File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/SL-paper2html
File size: 1.11 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>&#8202;</mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight,&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#62;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout&nbsp;the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo>&#8202;</mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>OAB is a sector of the circle with centre O and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The angle AOB is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> radians, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < \theta&nbsp; < \frac{\pi }{2}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>θ<!-- θ --></mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p>The point C lies on OA and OA is perpendicular to BC.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OC}} = r\,{\text{cos}}\,\theta "> <mrow> <mtext>OC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle OBC in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <em>θ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the area of triangle OBC is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}"> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span> of the area of sector OAB, find <em>θ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5, 8\,{\text{sin}}\left( {\frac{\pi }{6}\left( {x + 1} \right)} \right) + b"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>5</mn><mo>.</mo><mn>8</mn><mspace width="thinmathspace"></mspace><mtext>sin</mtext><mrow><mo>(</mo><mfrac><mi>π</mi><mn>6</mn></mfrac><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>b</mi></math></span>, 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>&nbsp;≤ 10,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{R}"> <mi>b</mi> <mo>∈<!-- &#8712; --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>

<div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>&nbsp;has a local maximum at the point (2, 21.8) , and a local minimum at (8, 10.2).</p>
</div>

<div class="specification">
<p>A second function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = p\,{\text{sin}}\left( {\frac{{2\pi }}{9}\left( {x - 3.75} \right)} \right) + q">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π<!-- π --></mi>
        </mrow>
        <mn>9</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>−<!-- − --></mo>
          <mn>3.75</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
</math></span>,&nbsp; 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 10;&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{R}">
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> passes through the points (3, 2.5) and (6, 15.1).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(6).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which the functions have the greatest difference.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a\sin bx + c">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 12">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>12</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.53.31.png" alt="N16/5/MATME/SP2/ENG/TZ0/10"></p>
<p style="text-align: center;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> and a maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. The maximum point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11.5,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>11.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> changes from concave-up to concave-down when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>.</p>
<p>(ii)     Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}"> <mi>b</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>6</mn> </mfrac> </math></span>.</p>
<p>(iii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<p>(ii)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>.</p>
<p>(ii)     Hence or otherwise, find the maximum positive rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} = \left( {\begin{array}{*{20}{c}} 4 \\ 1 \\ 2 \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AB</mtext>
    </mrow>
    <mo>→<!-- → --></mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right|">
  <mrow>
    <mo>|</mo>
    <mrow>
      <mover>
        <mrow>
          <mtext>AB</mtext>
        </mrow>
        <mo>→</mo>
      </mover>
    </mrow>
    <mo>|</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}} 3 \\ 0 \\ 0 \end{array}} \right)">
  <mover>
    <mrow>
      <mtext>AC</mtext>
    </mrow>
    <mo>→</mo>
  </mover>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AC}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Olivia’s house consists of four vertical walls and a sloping roof made from two rectangles. The height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CD}}">
  <mrow>
    <mtext>CD</mtext>
  </mrow>
</math></span>, from the ground to the base of the roof is 4.5 m.</p>
<p>The base angles of the roof are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{C}} = 27^\circ ">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>27</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{C}}\limits^ \wedge&nbsp; {\text{B}} = 26^\circ ">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>26</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The&nbsp;house is 10 m long and 5 m wide.</p>
</div>

<div class="specification">
<p>The length <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}}">
  <mrow>
    <mtext>AC</mtext>
  </mrow>
</math></span> is approximately 2.84 m.</p>
</div>

<div class="specification">
<p>Olivia decides to put solar panels on the roof. The solar panels are fitted to both sides of the roof.</p>
<p style="text-align: center;"><img src=""></p>
<p>Each&nbsp;panel is 1.6 m long and 0.95 m wide. All the panels must be arranged in uniform rows, with <strong>the shorter edge</strong> of each panel parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}}">
  <mrow>
    <mtext>AC</mtext>
  </mrow>
</math></span>. Each panel must be at least 0.3 m from the edge of the roof and the top of the roof, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AF}}">
  <mrow>
    <mtext>AF</mtext>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Olivia estimates that the solar panels will cover an area of 29 m<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
</math></span>, giving your answer to <strong>four significant figures</strong>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total area of the two rectangles that make up the roof.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of complete panels that can be fitted to the whole roof.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in her estimate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Olivia investigates arranging the panels, such that <strong>the longer edge</strong> of each panel is parallel to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
</math></span> or <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}}">
  <mrow>
    <mtext>AC</mtext>
  </mrow>
</math></span>.<br><br>State whether this new arrangement will allow Olivia to fit more solar panels to the roof. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company is designing a new logo. The logo is created by removing two equal segments&nbsp;from a rectangle, as shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The rectangle measures <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>&#8202;</mo><mtext>cm</mtext></math>&nbsp;by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>&#8202;</mo><mtext>cm</mtext></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on a circle, with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>&nbsp;and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>&#8202;</mo><mtext>cm</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A&#212;B</mtext><mo>=</mo><mi>&#952;</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>&#952;</mi><mo>&#60;</mo><mi>&#960;</mi></math>. This information is shown in the&nbsp;following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of one of the shaded segments in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the area of the logo is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>4</mn><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Using geometry software, Pedro draws a quadrilateral <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>8</mn><mo> </mo><mtext>cm</mtext></math> and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CD</mtext><mo>=</mo><mn>9</mn><mo> </mo><mtext>cm</mtext></math>. Angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BAD</mtext><mo>=</mo><mn>51</mn><mo>.</mo><mn>5</mn><mo>°</mo></math> and angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ADB</mtext><mo>=</mo><mn>52</mn><mo>.</mo><mn>5</mn><mo>°</mo></math>. This information is shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CE</mtext><mo>=</mo><mn>7</mn><mo> </mo><mtext>cm</mtext></math>, where point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> is the midpoint of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>EDC</mtext><mo>=</mo><mn>48</mn><mo>.</mo><mn>0</mn><mo>°</mo></math>, correct to three significant figures.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BDC</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Pedro draws a circle, with centre at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math>, passing through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. Part of the circle is shown in the diagram.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Show that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> lies outside this circle. Justify your reasoning.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>A Ferris wheel with diameter <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>110</mn></math> metres rotates at a constant speed. The lowest point on&nbsp;the wheel is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres above the ground, as shown on the following diagram. <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is a point on&nbsp;the wheel. The wheel starts moving with <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> at the lowest point and completes one revolution&nbsp;in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> minutes.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> above the ground after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>cos</mi><mo>(</mo><mi>b</mi><mi>t</mi><mo>)</mo><mo>+</mo><mi>c</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mi>b</mi><mo>,</mo><mo>&nbsp;</mo><mi>c</mi><mo>&nbsp;</mo><mo>∈</mo><mo>&nbsp;</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a water wheel with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres. Water flows&nbsp;into buckets, turning the wheel clockwise at a constant speed.</p>
<p><br>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of the top of a bucket above the ground <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds after it passes&nbsp;through point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is modelled by the function</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>13</mn><mo>+</mo><mn>8</mn><mo> </mo><mi>cos</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>18</mn></mfrac><mi>t</mi></mrow></mfenced><mo>-</mo><mn>6</mn><mo> </mo><mi>sin</mi><mfenced><mrow><mfrac><mi mathvariant="normal">π</mi><mn>18</mn></mfrac><mi>t</mi></mrow></mfenced></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A bucket moves around to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> which is at a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>06</mn></math> metres above the ground.&nbsp;It takes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> seconds for the top of this bucket to go from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>

<div class="specification">
<p>The chord&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mtext>AB</mtext><mo>]</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>0</mn></math> metres, correct to three significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of seconds it takes for the water wheel to complete one rotation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the number of rotations the water wheel makes in one hour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> when the top of the bucket is at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two points P and Q have coordinates (3, 2, 5) and (7, 4, 9) respectively.</p>
</div>

<div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\mathop {{\text{PR}}}\limits^ \to&nbsp; }">
  <mrow>
    <mover>
      <mrow>
        <mrow>
          <mtext>PR</mtext>
        </mrow>
      </mrow>
      <mo stretchy="false">→<!-- → --></mo>
    </mover>
  </mrow>
</math></span> = 6<em><strong>i</strong></em>&nbsp;− <em><strong>j</strong></em> + 3<em><strong>k</strong></em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{PQ}}}\limits^ \to&nbsp; "> <mover> <mrow> <mrow> <mtext>PQ</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\mathop {{\text{PQ}}}\limits^ \to&nbsp; } \right|"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mrow> <mtext>PQ</mtext> </mrow> </mrow> <mo stretchy="false">→</mo> </mover> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle between PQ and PR.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle PQR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise find the shortest distance from R to the line through P and Q.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The Tower of Pisa is well known worldwide for how it leans.</p>
<p>Giovanni visits the Tower and wants to investigate how much it is leaning. He draws a diagram&nbsp;showing a non-right triangle, ABC.</p>
<p>On Giovanni’s diagram the length of AB is 56 m, the length of BC is 37 m, and angle ACB is 60°.&nbsp;AX is the perpendicular height from A to BC.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Giovanni’s tourist guidebook says that the actual horizontal displacement of the Tower,&nbsp;BX, is 3.9 metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni’s diagram to show that angle ABC, the angle at which the Tower is leaning relative to the<br>horizontal, is 85° to the nearest degree.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to calculate the length of AX.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to find the length of BX, the horizontal displacement of the Tower.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error on Giovanni’s diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giovanni adds a point D to his diagram, such that BD = 45 m, and another triangle is formed.</p>
<p><img src=""></p>
<p>Find the angle of elevation of A from D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the points A(−3, 4, 2) and B(8,&nbsp;−1, 5).</p>
</div>

<div class="specification">
<p>A line <em>L</em> has vector equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r = \left( {\begin{array}{*{20}{c}}  2 \\   0 \\   { - 5}  \end{array}} \right) + t\left( {\begin{array}{*{20}{c}}  1 \\   { - 2} \\   2  \end{array}} \right)">
  <mi>r</mi>
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>5</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−<!-- − --></mo>
              <mn>2</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.&nbsp;The point C (5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, 1) lies on line <em>L</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {\overrightarrow {{\text{AB}}} } \right|"> <mrow> <mo>|</mo> <mrow> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} = \left( {\begin{array}{*{20}{c}}  8 \\   { - 10} \\   { - 1}  \end{array}} \right)"> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>10</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AB}}} "> <mover> <mrow> <mtext>AB</mtext> </mrow> <mo>→</mo> </mover> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\text{AC}}} "> <mover> <mrow> <mtext>AC</mtext> </mrow> <mo>→</mo> </mover> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle ABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> with respective equations</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}\,{\text{:}}\,y =&nbsp; - \frac{2}{3}x + 9">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mn>9</mn>
</math></span>&nbsp; and&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}{\text{:}}\,y = \frac{2}{5}x - \frac{{19}}{5}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>5</mn>
  </mfrac>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mn>19</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>A third line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>, has gradient&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{4}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point of intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a direction vector for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span> passes through the intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A pan, in which to cook a pizza, is in the shape of a cylinder. The pan has a diameter of 35 cm and a height of 0.5 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.14.51.png" alt="M17/5/MATSD/SP2/ENG/TZ1/04"></p>
</div>

<div class="specification">
<p>A chef had enough pizza dough to exactly fill the pan. The dough was in the shape of a sphere.</p>
</div>

<div class="specification">
<p>The pizza was cooked in a hot oven. Once taken out of the oven, the pizza was placed in a dining room.</p>
<p>The temperature, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>, of the pizza, in degrees Celsius, °C, can be modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="P(t) = a{(2.06)^{ - t}} + 19,{\text{ }}t \geqslant 0">
  <mi>P</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mrow>
    <mo stretchy="false">(</mo>
    <mn>2.06</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>t</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mi>t</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is the time, in minutes, since the pizza was taken out of the oven.</p>
<p>When the pizza was taken out of the oven its temperature was 230 °C.</p>
</div>

<div class="specification">
<p>The pizza can be eaten once its temperature drops to 45 °C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this pan.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius of the sphere in cm, correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature that the pizza will be 5 minutes after it is taken out of the oven.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to the nearest second, the time since the pizza was taken out of the oven until it can be eaten.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of this model, state what the value of 19 represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The depth of water in a port is modelled by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d(t) = p\cos qt + 7.5">
  <mi>d</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>p</mi>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>q</mi>
  <mi>t</mi>
  <mo>+</mo>
  <mn>7.5</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 12">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>12</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is the number of hours after high tide.</p>
<p>At high tide, the depth is 9.7 metres.</p>
<p>At low tide, which is 7 hours later, the depth is 5.3 metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to find the depth of the water 10 hours after high tide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a circle, centre O, with radius 4 cm. Points A and B lie on the circumference of the circle and AÔB = <em>θ</em> , where 0 ≤ <em>θ</em> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π<!-- π --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region, in terms of <em>θ</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The area of the shaded region is 12 cm<sup>2</sup>. Find the value of<em> θ</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A restaurant serves desserts in glasses in the shape of a cone and in the shape of a hemisphere. The diameter of a cone shaped glass is 7.2 cm and the height of the cone is 11.8 cm as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.40.46.png" alt="N17/5/MATSD/SP2/ENG/TZ0/06"></p>
</div>

<div class="specification">
<p>The volume of a hemisphere shaped glass is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="225{\text{ c}}{{\text{m}}^3}">
  <mn>225</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The restaurant offers two types of dessert.</p>
<p>The <strong>regular dessert </strong>is a hemisphere shaped glass completely filled with chocolate mousse. The cost, to the restaurant, of the chocolate mousse for one regular dessert is $1.89.</p>
</div>

<div class="specification">
<p>The <strong>special dessert </strong>is a cone shaped glass filled with two ingredients. It is first filled with orange paste to half of its height and then with chocolate mousse for the remaining volume.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.44.32.png" alt="N17/5/MATSD/SP2/ENG/TZ0/06.d.e.f"></p>
</div>

<div class="specification">
<p>The cost, to the restaurant, of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100{\text{ c}}{{\text{m}}^3}">
  <mn>100</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> of orange paste is $7.42.</p>
</div>

<div class="specification">
<p>A chef at the restaurant prepares 50 desserts; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> regular desserts and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> special desserts. The cost of the ingredients for the 50 desserts is $111.44.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of a cone shaped glass is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="160{\text{ c}}{{\text{m}}^3}">
  <mn>160</mn>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>, correct to 3 significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, of a hemisphere shaped glass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="100{\text{ c}}{{\text{m}}^3}">
  <mn>100</mn>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> of chocolate mousse.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20{\text{ c}}{{\text{m}}^3}">
  <mn>20</mn>
  <mrow>
    <mtext> c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span> of orange paste in each special dessert.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total cost of the ingredients of one special dessert.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Abdallah owns a plot of land, near the river Nile, in the form of a quadrilateral ABCD.</p>
<p>The lengths of the sides are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = {\text{40 m, BC}} = {\text{115 m, CD}} = {\text{60 m, AD}} = {\text{84 m}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>40 m, BC</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>115 m, CD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>60 m, AD</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>84 m</mtext>
  </mrow>
</math></span> and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AD}} = 90^\circ ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">D</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p>This information is shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.24.18.png" alt="N17/5/MATSD/SP2/ENG/TZ0/03"></p>
</div>

<div class="specification">
<p>The formula that the ancient Egyptians used to estimate the area of a quadrilateral ABCD is</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{area}} = \frac{{({\text{AB}} + {\text{CD}})({\text{AD}} + {\text{BC}})}}{4}">
  <mrow>
    <mtext>area</mtext>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>AB</mtext>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>CD</mtext>
      </mrow>
      <mo stretchy="false">)</mo>
      <mo stretchy="false">(</mo>
      <mrow>
        <mtext>AD</mtext>
      </mrow>
      <mo>+</mo>
      <mrow>
        <mtext>BC</mtext>
      </mrow>
      <mo stretchy="false">)</mo>
    </mrow>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<p>Abdallah uses this formula to estimate the area of his plot of land.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BD}} = 93{\text{ m}}">
  <mrow>
    <mtext>BD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>93</mn>
  <mrow>
    <mtext> m</mtext>
  </mrow>
</math></span> correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat CD}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">D</mi>
    </mrow>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Abdallah’s estimate for the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in Abdallah’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two straight fences meet at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and a field lies between them.</p>
<p>A horse is tied to a post, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, by a rope of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> metres. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> is on one fence and&nbsp;point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext></math> is on the other, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PD</mtext><mo>=</mo><mtext>PE</mtext><mo>=</mo><mtext>PA</mtext><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mover><mtext>P</mtext><mo>^</mo></mover><mtext>E</mtext><mo>=</mo><mi>θ</mi></math> radians. This is shown in&nbsp;the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The length of the arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DE</mtext></math> shown in the diagram is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>28</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="specification">
<p>A new fence is to be constructed between points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> which will enclose the field,&nbsp;as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>&nbsp;is due west of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mn>800</mn><mo> </mo><mtext>m</mtext></math> . The bearing of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>195</mn><mo>°</mo></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area of the field that the horse can reach is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>392</mn><msup><mi>θ</mi><mn>2</mn></msup></mfrac><mfenced><mrow><mi>θ</mi><mo>+</mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The area of field that the horse can reach is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>460</mn><mo> </mo><msup><mtext>m</mtext><mn>2</mn></msup></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the size of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>E</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>B</mtext><mo>^</mo></mover><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of new fence required.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Note: In this question, distance is in millimetres.</strong></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = x + a\sin \left( {x - \frac{\pi }{2}} \right) + a">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>x</mi>
  <mo>+</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mfrac>
        <mi>π<!-- π --></mi>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>a</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \geqslant 0">
  <mi>x</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> passes through the origin. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mi>k</mi>
    </msub>
  </mrow>
</math></span> be any point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2k\pi ">
  <mn>2</mn>
  <mi>k</mi>
  <mi>π<!-- π --></mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{N}">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">N</mi>
  </mrow>
</math></span>. A straight line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> passes through all the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mi>k</mi>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Diagram 1 shows a saw. The length of the toothed edge is the distance AB.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_15.10.11.png" alt="N17/5/MATME/SP2/ENG/TZ0/10.d_01"></p>
<p>The toothed edge of the saw can be modelled using the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>. Diagram 2 represents this model.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_15.11.17.png" alt="N17/5/MATME/SP2/ENG/TZ0/10.d_02"></p>
<p>The shaded part on the graph is called a tooth. A tooth is represented by the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>, between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mi>k</mi>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_{k + 1}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mi>k</mi>
        <mo>+</mo>
        <mn>1</mn>
      </mrow>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2\pi ) = 2\pi ">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mi>π</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>2</mn>
  <mi>π</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_0}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mn>0</mn>
    </msub>
  </mrow>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_1}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance between the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_k}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mi>k</mi>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{P}}_{k + 1}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>P</mtext>
      </mrow>
      <mrow>
        <mi>k</mi>
        <mo>+</mo>
        <mn>1</mn>
      </mrow>
    </msub>
  </mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi ">
  <mn>2</mn>
  <mi>π</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A saw has a toothed edge which is 300 mm long. Find the number of complete teeth on this saw.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A farmer is placing posts at points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> in the ground to mark the boundaries of a&nbsp;triangular piece of land on his property.</p>
<p>From point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, he walks due west <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>230</mn></math> metres to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.<br>From point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, he walks <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>175</mn></math> metres on a bearing of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>063</mn><mo>&#176;</mo></math> to reach point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<p>This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The farmer wants to divide the piece of land into two sections. He will put a post at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>,&nbsp;which is between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. He wants the boundary <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext></math> to divide the piece of land such that&nbsp;the sections have equal area. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of this piece of land.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CÂB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 12\,\,{\text{cos}}\,x - 5\,\,{\text{sin}}\,x,\,\, - \pi&nbsp; \leqslant x \leqslant 2\pi ">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>12</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mo>−<!-- − --></mo>
  <mi>π<!-- π --></mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>2</mn>
  <mi>π<!-- π --></mi>
</math></span>,&nbsp;be a periodic function with&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = f\left( {x + 2\pi } \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mn>2</mn>
      <mi>π<!-- π --></mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>The following diagram shows the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">There is a maximum point at A. The minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is −13 .</p>
</div>

<div class="specification">
<p>A ball on a spring is attached to a fixed point O. The ball is then pulled down and released, so that it moves back and forth vertically.</p>
<p style="text-align: center;"><img src=""></p>
<p>The distance, <em>d</em> centimetres, of the centre of the ball from O at time <em>t</em> seconds, is given by</p>
<p style="padding-left: 90px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d\left( t \right) = f\left( t \right) + 17,\,\,0 \leqslant t \leqslant 5.">
  <mi>d</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>17</mn>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>5.</mn>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, write down the amplitude.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, write down the period.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\,\,{\text{cos}}\,\left( {x + r} \right)">
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>x</mi>
      <mo>+</mo>
      <mi>r</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum speed of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the first time when the ball’s speed is changing at a rate of 2 cm s<sup>−2</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The six blades of a windmill rotate around a centre point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and the base of&nbsp;the windmill are on level ground, as shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>From point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> the angle of elevation of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6</mn></math> radians.</p>
</div>

<div class="specification">
<p>An observer walks <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> metres from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>

<div class="specification">
<p>The observer keeps walking until he is standing directly under point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>. The observer has a&nbsp;height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>8</mn></math> metres, and as the blades of the windmill rotate, the end of each blade passes&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>5</mn></math> metres over his head.</p>
</div>

<div class="specification">
<p>One of the blades is painted a different colour than the others. The end of this blade is&nbsp;labelled point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>. The height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, in metres, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> above the ground can be modelled&nbsp;by the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><mo>&#8202;</mo><mi>cos</mi><mfenced><mrow><mfrac><mrow><mn>3</mn><mi mathvariant="normal">&#960;</mi></mrow><mn>10</mn></mfrac><mi>t</mi></mrow></mfenced><mo>+</mo><mi>q</mi></math>,&nbsp;where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is in seconds and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo>&#160;</mo><mi>q</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>. When&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>,&nbsp;point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>&nbsp;is at its maximum height.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> metres from the base of the windmill, find the height of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>&nbsp;above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the angle of elevation of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of each blade of the windmill.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the observer stands directly under point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> for one minute, point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> will pass over his&nbsp;head <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> times.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows quadrilateral ABCD.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 11\,{\text{cm,}}\,\,{\text{BC}} = 6\,{\text{cm,}}\,\,{\text{B}}\mathop {\text{A}}\limits^ \wedge&nbsp; {\text{D&nbsp; =&nbsp; 100}}^\circ {\text{, and C}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{D&nbsp; =&nbsp; 82}}^\circ ">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>11</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cm,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>BC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>6</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cm,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <msup>
    <mrow>
      <mtext>D&nbsp; =&nbsp; 100</mtext>
    </mrow>
    <mo>∘<!-- ∘ --></mo>
  </msup>
  <mrow>
    <mtext>, and C</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <msup>
    <mrow>
      <mtext>D&nbsp; =&nbsp; 82</mtext>
    </mrow>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find DB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find DC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = 2\,{\text{sin}}\left( {3x} \right) + 4">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>2</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>3</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mn>4</mn>
</math></span> for&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 5f\left( {2x} \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>5</mn>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> can be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 10\,{\text{sin}}\left( {bx} \right) + c">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>10</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>b</mi>
      <mi>x</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 12">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>12</mn>
</math></span> has two solutions where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi ">
  <mi>π</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{{4\pi }}{3}}">
  <mrow>
    <mfrac>
      <mrow>
        <mn>4</mn>
        <mi>π</mi>
      </mrow>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>. Find both solutions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Adam sets out for a hike from his camp at point A. He hikes at an average speed of 4.2 km/h&nbsp;for 45 minutes, on a bearing of 035° from the camp, until he stops for a break at point B.</p>
</div>

<div class="specification">
<p style="text-align: center;"><img src=""></p>
<p>Adam leaves point B on a bearing of 114° and continues to hike for a distance of 4.6‌ km until&nbsp;he reaches point C.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Adam’s friend Jacob wants to hike directly from the camp to meet Adam at point C .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from point A to point B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge  {\text{C}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> is 101°.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from the camp to point C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{C}}\limits^ \wedge  {\text{A}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the bearing that Jacob must take to point C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jacob hikes at an average speed of 3.9 km/h.</p>
<p>Find, to the nearest minute, the time it takes for Jacob to reach point C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The quadrilateral ABCD represents a park, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 120{\text{ m}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>120</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}} = 95{\text{ m}}">
  <mrow>
    <mtext>AD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>95</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{DC}} = 100{\text{ m}}">
  <mrow>
    <mtext>DC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>100</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
</math></span>. Angle DAB is 70° and angle DCB is 110°. This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.35.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/04"></p>
<p>A straight path through the park joins the points B and D.</p>
</div>

<div class="specification">
<p>A new path, CE, is to be built such that E is the point on BD closest to C.</p>
</div>

<div class="specification">
<p>The section of the park represented by triangle DCE will be used for a charity race. A track will be marked along the sides of this section.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the path BD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that angle DBC is 48.7°, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the park.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the path CE.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total length of the track.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>An archaeological site is to be made accessible for viewing by the public. To do this, archaeologists built two straight paths from point A to point B and from point B to point C as shown in the following diagram. The length of path AB is 185 m, the length of path BC is 250 m, and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{B}}\limits^ \wedge&nbsp; {\text{C}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>B</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span> is 125°.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The archaeologists plan to build two more straight paths, AD and DC. For the paths to go around the site, angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge&nbsp; {\text{D}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> is to be made equal to 85° and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{C}}\limits^ \wedge&nbsp; {\text{D}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧<!-- ∧ --></mo>
  </mover>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> is to be made equal to 70° as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from A to C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{C}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>C</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}\mathop {\text{A}}\limits^ \wedge  {\text{D}}">
  <mrow>
    <mtext>C</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>A</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{C}}\limits^ \wedge  {\text{D}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mover>
    <mrow>
      <mtext>C</mtext>
    </mrow>
    <mo>∧</mo>
  </mover>
  <mo>⁡</mo>
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The length of path AD is 287 m.</p>
<p>Find the area of the region ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Farmer Brown has built a new barn, on horizontal ground, on his farm. The barn has a cuboid base and a triangular prism roof, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The cuboid has a width of 10 m, a length of 16 m and a height of 5 m.<br>The roof has two sloping faces and two vertical and identical sides, ADE and GLF.<br>The face DEFL slopes at an angle of 15° to the horizontal and ED = 7 m .</p>
</div>

<div class="specification">
<p>The roof was built using metal supports. Each support is made from <strong>five</strong> lengths of metal AE, ED, AD, EM and MN, and the design is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">ED = 7 m , AD = 10 m and angle ADE = 15° .<br>M is the midpoint of AD.<br>N is the point on ED such that MN is at right angles to ED.</p>
</div>

<div class="specification">
<p>Farmer Brown believes that N is the midpoint of ED.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle EAD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> volume of the barn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of MN.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of AE.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Farmer Brown is incorrect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> length of metal required for one support.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a semicircle with centre&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>&nbsp;and radius&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. Points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P,&#160;Q</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math>&nbsp;lie on the circumference of the circle, such that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PQ</mtext><mo>=</mo><mn>2</mn><mi>r</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>Q</mtext><mo>=</mo><mi>&#952;</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>&#952;</mi><mo>&#60;</mo><mi mathvariant="normal">&#960;</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the areas of the two shaded regions are equal, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A farmer owns a plot of land in the shape of a quadrilateral ABCD.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 105{\text{ m, BC}} = 95{\text{ m, CD}} = 40{\text{ m, DA}} = 70{\text{ m}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>105</mn>
  <mrow>
    <mtext>&nbsp;m, BC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>95</mn>
  <mrow>
    <mtext>&nbsp;m, CD</mtext>
  </mrow>
  <mo>=</mo>
  <mn>40</mn>
  <mrow>
    <mtext>&nbsp;m, DA</mtext>
  </mrow>
  <mo>=</mo>
  <mn>70</mn>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
</math></span> and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{DCB}} = 90^\circ ">
  <mrow>
    <mtext>DCB</mtext>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>90</mn>
    <mo>∘<!-- ∘ --></mo>
  </msup>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.23.38.png" alt="N16/5/MATSD/SP2/ENG/TZ0/05"></p>
<p>The farmer wants to divide the land into two equal areas. He builds a fence in a straight line from point B to point P on AD, so that the area of PAB is equal to the area of PBCD.</p>
<p>Calculate</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the length of BD;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the size of angle DAB;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the area of triangle ABD;</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the area of quadrilateral ABCD;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the length of AP;</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the length of the fence, BP.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The base of an electric iron can be modelled as a pentagon ABCDE, where:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{BCDE is a rectangle with sides of length }}(x + 3){\text{ cm and }}(x + 5){\text{ cm;}}} \\ {{\text{ABE is an isosceles triangle, with AB}} = {\text{AE and a height of }}x{\text{ cm;}}} \\ {{\text{the area of ABCDE is 222 c}}{{\text{m}}^{\text{2}}}{\text{.}}} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>BCDE is a rectangle with sides of length&nbsp;</mtext>
          </mrow>
          <mo stretchy="false">(</mo>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
          <mo stretchy="false">)</mo>
          <mrow>
            <mtext>&nbsp;cm and&nbsp;</mtext>
          </mrow>
          <mo stretchy="false">(</mo>
          <mi>x</mi>
          <mo>+</mo>
          <mn>5</mn>
          <mo stretchy="false">)</mo>
          <mrow>
            <mtext>&nbsp;cm;</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>ABE is an isosceles triangle, with AB</mtext>
          </mrow>
          <mo>=</mo>
          <mrow>
            <mtext>AE and a height of&nbsp;</mtext>
          </mrow>
          <mi>x</mi>
          <mrow>
            <mtext>&nbsp;cm;</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>the area of ABCDE is 222 c</mtext>
          </mrow>
          <mrow>
            <msup>
              <mrow>
                <mtext>m</mtext>
              </mrow>
              <mrow>
                <mtext>2</mtext>
              </mrow>
            </msup>
          </mrow>
          <mrow>
            <mtext>.</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.05.55.png" alt="M17/5/MATSD/SP2/ENG/TZ1/02"></p>
</div>

<div class="specification">
<p>Insulation tape is wrapped around the perimeter of the base of the iron, ABCDE.</p>
</div>

<div class="specification">
<p>F is the point on AB such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BF}} = {\text{8 cm}}">
  <mrow>
    <mtext>BF</mtext>
  </mrow>
  <mo>=</mo>
  <mrow>
    <mtext>8 cm</mtext>
  </mrow>
</math></span>. A heating element in the iron runs in a straight line, from C to F.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an <strong>equation </strong>for the area of ABCDE using the above information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation in part (a)(i) simplifies to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="3{x^2} + 19x - 414 = 0">
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>19</mn>
  <mi>x</mi>
  <mo>−</mo>
  <mn>414</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of CD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AE}} = 67.4^\circ ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">B</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^</mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">E</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <msup>
    <mn>67.4</mn>
    <mo>∘</mo>
  </msup>
</math></span>, correct to one decimal place.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the perimeter of ABCDE.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of CF.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circumference of the circle.</p>
<p style="text-align: left;">Chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>&nbsp;has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mi>θ</mi></math>&nbsp;radians.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>3</mn><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><msqrt><mn>18</mn><mo>-</mo><mn>18</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></msqrt></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> is twice the length of chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in centimetres.</strong></p>
<p>A solid metal ornament is in the shape of a right pyramid, with vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>V</mtext></math> and square&nbsp;base <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math>. The centre of the base is <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math>. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>V</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>5</mn><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>)</mo></math> and point&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> has coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>6</mn><mo>)</mo></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The volume of the pyramid is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>57</mn><mo>.</mo><mn>2</mn><mo>&#8202;</mo><msup><mtext>cm</mtext><mn>3</mn></msup></math>, correct to three significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AV</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>V</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>40</mn><mo>°</mo></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the pyramid, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>VX</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second ornament is in the shape of a cuboid with a rectangular base of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo> </mo><mtext>cm</mtext></math>, width <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>cm</mtext></math> and height <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo> </mo><mtext>cm</mtext></math>. The cuboid has the same volume as the pyramid.</p>
<p>The cuboid has a minimum surface area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo> </mo><msup><mtext>cm</mtext><mn>2</mn></msup></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species.&nbsp;He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer&nbsp;regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>A</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>B</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
</div>

<div class="specification">
<p>Use the scientist&rsquo;s models to find the initial height of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>At Grande Anse Beach the height of the water in metres is modelled by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(t) = p\cos (q \times t) + r">
  <mi>h</mi>
  <mo stretchy="false">(</mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>p</mi>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mi>q</mi>
  <mo>×<!-- × --></mo>
  <mi>t</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mi>r</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is the number of hours after 21:00 hours on 10 December 2017. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> , for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 72">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>72</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.10.26.png" alt="M17/5/MATME/SP2/ENG/TZ1/08"></p>
<p>The point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}(6.25,{\text{ }}0.6)">
  <mrow>
    <mtext>A</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>6.25</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0.6</mn>
  <mo stretchy="false">)</mo>
</math></span> represents the first low tide and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}(12.5,{\text{ }}1.5)">
  <mrow>
    <mtext>B</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>12.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>1.5</mn>
  <mo stretchy="false">)</mo>
</math></span> represents the next high tide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>How much time is there between the first low tide and the next high tide?</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference in height between low tide and high tide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are two high tides on 12 December 2017. At what time does the second high tide occur?</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory packages coconut water in cone-shaped containers with a base radius of 5.2 cm and a height of 13 cm.</p>
</div>

<div class="specification">
<p>The factory designers are currently investigating whether a cone-shaped container can be replaced with a cylinder-shaped container with the same radius and the same total surface area.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of one cone-shaped container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height of the cone-shaped container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the total surface area of the cone-shaped container is 314 cm<sup>2</sup>, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>, of this cylinder-shaped container.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The factory director wants to increase the volume of coconut water sold per container.</p>
<p>State whether or not they should replace the cone-shaped containers with cylinder‑shaped containers. Justify your conclusion.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A communication tower, T, produces a signal that can reach cellular phones within a radius of 32 km. A straight road passes through the area covered by the tower’s signal.</p>
<p>The following diagram shows a line representing the road and a circle representing the area covered by the tower’s signal. Point R is on the circumference of the circle and points S and R are on the road. Point S is 38 km from the tower and RŜT = 43˚.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let SR = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>. Use the cosine rule to show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - \left( {76\,{\text{cos}}\,43^\circ } \right)x + 420 = 0">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>76</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>cos</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <msup>
        <mn>43</mn>
        <mo>∘</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mi>x</mi>
  <mo>+</mo>
  <mn>420</mn>
  <mo>=</mo>
  <mn>0</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the total distance along the road where the signal from the tower can reach cellular phones.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circle and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>1</mn><mo>.</mo><mn>9</mn></math> radians.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded sector.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The diagram below shows a triangular-based pyramid with base <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ADC}}"> <mrow> <mtext>ADC</mtext> </mrow> </math></span>.<br>Edge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BD}}"> <mrow> <mtext>BD</mtext> </mrow> </math></span> is perpendicular to the edges <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}}"> <mrow> <mtext>AD</mtext> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{CD}}"> <mrow> <mtext>CD</mtext> </mrow> </math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;padding-left:60px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 28.4\,{\text{cm}}"> <mrow> <mtext>AC</mtext> </mrow> <mo>=</mo> <mn>28.4</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cm</mtext> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = x\,{\text{cm}}"> <mrow> <mtext>AB</mtext> </mrow> <mo>=</mo> <mi>x</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cm</mtext> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = x + 2\,{\text{cm}}"> <mrow> <mtext>BC</mtext> </mrow> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cm</mtext> </mrow> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\widehat {\text{B}}{\text{C}} = 0.667"> <mrow> <mtext>A</mtext> </mrow> <mrow> <mover> <mtext>B</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> <mo>=</mo> <mn>0.667</mn> </math></span>,  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\widehat {\text{A}}{\text{D}} = 0.611"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>A</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>D</mtext> </mrow> <mo>=</mo> <mn>0.611</mn> </math></span></p>
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AD}}"> <mrow> <mtext>AD</mtext> </mrow> </math></span></p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a triangle ABC.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.20.56.png" alt="N17/5/MATME/SP2/ENG/TZ0/01"></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 5{\rm{ cm, C\hat AB}} = ">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>5</mn>
  <mrow>
    <mrow>
      <mi mathvariant="normal">c</mi>
      <mi mathvariant="normal">m</mi>
      <mo>,</mo>
      <mi mathvariant="normal">C</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">A</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
</math></span> 50° and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat CB}} = ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">C</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
</math></span> 112°</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find BC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A flat horizontal area, ABC, is such that AB = 100 m , BC = 50 m and angle AĈB = 43.7° as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the size of angle BÂC is 20.2°, correct to 3 significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle ABC.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of AC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A vertical pole, TB, is constructed at point B and has height 25 m.</p>
<p>Calculate the angle of elevation of T from, M, the midpoint of the side AC.</p>
<p> </p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre O and radius 40 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_17.31.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/01"></p>
<p>The points A, B and C are on the circumference of the circle and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat OC}} = 1.9{\text{ radians}}">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">O</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">C</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <mn>1.9</mn>
  <mrow>
    <mtext>&nbsp;radians</mtext>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of arc ABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the perimeter of sector OABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of sector OABC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{16}}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>. The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>&nbsp;is tangent to the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
  <mi>x</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> can be expressed in the form <em><strong>r</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  8 \\   2  \end{array}} \right) + t">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
</math></span><em><strong>u</strong></em>.</p>
</div>

<div class="specification">
<p>The direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span> is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em><strong>u</strong></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the obtuse angle formed by the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8"> <mi>x</mi> <mo>=</mo> <mn>8</mn> </math></span> and the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows the chord [AB] in a circle of radius 8 cm, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 12{\text{ cm}}"> <mrow> <mtext>AB</mtext> </mrow> <mo>=</mo> <mn>12</mn> <mrow> <mtext> cm</mtext> </mrow> </math></span>.</p>
<p><img src="images/Schermafbeelding_2017-08-14_om_13.20.17.png" alt="M17/5/MATME/SP2/ENG/TZ1/05"></p>
<p>Find the area of the shaded segment.</p>
</div>
<br><hr><br><div class="question">
<p>The vector equation of line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> is given by <em><strong>r</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  { - 1} \\   3 \\   8  \end{array}} \right) + t\left( {\begin{array}{*{20}{c}}  4 \\   5 \\   { - 1}  \end{array}} \right)">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>3</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>4</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>5</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mrow>
              <mo>−</mo>
              <mn>1</mn>
            </mrow>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<p>Point P is the point on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> that is closest to the origin. Find the coordinates of P.</p>
</div>
<br><hr><br><div class="specification">
<p>A metal sphere has a radius 12.7 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the sphere expressing your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \times {10^k}">
  <mi>a</mi>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mi>k</mi>
    </msup>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant a &lt; 10">
  <mn>1</mn>
  <mo>⩽</mo>
  <mi>a</mi>
  <mo>&lt;</mo>
  <mn>10</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}">
  <mi>k</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sphere is to be melted down and remoulded into the shape of a cone with a height of 14.8 cm.</p>
<p>Find the radius of the base of the cone, correct to 2 significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket is travelling in a straight line, with an initial velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="140">
  <mn>140</mn>
</math></span> m s<sup>−1</sup>. It accelerates to a new velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500">
  <mn>500</mn>
</math></span> m s<sup>−1</sup> in two stages.</p>
<p>During the first stage its acceleration, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> m s<sup>−2</sup>, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = 240\,{\text{sin}}\left( {2t} \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>240</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant k">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>k</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The first stage continues for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> seconds until the velocity of the rocket reaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="375">
  <mn>375</mn>
</math></span> m s<sup>−1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> m s<sup>−1</sup>, of the rocket during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance that the rocket travels during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the second stage, the rocket accelerates at a constant rate. The distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.</p>
<p>Find the total time taken for the two stages.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a right-angled triangle,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC}}">
  <mrow>
    <mtext>ABC</mtext>
  </mrow>
</math></span>, with&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AC}} = 10\,{\text{cm}}">
  <mrow>
    <mtext>AC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>10</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cm</mtext>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{AB}} = 6\,{\text{cm}}">
  <mrow>
    <mtext>AB</mtext>
  </mrow>
  <mo>=</mo>
  <mn>6</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cm</mtext>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BC}} = 8\,{\text{cm}}">
  <mrow>
    <mtext>BC</mtext>
  </mrow>
  <mo>=</mo>
  <mn>8</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cm</mtext>
  </mrow>
</math></span>.</p>
<p style="padding-left: 120px;">The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{D}}">
  <mrow>
    <mtext>D</mtext>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{F}}">
  <mrow>
    <mtext>F</mtext>
  </mrow>
</math></span> lie on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{AC}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>AC</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>.<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{BD}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>BD</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span> is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{AC}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>AC</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>.<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BEF}}">
  <mrow>
    <mtext>BEF</mtext>
  </mrow>
</math></span> is the arc of a circle, centred at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span>.<br>The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is bounded by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{BD}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>BD</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left[ {{\text{DF}}} \right]">
  <mrow>
    <mo>[</mo>
    <mrow>
      <mrow>
        <mtext>DF</mtext>
      </mrow>
    </mrow>
    <mo>]</mo>
  </mrow>
</math></span> and arc <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BEF}}">
  <mrow>
    <mtext>BEF</mtext>
  </mrow>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\widehat {\text{A}}{\text{C}}"> <mrow> <mtext>B</mtext> </mrow> <mrow> <mover> <mtext>A</mtext> <mo>^</mo> </mover> </mrow> <mrow> <mtext>C</mtext> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle, centre O and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> mm. The circle is divided into five equal sectors.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_15.31.24.png" alt="N16/5/MATME/SP2/ENG/TZ0/03"></p>
<p>One sector is OAB, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{A\hat OB}} = \theta ">
  <mrow>
    <mrow>
      <mi mathvariant="normal">A</mi>
      <mrow>
        <mover>
          <mi mathvariant="normal">O</mi>
          <mo stretchy="false">^<!-- ^ --></mo>
        </mover>
      </mrow>
      <mi mathvariant="normal">B</mi>
    </mrow>
  </mrow>
  <mo>=</mo>
  <mi>θ<!-- θ --></mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The area of sector AOB is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20\pi {\text{ m}}{{\text{m}}^2}">
  <mn>20</mn>
  <mi>π<!-- π --></mi>
  <mrow>
    <mtext>&nbsp;m</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <strong>exact </strong>value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta "> <mi>θ</mi> </math></span> in radians.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find AB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math>. Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on&nbsp;the circumference of the circle and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>2</mn><mi>θ</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>.</p>
<p>The tangents to the circle at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> intersect at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AC</mtext><mo>=</mo><mi>tan</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> when the area of the shaded region is equal to the area of sector <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>OADB</mtext></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the quadrilateral ABCD.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">AB = 6.73 cm, BC = 4.83 cm, BĈD = 78.2° and CD = 3.80 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find BD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The area of triangle ABD is 18.5 cm<sup>2</sup>. Find the possible values of <em>θ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows part of a circle with centre O and radius 4 cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>Chord AB has a length of 5 cm and AÔB = <em>θ</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>θ</em>, giving your answer in radians.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Consider a triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>AC</mi><mo>=</mo><mn>12</mn><mo>,</mo><mo> </mo><mi>CB</mi><mo>=</mo><mn>7</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mn>25</mn><mo>°</mo></math>.</p>
<p>Find the smallest possible perimeter of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ABC</mi></math>.</p>
</div>
<br><hr><br><div class="question">
<p>Triangle ABC has <em>a</em> = 8.1 cm, <em>b</em> = 12.3 cm and area 15 cm<sup>2</sup>. Find the largest possible perimeter of triangle ABC.</p>
</div>
<br><hr><br>