le x \le 1\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(f\)&nbsp;is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the \(x\)-coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\) indicating clearly the coordinates of the \(x\)-intercepts and any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for \(x \ge 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y(x) = x{e^{3x}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove by induction that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\) for \(n \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any local maximum and minimum points on the graph of \(y(x)\).</p>
<p class="p1">Justify whether any such point is a maximum or a minimum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any points of inflexion on the graph of \(y(x)\). Justify whether any such point is a point of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence sketch the graph of \(y(x)\), indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Using integration by parts find \(\int {x\sin x{\text{d}}x} \).</p>
</div>
<br><hr><br><div class="question">
<p class="p1">By using the substitution \(u = {{\text{e}}^x} + 3\), find \(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 6{{\text{e}}^x} + 13}}{\text{d}}x} \).</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = {x^3} - 3{x^2} + 4\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the values of \(x\) for which \(f(x)\) is a decreasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">There is a point of inflexion, \(P\)<span class="s1">, on the curve \(y = f(x)\)</span>.</p>
<p class="p1">Find the coordinates of \(P\)<span class="s1">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\sin \left( {\theta&nbsp; + \frac{\pi }{2}} \right) = \cos \theta \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider \(f(x) = \sin (ax)\) where \(a\) is a constant. Prove by mathematical induction that \({f^{(n)}}(x) = {a^n}\sin \left( {ax + \frac{{n\pi }}{2}} \right)\) where \(n \in {\mathbb{Z}^ + }\) and \({f^{(n)}}(x)\) represents the \({{\text{n}}^{{\text{th}}}}\) derivative of \(f(x)\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the substitution \(t = \tan \theta \) , find the value of the integral</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_0^{\frac{\pi }{4}} {\frac{{{\text{d}}\theta }}{{3{{\cos }^2}\theta + {{\sin }^2}\theta }}} {\text{ }}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(f(x) = \frac{{x + 1}}{{{x^2} + 1}}\) is shown below.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-15_om_08.53.43.png" alt></span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The point (1, 1) is a point of inflexion. There are two other points of inflexion.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f'(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the \(x\)-coordinates of the points where the gradient of the graph of \(f\) is zero.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f''(x)\) expressing your answer in the form \(\frac{{p(x)}}{{{{({x^2} + 1)}^3}}}\), where \(p(x)\) is a polynomial of degree 3.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the \(x\)-coordinates of the other two points of inflexion.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="background-color: #f7f7f7;">Find the area of the shaded region. Express your answer in the form \(\frac{\pi }{a} - \ln \sqrt b \), where </span>\(a\) <span style="background-color: #f7f7f7;">and </span>\(b\) <span style="background-color: #f7f7f7;">are integers.</span></span></p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the complex number \(z = \cos \theta&nbsp; + {\text{i}}\sin \theta \).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The region <em>S</em> is bounded by the curve \(y = \sin x{\cos ^2}x\) and the <em>x</em>-axis between \(x = 0\) and \(x = \frac{\pi }{2}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use De Moivre&rsquo;s theorem to show that \({z^n} + {z^{ - n}} = 2\cos n\theta ,{\text{ }}n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Expand \({\left( {z + {z^{ - 1}}} \right)^4}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({\cos ^4}\theta&nbsp; = p\cos 4\theta&nbsp; + q\cos 2\theta&nbsp; + r\), where \(p,{\text{ }}q\) and \(r\) are constants to&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">be determined.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({\cos ^6}\theta&nbsp; = \frac{1}{{32}}\cos 6\theta&nbsp; + \frac{3}{{16}}\cos 4\theta&nbsp; + \frac{{15}}{{32}}\cos 2\theta&nbsp; + \frac{5}{{16}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\int_0^{\frac{\pi }{2}} {{{\cos }^6}\theta {\text{d}}\theta } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>S</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis. Find the value of the volume generated.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down an expression for the constant term in the expansion of \({\left( {z + {z^{ - 1}}} \right)^{2k}}\), \(k \in {\mathbb{Z}^ + }\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine an expression for \(\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta } \) in terms of <em>k</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graphs of \(f(x) = - {x^2} + 2\) and \(g(x) = {x^3} - {x^2} - bx + 2,{\text{ }}b &gt; 0\), intersect and create two closed regions. Show that these two regions have equal areas.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the part of the curve \(4{x^2} + {y^2} = 4\) shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x</em> and <em>y</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the gradient of the tangent at the point \(\left( {\frac{2}{{\sqrt 5 }},\frac{2}{{\sqrt 5 }}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; A bowl is formed by rotating this curve through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the volume of this bowl.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve C with equation \(y = f(x)\) satisfies the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{\ln y}}(x + 2),{\text{ }}y &gt; 1,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and <em>y</em> = e when <em>x</em> = 2.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to C at the point (2, e).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f(x)\).</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the largest possible domain of <em>f</em>.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the equation \(f(x) = f'(x)\) has no solution.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<address>Find the area enclosed by the curve \(y = \arctan x\) , the x-axis and the line \(x = \sqrt 3 \) .</address>
</div>
<br><hr><br><div class="specification">
<p class="p1">A curve has equation \(3x - 2{y^2}{{\text{e}}^{x - 1}} = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>in terms of \(x\) and \(y\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the equations of the tangents to this curve at the points where the curve intersects <span class="s1">the line \(x = 1\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A curve has equation \(\arctan {x^2} + \arctan {y^2} = \frac{\pi }{4}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x </em>and <em>y</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the gradient of the curve at the point where \(x = \frac{1}{{\sqrt 2 }}\) and \(y &lt; 0\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \({x^3}y = a\sin nx\)<em>&nbsp;</em>. Using implicit differentiation, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + ({n^2}{x^2} + 6)xy = 0\] .</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y = {{\text{e}}^x}\sin x\).</p>
</div>

<div class="specification">
<p class="p1">Consider the function \(f\)<span class="Apple-converted-space">&nbsp; </span>defined by \(f(x) = {{\text{e}}^x}\sin x,{\text{ }}0 \leqslant x \leqslant \pi \).</p>
</div>

<div class="specification">
<p class="p1">The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa &nbsp;= \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^x}\cos x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that the function \(f\) </span>has a local maximum value when \(x = \frac{{3\pi }}{4}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find the \(x\)</span>-coordinate of the point of inflexion of the graph of <span class="s1">\(f\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Sketch the graph of \(f\)</span>, clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(f\) <span class="s1">and the </span>\(x\)<span class="s1">-axis.</span></p>
<p class="p2">The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of the curvature of the graph of \(f\) <span class="s1">at the local maximum point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value \(\kappa \) for \(x = \frac{\pi }{2}\) and comment on its meaning with respect to the shape of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a circular lake with centre O, diameter AB and radius 2 km.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Jorg needs to get from A to B as quickly as possible. He considers rowing to point P and then walking to point B. He can row at \(3{\text{ km}}\,{{\text{h}}^{ - 1}}\) and walk at \(6{\text{ km}}\,{{\text{h}}^{ - 1}}\). Let \({\rm{P\hat AB}} = \theta \) radians, and <em>t</em> be the time in hours taken by Jorg to travel from A to B.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(t = \frac{2}{3}(2\cos \theta + \theta )\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\theta \) for which \(\frac{{{\text{d}}t}}{{{\text{d}}\theta }} = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">What route should Jorg take to travel from A to B in the least amount of time?</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give reasons for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the definition of a derivative as \(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x + h) - f(x)}}{h}} \right)\)&nbsp;, show that&nbsp;the derivative of \(\frac{1}{{2x + 1}}{\text{ is }}\frac{{ - 2}}{{{{(2x + 1)}^2}}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove by induction that the \({n^{{\text{th}}}}\) derivative of \({(2x + 1)^{ - 1}}\) is \({( - 1)^n}\frac{{{2^n}n!}}{{{{(2x + 1)}^{n + 1}}}}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the exact value of \(\int_1^{\text{e}} {{x^2}\ln x{\text{d}}x} \) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ \begin{array}{r}1 - 2x,\\{\textstyle{3 \over 4}}{(x - 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \le 2}\\{x &gt; 2}\end{array}\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \(f\)is continuous.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained by applying the following transformations to the graph of \(f\):</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">a reflection in the \(y\)&ndash;axis followed by a translation by the vector \(\left( \begin{array}{l}2\\0\end{array} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(g(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined, for \( - \frac{\pi }{2} \leqslant x \leqslant \frac{\pi }{2}\) , by \(f(x) = 2\cos x + x\sin x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether <em>f</em> is even, odd or neither even nor odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(0) = 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John states that, because \(f''(0) = 0\) , the graph of <em>f</em> has a point of inflexion at the point (0, 2) . Explain briefly whether John&rsquo;s statement is correct or not.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A window is made in the shape of a rectangle with a semicircle of radius \(r\) metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-08_om_17.46.34.png" alt="M17/5/MATHL/HP1/ENG/TZ2/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the window in terms of P and \(r\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that in this case the height of the rectangle is equal to the radius of the semicircle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A tranquilizer is injected into a muscle from which it enters the bloodstream.</p>
<p class="p1">The concentration \(C\) in \({\text{mg}}{{\text{l}}^{ - 1}}\), of tranquilizer in the bloodstream can be modelled by the function \(C(t) = \frac{{2t}}{{3 + {t^2}}},{\text{ }}t \ge 0\) where \(t\) is the number of minutes after the injection.</p>
<p class="p1">Find the maximum concentration of tranquilizer in the bloodstream.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\cot \alpha  = \tan \left( {\frac{\pi }{2} - \alpha } \right)\) for \(0 &lt; \alpha  &lt; \frac{\pi }{2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 &lt; \alpha  &lt; \frac{\pi }{2}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Given that&nbsp;\(\int_{ - 2}^2 {f\left( x \right){\text{d}}x = 10} \) and \(\int_0^2 {f\left( x \right){\text{d}}x = 12} \), find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1"><span class="s1">By using the substitution \(t = \tan x\)</span>, find \(\int {\frac{{{\text{d}}x}}{{1 + {{\sin }^2}x}}} \)<span class="s1">.</span></p>
<p class="p2">Express your answer in the form \(m\arctan (n\tan x) + c\), where \(m\), \(n\) are constants to be determined.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve \(5x{y^2} - 2{x^2} = 18\) at the point (1, 2) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x},{\text{ }}x &gt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The sketch below shows the graph of \(y = {\text{ }}f(x)\) and its tangent at a point A.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-11_om_14.26.30.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f'(x) = \frac{{1 - \ln x}}{{{x^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, at which the curve reaches its maximum value.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of C, the point of inflexion on the curve.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to the graph of \(f\) at the point A.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area enclosed by the curve \(y = f(x)\), the tangent at A, and the line \(x = {\text{e}}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The region enclosed between the curves \(y = \sqrt x {{\text{e}}^x}\) and \(y = {\text{e}}\sqrt x \) is rotated through \(2\pi \) about the <em>x</em>-axis. Find the volume of the solid obtained.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> is given by \(y = \frac{{x\cos x}}{{x + \cos x}}\), for \(x \geqslant 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\cos }^2}x - {x^2}\sin x}}{{{{(x + \cos x)}^2}}},{\text{ }}x \geqslant 0\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to <em>C</em> at the point \(\left( {\frac{\pi }{2},0} \right)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\int {(1 + {{\tan }^2}x){\text{d}}x} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\int {{{\sin }^2}x{\text{d}}x} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">By using the substitution \(u = 1 + \sqrt x \), find \(\int {\frac{{\sqrt x }}{{1 + \sqrt x }}{\text{d}}x} \).</p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(y = {\text{si}}{{\text{n}}^2}\theta ,\,\,0 \leqslant \theta&nbsp; \leqslant \pi \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <em>θ</em> for which \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves along a straight line. Its displacement, \(s\) metres, at time \(t\) seconds is given by \(s = t + \cos 2t,{\text{ }}t \geqslant 0\). The first two times when the particle is at rest are denoted by \({t_1}\) and \({t_2}\), where \({t_1} &lt; {t_2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \({t_1}\) and \({t_2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the displacement of the particle when \(t = {t_1}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the substitution \(x = \tan \theta \) show that \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x = } \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Use the substitution \(u = \ln x\) to find the value of \(\int_{\text{e}}^{{{\text{e}}^2}} {\frac{{{\text{d}}x}}{{x\ln x}}} \).</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the identity \(\cos 2\theta&nbsp; = 2{\cos ^2}\theta&nbsp; - 1\) to prove that \(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} ,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\int_0^{\frac{\pi }{2}} {\left( {\sqrt {1 + \cos x}&nbsp; + \sqrt {1 - \cos x} } \right){\text{d}}x} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Paint is poured into a tray where it forms a circular pool with a uniform thickness of 0.5 cm. If the paint is poured at a constant rate of \(4{\text{ c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\), find the rate of increase of the radius of the circle when the radius is 20 cm.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider two functions \(f\) and \(g\) and their derivatives \(f'\) and \(g'\). The following table shows the values for the two functions and their derivatives at \(x = 1\),&nbsp;\(2\) and \(3\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-07_om_15.01.17.png" alt></p>
<p class="p1">Given that \(p(x) = f(x)g(x)\) and \(h(x) = g \circ f(x)\), find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(p'(3)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(h'(2)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the curve \(y = \frac{{\ln (x)}}{x}\) and the lines <em>x</em> = 1, <em>x</em> = <em>e</em>, <em>y</em> = 0 is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the volume of the solid generated.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the curve \(y = \frac{1}{{1 - x}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the equation of the normal to the curve at the point \(x = 3\) in the form \(ax + by + c = 0\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f\) is given by \(f(x) = x{{\text{e}}^{ - x}}{\text{ }}(x \geqslant 0)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine the coordinates of the point A, where \(f'(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(f''(x)\) and hence show the point A is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, the point of inflexion.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained from the graph of \(f\) by stretching it in the <em>x</em>-direction by a scale factor 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; Write down an expression for \(g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; State the coordinates of the maximum C of \(g\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; Determine the <em>x</em>-coordinates of D and E, the two points where \(f(x) = g(x)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graphs of \(y = f(x)\) and \(y = g(x)\) on the same axes, showing clearly the points A, B, C, D and E.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an exact value for the area of the region bounded by the curve \(y = g(x)\), the <em>x</em>-axis and the line \(x = 1\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(f(x) = x - 3{x^{\frac{2}{3}}},{\text{ }}x &gt; 0\) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; find the <em>x</em>-coordinate of the point P where \(f'(x) = 0\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; determine whether P is a maximum or minimum point.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The normal to the curve \(x{{\text{e}}^{ - y}} + {{\text{e}}^y} = 1 + x\), at the point (<em>c</em>, \(\ln c\)), has a <em>y</em>-intercept \({c^2} + 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of <em>c</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> is given implicitly by the equation \(\frac{{{x^2}}}{y} - 2x = \ln y\) for \(y &gt; 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x</em> and <em>y</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on <em>C</em> where <em>y</em> = 1 and \(x &gt; 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the graph of the function defined by \(y = x{(\ln x)^2}{\text{ for }}x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function has a local maximum at the point A and a local minimum at the point B.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points A and B.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the graph of the function has exactly one point of inflexion, find&nbsp;its coordinates.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(h(x) = \arctan (x),{\text{ }}x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(g(x) = \frac{1}{x}\), \(x\in \mathbb{R}\)</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">, \({\text{ }}x \ne 0\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = h(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(h \circ g(x)\) and state its domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = h(x) + h \circ g(x)\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; find \(f'(x)\) in simplified form;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; show that \(f(x) = \frac{\pi }{2}\) for \(x &gt; 0\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Nigel states that \(f\) is an odd function and Tom argues that \(f\) is an even function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; State who is correct and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence find the value of \(f(x)\) for \(x &lt; 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = {{\text{e}}^x}\sin x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain a similar expression for \({f^{(4)}}(x)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Suggest an expression for \({f^{(2n)}}(x)\), \(n \in {\mathbb{Z}^ + }\), and prove your conjecture using mathematical induction.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = x{{\text{e}}^{2x}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It can be shown that \({f^{(n)}}(x) = ({2^n}x + n{2^{n - 1}}){{\text{e}}^{2x}}\) for all \(n \in {\mathbb{Z}^ + }\), where \({f^{(n)}}(x)\) represents the \({n^{{\text{th}}}}\) derivative of \(f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; By considering \({f^{(n)}}(x){\text{ for }}n = 1{\text{ and }}n = 2\) , show that there is one minimum point P on the graph of <em>f</em> , and find the coordinates of P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that <em>f</em> has a point of inflexion Q at <em>x</em> = &minus;1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Determine the intervals on the domain of <em>f</em> where <em>f</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; concave up;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; concave down.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Sketch <em>f</em> , clearly showing any intercepts, asymptotes and the points P and Q.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Use mathematical induction to prove that \({f^{(n)}}(x) = ({2^n}x + n{2^{n - 1}}){{\text{e}}^{2x}}{\text{ for all }}n \in {\mathbb{Z}^ + },{\text{ where }}{f^{(n)}}{\text{ represents the }}{n^{{\text{th}}}}{\text{ derivative of }}f(x)\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \({f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether \({f_n}\) is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p style="text-align: center;">\({f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}\) where \(m \in \mathbb{Z}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of \({f_n}(x)\) with respect to \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for \(n &gt; 1\), the equation of the tangent to the curve \(y = {f_n}(x)\) at \(x = \frac{\pi }{4}\) is \(4x - 2y - \pi&nbsp; = 0\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x &lt; \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g \circ f(x)\), stating its domain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(y = g \circ f(x)\)<span class="s1">, find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Find \(\int {\arcsin x\,{\text{d}}x} \)</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\int_0^{\frac{\pi }{6}} {x\sin 2x{\text{d}}x = \frac{{\sqrt 3 }}{8} - \frac{\pi }{{24}}} \).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function \(f\) is defined by \(f(x) = \frac{{3x - 2}}{{2x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne \frac{1}{2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f(x)\) can be written in the form \(f(x) = A + \frac{B}{{2x - 1}}\), find the values of the constants \(A\) and \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\) is defined as \(f(x) = a{x^2} + bx + c\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{R}\).</p>
<p class="p1">Hayley conjectures that \(\frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{f'({x_2}) + f'({x_1})}}{2},{\text{ }}x1 \ne x2\).</p>
<p class="p1">Show that Hayley’s conjecture is correct.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Find the \(x\)-coordinates of all the points on the curve \(y = 2{x^4} + 6{x^3} + \frac{7}{2}{x^2} - 5x + \frac{3}{2}\) <span class="s1">at which</span></p>
<p class="p2">the tangent to the curve is parallel to the tangent at \(( - 1,{\text{ }}6)\).</p>
</div>
<br><hr><br><div class="question">
<p>Consider the curve \(y = \frac{1}{{1 - x}} + \frac{4}{{x - 4}}\).</p>
<p>Find the <em>x</em>-coordinates of the points on the curve where the gradient is zero.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(x = a\sec \theta \) to show that \(\int_{a\sqrt 2 }^{2a} {\frac{{{\text{d}}x}}{{{x^3}\sqrt {{x^2} - {a^2}} }} = \frac{1}{{24{a^3}}}\left( {3\sqrt 3&nbsp; + \pi&nbsp; - 6} \right)} \).</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate \(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} \) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {{{\tan }^3}x{\text{d}}x} \) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {t\ln (t + 1){\text{d}}t} \).</span></p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(y = {\text{arccos}}\left( {\frac{x}{2}} \right)\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int_0^1 {{\text{arccos}}\left( {\frac{x}{2}} \right){\text{d}}x} \).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize \({x^2} + 3x + 2\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = - 1\) and \(x = 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves in a straight line such that at time \(t\) seconds \((t \geqslant 0)\), its velocity \(v\), in \({\text{m}}{{\text{s}}^{ - 1}}\), is given by \(v = 10t{{\text{e}}^{ - 2t}}\). Find the exact distance travelled by the particle in the first half-second.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that \(\frac{3}{{x + 1}} + \frac{2}{{x + 3}} = \frac{{5x + 11}}{{{x^2} + 4x + 3}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence find the value of <em>k</em> such that \(\int_0^2 {\frac{{5x + 11}}{{{x^2} + 4x + 3}}{\text{d}}x = \ln k} \) .</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution \(u = {x^{\frac{1}{2}}}\) to find \(\int {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(\frac{1}{2}\int\limits_1^9 {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \), expressing your answer in the form arctan \(q\), where \(q \in \mathbb{Q}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find all values of <em>x</em> for \(0.1 \leqslant x \leqslant 1\) such that \(\sin (\pi {x^{ - 1}}) = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int_{\frac{1}{{n + 1}}}^{\frac{1}{n}} {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}}){\text{d}}x} \), showing that it takes different integer values when <em>n</em> is even and when <em>n</em> is odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Evaluate \(\int_{0.1}^1 {\left| {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}})} \right|{\text{d}}x} \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>The folium of Descartes is a curve defined by the equation \({x^3} + {y^3} - 3xy = 0\), shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_18.23.15.png" alt="N17/5/MATHL/HP1/ENG/TZ0/07"></p>
<p>Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the \(y\)-axis.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A body is moving in a straight line. When it is \(s\)&nbsp;metres from a fixed point O on the line its velocity, \(v\),&nbsp;is given by \(v =&nbsp; - \frac{1}{{{s^2}}},{\text{ }}s &gt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the acceleration of the body when it is 50 cm from O.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve \(y = x{{\text{e}}^x}\) and the line \(y = kx,{\text{ }}k \in \mathbb{R}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Let <em>k</em> = 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that the curve and the line intersect once.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the angle between the tangent to the curve and the line at the point of intersection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Let <em>k</em> =1. Show that the line is a tangent to the curve.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Find the values of <em>k</em> for which the curve \(y = x{{\text{e}}^x}\) and the line \(y = kx\) meet in two distinct points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Write down the coordinates of the points of intersection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Write down an integral representing the area of the region <em>A</em> enclosed by the curve and the line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) &nbsp; &nbsp; <strong>Hence</strong>, given that \(0 &lt; k &lt; 1\), show that \(A &lt; 1\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following graph shows the relation \(x = 3\cos 2y + 4,{\text{ }}0 \leqslant y \leqslant \pi \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-27_om_09.08.34.png" alt="M16/5/MATHL/HP1/ENG/TZ2/11"></p>
<p class="p1"><span class="s1">The curve is rotated 360&deg; </span>about the \(y\)-axis to form a volume of revolution.</p>
</div>

<div class="specification">
<p class="p1">A container with this shape is made with a solid base of diameter 14 cm . The container is filled with water at a rate of \({\text{2 c}}{{\text{m}}^{\text{3}}}\,{\text{mi}}{{\text{n}}^{ - 1}}\)<span class="s1">. At time \(t\) minutes, the water depth is \(h{\text{ cm, }}0 \leqslant h \leqslant \pi \) and the volume of water in the container is \(V{\text{ c}}{{\text{m}}^{\text{3}}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value of the volume generated.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Given that \(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {(3\cos 2h + 4)^2}\), find an expression for \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the value of \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) <span class="s1">when \(h = \frac{\pi }{4}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Find the values of \(h\) <span class="s1">for which \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}} = 0\).</span></p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>By making specific reference to the shape of the container, interpret \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) <span class="s2">at the values of \(h\) found in part (c)(ii).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> has equation \(y = \frac{1}{8}(9 + 8{x^2} - {x^4})\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points on <em>C</em> at which \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The tangent to <em>C</em> at the point P(1, 2) cuts the <em>x</em>-axis at the point T. Determine the coordinates of T.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The normal to <em>C</em> at the point P cuts the <em>y</em>-axis at the point N. Find the area of triangle PTN.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2x - 1,}&amp;{x \leqslant 2} \\ <br>&nbsp; {a{x^2} + bx - 5,}&amp;{2 &lt; x &lt; 3} <br>\end{array}} \right.\]<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where a , \(b \in \mathbb{R}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>f</em> and its derivative, \(f'\) , are continuous for all values in the domain of <em>f</em> , find the values of <em>a</em> and <em>b</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>f</em> is a one-to-one function.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain expressions for the inverse function \({f^{ - 1}}\) and state their domains.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A curve is given by the equation \(y = \sin (\pi \cos x)\).</p>
<p class="p2">Find the coordinates of all the points on the curve for which \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0,{\text{ }}0 \leqslant x \leqslant \pi \).</p>
</div>
<br><hr><br><div class="specification">
<p>It is given that&nbsp;\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{2}{\text{lo}}{{\text{g}}_r}\,x\) where \(r,\,x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(y\) in terms of \(x\). Give your answer in the form \(y = p{x^q}\), where <em>p</em> , <em>q</em> are constants.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region <em>R</em>, is bounded by the graph of the function found in part (b), the <em>x</em>-axis, and the lines \(x = 1\) and \(x = \alpha \) where \(\alpha  &gt; 1\). The area of <em>R</em> is \(\sqrt 2 \).</p>
<p>Find the value of \(\alpha \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(y = \frac{1}{{1 - x}}\), use mathematical induction to prove that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = \frac{{n!}}{{{{(1 - x)}^{n + 1}}}},{\text{ }}n \in {\mathbb{Z}^ + }\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">A curve is defined by the equation \(8y\ln x - 2{x^2} + 4{y^2} = 7\). Find the equation of the tangent to the curve at the point where <em>x</em> = 1 and \(y &gt; 0\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve with equation \({x^2} + xy + {y^2} = 3\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find in terms of <em>k</em>, the gradient of the curve at the point (&minus;1, <em>k</em>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that the tangent to the curve is parallel to the <em>x</em>-axis at this point, find the value of <em>k</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve defined by the equation \({x^2} + \sin y - xy = 0\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, show that \(\tan \theta &nbsp;= \frac{1}{{1 + 2\pi }}\), where \(\theta \)&nbsp;is the acute angle between the tangent&nbsp;to the curve at \((\pi ,{\text{ }}\pi )\) and the line <em>y </em>= <em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\) defined by \(f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.</p>
</div>

<div class="specification">
<p>The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| &gt; a\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = f(x)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \frac{1}{{f(x)}}\);</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \left| {\frac{1}{{f(x)}}} \right|\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int {f(x)\cos x{\text{d}}x} \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding \(g'(x)\) explain why \(g\) is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In triangle \({\text{ABC, BC}} = \sqrt 3 {\text{ cm}}\), \({\rm{A\hat BC}} = \theta \) and \({\rm{B\hat CA}} = \frac{\pi }{3}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that length \({\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta&nbsp; + \sin \theta }}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that&nbsp;\(AB\) has a minimum value, determine the value of \(\theta \) <span class="s1">for which this occurs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions <em>f</em> and <em>g</em> defined by \(f(x) = {2^{\frac{1}{x}}}\) and \(g(x) = 4 - {2^{\frac{1}{x}}}\) , \(x \ne 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the coordinates of <em>P</em>, the point of intersection of the graphs of <em>f</em> and <em>g</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the equation of the tangent to the graph of <em>f</em> at the point P.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C </em>has equation&nbsp;\(2{x^2} + {y^2} = 18\). Determine the coordinates of the four points&nbsp;on <em>C </em>at which the normal passes through the point (1, 0) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area between the curves \(y = 2 + x - {x^2}{\text{ and }}y = 2 - 3x + {x^2}\) .</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact value of \(\int_1^2 {\left( {{{(x - 2)}^2} + \frac{1}{x} + \sin \pi x} \right){\text{dx}}} \).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Andr&eacute; wants to get from point A located in the sea to point Y located on a straight stretch of beach. P is the point on the beach nearest to A such that AP = 2 km and PY = 2 km. He does this by swimming in a straight line to a point Q located on the beach and then running to Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When Andr&eacute; swims he covers 1 km in \(5\sqrt 5 \) minutes. When he runs he covers 1 km in 5 minutes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; If PQ = <em>x</em> km, \(0 \leqslant x \leqslant 2\) , find an expression for the time <em>T</em> minutes taken by Andr&eacute; to reach point Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that \(\frac{{{\text{d}}T}}{{{\text{d}}x}} = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }} - 5\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Solve \(\frac{{{\text{d}}T}}{{{\text{d}}x}} = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Use the value of <em>x</em> found in <strong>part (c) (i)</strong> to determine the time, <em>T</em> minutes, taken for Andr&eacute; to reach point Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Show that \(\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{\frac{3}{2}}}}}\) and <strong>hence</strong> show that the time found in <strong>part (c) (ii)</strong> is a minimum.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Given that \(\alpha&nbsp; &gt; 1\), use the substitution \(u = \frac{1}{x}\) to show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_1^\alpha&nbsp; {\frac{1}{{1 + {x^2}}}{\text{d}}x = \int_{\frac{1}{\alpha }}^1 {\frac{1}{{1 + {u^2}}}{\text{d}}x} } .\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong>Hence</strong> show that \(\arctan \alpha&nbsp; + \arctan \frac{1}{\alpha } = \frac{\pi }{2}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The quadratic function \(f(x) = p + qx - {x^2}\) has a maximum value of 5 when <em>x </em>= 3.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>p</em> and the value of <em>q</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of <em>f</em>(<em>x</em>) is translated 3 units in the positive direction parallel to the <em>x</em>-axis. Determine the equation of the new graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle P moves in a straight line with displacement relative to origin given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[s = 2\sin (\pi t) + \sin (2\pi t),{\text{ }}t \geqslant 0,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where <em>t</em> is the time in seconds and the displacement is measured in centimetres.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down the period of the function <em>s</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find expressions for the velocity, <em>v</em>, and the acceleration, <em>a</em>, of P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Determine all the solutions of the equation <em>v</em> = 0 for \(0 \leqslant t \leqslant 4\).</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = A\sin (ax) + B\sin (bx),{\text{ }}A,{\text{ }}a,{\text{ }}B,{\text{ }}b,{\text{ }}x \in \mathbb{R}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use mathematical induction to prove that the\({(2n)^{{\text{th}}}}\) derivative of <em>f</em> is given by \(({f^{(2n)}}(x) = {( - 1)^n}\left( {A{a^{2n}}\sin (ax) + B{b^{2n}}\sin (bx)} \right)\), for all \(n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph below shows the two curves \(y = \frac{1}{x}\) and \(y = \frac{k}{x}\), where \(k &gt; 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of region <em>A </em>in terms of <em>k </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of region <em>B </em>in terms of <em>k </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the ratio of the area of region <em>A </em>to the area of region <em>B </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of \(y = f\left( x \right)\) has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of \(y = f\left( x \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B\(\left( {{2^a},\,b \times {2^{ - 3a}}} \right)\) where <em>a</em>, <em>b</em>\( \in \mathbb{Q}\). Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( x \right)\) showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A normal to the graph of \(y = \arctan (x - 1)\) , for \(x &gt; 0\), has equation \(y = - 2x + c\) , where \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>c</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{{2x - 1}}{{x + 2}}\), with domain \(D = \{ x: - 1 \leqslant x \leqslant 8\} \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(f(x)\) in the form \(A + \frac{B}{{x + 2}}\), where \(A\) and \(B \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \(f'(x) &gt; 0\) on <em>D</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\), showing the points of intersection with both axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; On the same diagram, sketch the graph of \(y = f'(x)\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; On a different diagram, sketch the graph of \(y = f(|x|)\) where \(x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find all solutions of the equation \(f(|x|) = - \frac{1}{4}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At 12:00 a boat is 20 km due south of a freighter. The boat is travelling due east at \(20{\text{ km}}\,{{\text{h}}^{ - 1}}\), and the freighter is travelling due south at \(40{\text{ km}}\,{{\text{h}}^{ - 1}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the time at which the two ships are closest to one another, and justify your answer.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If the visibility at sea is 9 km, determine whether or not the captains of the two ships can ever see each other&rsquo;s ship.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{1}{{4{x^2} - 4x + 5}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(4{x^2} - 4x + 5\) in the form \(a{(x - h)^2} + k\) where <em>a</em>, <em>h</em>, \(k \in \mathbb{Q}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} - 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A curve has equation \({x^3}{y^2} + {x^3} - {y^3} + 9y = 0\). Find the coordinates of the three points on the curve where \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A packaging company makes boxes for chocolates. An example of a box is shown below. This box is closed and the top and bottom of the box are identical regular hexagons of side <em>x</em> cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that the area of each hexagon is \(\frac{{3\sqrt 3 {x^2}}}{2}{\text{c}}{{\text{m}}^2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that the volume of the box is \({\text{90 c}}{{\text{m}}^2}\) , show that when \(x = \sqrt[3]{{20}}\) the total surface area of the box is a minimum, justifying that this value gives a minimum.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined on the domain \(\left[ {0,\,\frac{{3\pi }}{2}} \right]\) by \(f(x) = {e^{ - x}}\cos x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the two zeros of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the graph, the <em>x</em>-axis and the <em>y</em>-axis is denoted by <em>A </em>and&nbsp;the region bounded by the graph and the <em>x</em>-axis is denoted by <em>B </em>. Show that the&nbsp;ratio of the area of <em>A </em>to the area of <em>B </em>is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{e^\pi }\left( {{e^{\frac{\pi }{2}}} + 1} \right)}}{{{e^\pi } + 1}}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain \(x \geqslant 0\) by \(f(x) = {{\text{e}}^x} - {x^{\text{e}}}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Given that the equation \(f'(x) = 0\) has two roots, state their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f</em> , showing clearly the coordinates of the maximum and minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({{\text{e}}^\pi } &gt; {\pi ^{\text{e}}}\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined as \(f(x) = {{\text{e}}^{3x + 1}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find \({f^{ - 1}}(x)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the domain of \({f^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(g\) is defined as \(g(x) = \ln x,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">The graph of \(y = g(x)\) and the graph of \(y = {f^{ - 1}}(x)\) intersect at the point \(P\).</p>
<p class="p1">Find the coordinates of \(P\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g(x)\) intersects the \(x\)-axis at the point \(Q\).</p>
<p class="p1">Show that the equation of the tangent \(T\) to the graph of \(y = g(x)\) at the point&nbsp;\(Q\) is \(y = x - 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">Find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>By replacing \(x\) with \(\frac{1}{x}\) in part (e)(i), show that \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined as \(f(x) = k\sqrt x \), with \(k &gt; 0\) and \(x \geqslant 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that <em>f</em> is a one-to-one function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the inverse function, \({f^{ - 1}}(x)\) and state its domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; If the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) intersect at the point (4, 4) find the value of <em>k</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Consider the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) using the value of <em>k</em> found in part (d).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find the area enclosed by the two graphs.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; The line <em>x</em> = <em>c</em> cuts the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ - 1}}(x)\) at point Q find the value of <em>c</em> .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Let \(a &gt; 0\) . Draw the graph of \(y = \left| {x - \frac{a}{2}} \right|\) for \( - a \leqslant x \leqslant a\) on the grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0px; font: 29px Helvetica; text-align: justify;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find <em>k</em> such that \(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x = k\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x} } \) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = 1 + \sin x,{\text{ }}0 \leqslant x \leqslant \frac{{3\pi }}{2}\),</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch the graph of \(f\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 31px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the volume of the solid formed when the graph of <em>f</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Solve the equation \(f'(x) = 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Hence show the graph of \(f\) has a local maximum.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of the function \(f\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that there is a point of inflexion on the graph and determine its coordinates.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, <em>x</em>-intercept and </span><span style="font-family: times new roman,times; font-size: medium;">the local maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , where \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Sketch the graph of \(y = g(x)\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of \(g\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Find the values of \(x\) such that \(h(x) &gt; g(x)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A tangent to the graph of \(y = \ln x\) passes through the origin.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the graphs of \(y = \ln x\) and the tangent on the same set of axes, and hence find the equation of the tangent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Use your sketch to explain why \(\ln x \leqslant \frac{x}{{\text{e}}}\) for \(x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that \({x^{\text{e}}} \leqslant {{\text{e}}^x}\) for \(x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Determine which is larger, \({\pi ^{\text{e}}}\) or \({{\text{e}}^\pi }\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a sketch of the gradient function \(f'(x)\) of the curve \(f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">On the graph below, sketch the curve \(y = f(x)\) given that \(f(0) = 0\) . Clearly indicate on the graph any maximum, minimum or inflexion points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider \(f(x) = \frac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the equations of all asymptotes of the graph of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the coordinates of the points where the graph of <em>f</em> meets the <em>x</em> and <em>y</em> axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the coordinates of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; the maximum point and justify your answer;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the minimum point and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Sketch the graph of <em>f</em>, clearly showing all the features found above.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; <strong>Hence</strong>, write down the number of points of inflexion of the graph of <em>f</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>f</em> be a function defined by \(f(x) = x - \arctan x\) , \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(f(1)\) and \(f\left( { - \sqrt 3 } \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that \(f( - x) = - f(x)\) , for \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that \(x - \frac{\pi }{2} &lt; f(x) + \frac{\pi }{2}\) , for \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Find expressions for \(f'(x)\) and \(f''(x)\) . Hence describe the behaviour of the graph of <em>f</em> at the origin and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Sketch a graph of <em>f</em> , showing clearly the asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; Justify that the inverse of <em>f</em> is defined for all \(x \in \mathbb{R}\) and sketch its graph.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Sketch the graphs of \(y = \sin x\) and \(y = \sin 2x\) , on the same set of axes, for \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the x-coordinates of the points of intersection of the graphs in the domain \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the area enclosed by the graphs.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution \(x = 4{\sin ^2}\theta \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The increasing function <em>f</em> satisfies \(f(0) = 0\) and \(f(a) = b\) , where \(a &gt; 0\) and \(b &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; By reference to a sketch, show that \(\int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} } \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>Hence</strong> find the value of \(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x} \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = f(x)\) is shown below, where A is a local maximum point and D is a&nbsp;local minimum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of \(y = \frac{1}{{f(x)}}\)&nbsp;, clearly showing the&nbsp;coordinates of the images of the points A, B and D, labelling them \({{\text{A}'}}\), \({{\text{B}'}}\), and&nbsp;\({{\text{D}'}}\) respectively, and the equations of any vertical asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of the derivative \(y = f'(x)\)&nbsp;, clearly showing&nbsp;the coordinates of the images of the points&nbsp; A and D, labelling them </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{A}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{D}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> respectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;"> <!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>14</o:Words>
  <o:Characters>83</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>96</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment-->The graphs of \(y = \left| {x + 1} \right|\) and \(y = \left| {x - 3} \right|\) are shown below.</span></p>
<p><img src="" alt></p>
<p><!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>11</o:Words>
  <o:Characters>62</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>72</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment--><span style="font-size: 12.0pt; font-family: 'TimesNewRomanPSMT','serif'; mso-fareast-font-family: 'MS 明朝'; mso-fareast-theme-font: minor-fareast; mso-bidi-font-family: TimesNewRomanPSMT; mso-ansi-language: EN-US; mso-fareast-language: NL; mso-bidi-language: AR-SA;">Let <em>f </em>(<em>x</em>) = \(\left| {\,x + 1\,} \right| - \left| {\,x - 3\,} \right|\).</span><!--EndFragment--></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph of <em>y </em>= <em>f </em>(<em>x</em>) on the blank grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence state the value of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <span lang="NL">\(f'( - 3)\);</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp;&nbsp;<span lang="NL">\(f'(2.7)\);</span><!--EndFragment--></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp;&nbsp;\(\int_{ - 3}^{ - 2} {f(x)dx} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>