File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/SL-paper2html
File size: 949.88 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \geqslant 0">
  <mi>a</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \geqslant 0">
  <mi>b</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the greatest possible expected value and the least possible expected value.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The time it takes Suzi to drive from home to work each morning is normally distributed with a&nbsp;mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> minutes and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#963;</mi></math> minutes.</p>
<p>On <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math>&nbsp;of days, it takes Suzi longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn></math> minutes to drive to work.</p>
</div>

<div class="specification">
<p>Suzi will be late to work if it takes her longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes to drive to work. The time it&nbsp;takes to drive to work each day is independent of any other day.</p>
<p>Suzi will work five days next week.</p>
</div>

<div class="specification">
<p>Suzi will work <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> days this month. She will receive a bonus if she is on time at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> of&nbsp;those days.</p>
<p>So far this month, she has worked <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> days and been on time <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> of those days.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On a randomly selected day, find the probability that Suzi’s drive to work will take longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that she will be late to work at least one day next week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Suzi will be late to work at least one day next week, find the probability that she will be late less than three times.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Suzi will receive a bonus.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of ln <em>x</em> and ln <em>y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between ln <em>x</em> and ln <em>y</em> can be modelled by the regression equation ln <em>y</em> = <em>a</em> ln <em>x</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the value of <em>y</em> when<em> x</em> = 3.57.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between <em>x</em> and <em>y</em> can be modelled using the formula <em>y</em> = <em>kx<sup>n</sup></em>, where <em>k</em> ≠ 0 , <em>n</em> ≠ 0 , <em>n</em> ≠ 1.</p>
<p>By expressing ln <em>y</em> in terms of ln <em>x</em>, find the value of <em>n</em> and of <em>k</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a group of 35 students, some take art class (<em>A</em>) and some take music class (<em>M</em>). 5 of these&nbsp;students do not take either class. This information is shown in the following Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>One student from the group is chosen at random. Find the probability that</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of students in the group who take art class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the student does not take art class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the student takes either art class or music class, but not both.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks obtained by nine Mathematical Studies SL students in their projects (<em>x</em>) and their final IB examination scores (<em>y</em>) were recorded. These data were used to determine whether the project mark is a good predictor of the examination score. The results are shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The equation of the regression line <em>y</em> on <em>x</em> is <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>

<div class="specification">
<p>A tenth student, Jerome, obtained a project mark of 17.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean project mark.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean examination score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <em>r </em>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <em>m</em> and of <em>c</em> for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the point M (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>) lies on the regression line <em>y</em> on <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression line <em>y</em> on <em>x</em> to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether it is valid to use the regression line y on x to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In his final IB examination Jerome scored 65.</p>
<p>Calculate the percentage error in Jerome’s estimated examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Emlyn plays many games of basketball for his school team. The number of minutes he plays in each game follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes.</p>
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>The standard deviation of the number of minutes Emlyn plays in any game is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>There is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mo>%</mo></math> chance Emlyn plays less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes in a game.</p>
</div>

<div class="specification">
<p>Emlyn will play in two basketball games today.</p>
</div>

<div class="specification">
<p>Emlyn and his teammate Johan each practise shooting the basketball multiple times from&nbsp;a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>. A record of their performance over the weekend is shown in the table below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>On Monday, Emlyn and Johan will practise and each will shoot <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math> times from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram to represent this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability he plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in one game and more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in the other game.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of successful shots Emlyn will make on Monday, based on the results from Saturday and Sunday.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Emlyn claims the results from Saturday and Sunday show that his expected number of successful shots will be more than Johan’s.</p>
<p>Determine if Emlyn’s claim is correct. Justify your reasoning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>On a school excursion, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> students visited an amusement park. The amusement park’s&nbsp;main attractions are rollercoasters (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">R</mtext></math>), water slides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">W</mtext></math>), and virtual reality rides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">V</mtext></math>).</p>
<p>The students were asked which main attractions they visited. The results are shown in the&nbsp;Venn diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> students visited the rollercoasters or the water slides.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students who visited at least two types of main attraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>(</mo><mo> </mo><mi>R</mi><mo>∩</mo><mi>W</mi><mo>)</mo><mo> </mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the rollercoasters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the virtual reality rides.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine whether the events in <strong>parts (d)(i)</strong> and <strong>(d)(ii)</strong> are independent. Justify your reasoning. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>At a school, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo>%</mo></math> of the students play a sport and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo>%</mo></math> of the students are involved in&nbsp;theatre. <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo>%</mo></math> of the students do neither activity.</p>
<p>A student is selected at random.</p>
</div>

<div class="specification">
<p>At the school <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>48</mn><mo>%</mo></math> of the students are girls, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of the girls are involved in theatre.</p>
<p>A student is selected at random. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> be&nbsp;the event &ldquo;the student is a girl&rdquo; and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the&nbsp;event &ldquo;the student is involved in theatre&rdquo;.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student plays a sport and is involved in theatre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student is involved in theatre, but does not play a sport.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>G</mi><mo>∩</mo><mi>T</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine if the events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> are independent. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The heights of adult males in a country are normally distributed with a mean of 180 cm and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma {\text{ cm}}">
  <mi>σ</mi>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span>. 17% of these men are shorter than 168 cm. 80% of them have heights between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(192 - h){\text{ cm}}">
  <mo stretchy="false">(</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span> and 192 cm.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, and the average weight of the brain, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="specification">
<p>The average body weight of mice is 0.023 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line to estimate the average weight of the brain of mice. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>At Penna Airport the probability, P(<em>A</em>), that all passengers arrive on time for a flight is 0.70. The probability, P(<em>D</em>), that a flight departs on time is 0.85. The probability that all passengers arrive on time for a flight and it departs on time is 0.65.</p>
</div>

<div class="specification">
<p>The number of hours that pilots fly per week is normally distributed with a mean of 25 hours and a standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span>. 90 % of pilots fly less than 28 hours in a week.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that event <em>A</em> and event <em>D</em> are <strong>not</strong> independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <msup>
        <mi>D</mi>
        <mo>′</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> Given that all passengers for a flight arrive on time, find the probability that the flight does <strong>not</strong> depart on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>All flights have two pilots. Find the percentage of flights where <strong>both</strong> pilots flew more than 30 hours last week.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>

<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p>For each student, the number of hours spent on social media (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>) and the number of IB Diploma points obtained (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>) are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>Use your graphic display calculator to find</p>
</div>

<div class="specification">
<p>Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between 3 and 30 hours on social media.</p>
<p>The equation of the regression line <em>y </em>on <em>x </em>for these ten female students is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="y = &nbsp;- \frac{2}{3}x + \frac{{125}}{3}.">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>125</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>.</mo>
</math></span></p>
<p>An eleventh girl spent 34 hours on social media in the month before her IB Diploma examinations.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw a scatter diagram for these data. Use a scale of 2 cm to represent 5 hours on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 2 cm to represent 10 points on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of hours spent on social media;</p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on your scatter diagram and label this point M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for these eight male students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given equation of the regression line to estimate the number of IB Diploma points that this girl obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer produces 1500 boxes of breakfast cereal every day.</p>
<p>The weights of these boxes are normally distributed with a mean of 502 grams and a standard deviation of 2 grams.</p>
</div>

<div class="specification">
<p>All boxes of cereal with a weight between 497.5 grams and 505 grams are sold. The manufacturer’s income from the sale of each box of cereal is $2.00.</p>
</div>

<div class="specification">
<p>The manufacturer recycles any box of cereal with a weight <strong>not </strong>between 497.5 grams and 505 grams. The manufacturer’s recycling cost is $0.16 per box.</p>
</div>

<div class="specification">
<p>A <strong>different </strong>manufacturer produces boxes of cereal with weights that are normally distributed with a mean of 350 grams and a standard deviation of 1.8 grams.</p>
<p>This manufacturer sells all boxes of cereal that are above a minimum weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>They sell 97% of the cereal boxes produced.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram that shows this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the probability that a box of cereal, chosen at random, is sold.</p>
<p>(ii)     Calculate the manufacturer’s expected daily income from these sales.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the manufacturer’s expected daily recycling cost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The final examination results obtained by a group of 3200 Biology students are summarized on the cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>350 of the group obtained the highest possible grade in the examination.</p>
</div>

<div class="specification">
<p>The grouped frequency table summarizes the examination results of this group of students.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median of the examination results.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the final examination result required to obtain the highest possible grade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate an estimate of the mean examination result.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate an estimate of the standard deviation, giving your answer correct to <strong>three decimal places</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher sets a grade boundary that is one standard deviation below the mean.</p>
<p>Use the cumulative frequency graph to estimate the number of students whose final examination result was below this grade boundary.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company performs an experiment on the efficiency of a liquid that is used to detect a nut allergy.</p>
<p>A group of 60 people took part in the experiment. In this group 26 are allergic to nuts. One person from the group is chosen at random.</p>
</div>

<div class="specification">
<p>A second person is chosen from the group.</p>
</div>

<div class="specification">
<p>When the liquid is added to a person’s blood sample, it is expected to turn blue if the person is allergic to nuts and to turn red if the person is not allergic to nuts.</p>
<p>The company claims that the probability that the test result is correct is 98% for people who are allergic to nuts and 95% for people who are not allergic to nuts.</p>
<p>It is known that 6 in every 1000 adults are allergic to nuts.</p>
<p>This information can be represented in a tree diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.31.34.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c.d.e.f.g"></p>
</div>

<div class="specification">
<p>An adult, who was not part of the original group of 60, is chosen at random and tested using this liquid.</p>
</div>

<div class="specification">
<p>The liquid is used in an office to identify employees who might be allergic to nuts. The liquid turned blue for <strong>38 </strong><strong>employees</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both people chosen are <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy </strong>and complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this adult is allergic to nuts and the liquid turns blue.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the liquid turns blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the tested adult is allergic to nuts given that the liquid turned blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of employees, from this 38, who are allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>In a company it is found that 25 % of the employees encountered traffic on their way to work. From those who encountered traffic the probability of being late for work is 80 %.</p>
<p>From those who did not encounter traffic, the probability of being late for work is 15 %.</p>
<p>The tree diagram illustrates the information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The company investigates the different means of transport used by their employees in the past year to travel to work. It was found that the three most common means of transport used to travel to work were public transportation (<em>P </em>), car (<em>C </em>) and bicycle (<em>B </em>).</p>
<p>The company finds that 20 employees travelled by car, 28 travelled by bicycle and 19 travelled by public transportation in the last year.</p>
<p>Some of the information is shown in the Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are 54 employees in the company.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>a</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic and was late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;was late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic given that they were late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who, in the last year, did not travel to work by car, bicycle or public transportation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {\left( {C \cup B} \right) \cap P'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <msup> <mi>P</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Adam is a beekeeper who collected data about monthly honey production in his bee hives. The data for six of his hives is shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.46.13.png" alt="N17/5/MATME/SP2/ENG/TZ0/08"></p>
<p>The relationship between the variables is modelled by the regression line with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = aN + b">
  <mi>P</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>N</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Adam has 200 hives in total. He collects data on the monthly honey production of all the hives. This data is shown in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.49.33.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e"></p>
<p>Adam’s hives are labelled as low, regular or high production, as defined in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.51.25.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e_02"></p>
</div>

<div class="specification">
<p>Adam knows that 128 of his hives have a regular production.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this regression line to estimate the monthly honey production from a hive that has 270 bees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of low production hives.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of hives that have a high production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adam decides to increase the number of bees in each low production hive. Research suggests that there is a probability of 0.75 that a low production hive becomes a regular production hive. Calculate the probability that 30 low production hives become regular production hives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following frequency table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_09.52.57.png" alt="M17/5/MATME/SP2/ENG/TZ1/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mode.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the variance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, in grams, of oranges grown in an orchard, are normally distributed with a mean of 297 g. It is known that 79 % of the oranges weigh more than 289 g and 9.5 % of the oranges weigh more than 310 g.</p>
</div>

<div class="specification">
<p>The weights of the oranges have a standard deviation of σ.</p>
</div>

<div class="specification">
<p>The grocer at a local grocery store will buy the oranges whose weights exceed the&nbsp;35th percentile.</p>
</div>

<div class="specification">
<p>The orchard packs oranges in boxes of 36.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that an orange weighs between 289 g and 310 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standardized value for 289 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of σ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To the nearest gram, find the minimum weight of an orange that the grocer will buy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the grocer buys more than half the oranges in a box selected at random.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The grocer selects two boxes at random.</p>
<p>Find the probability that the grocer buys more than half the oranges in each box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory manufactures lamps. It is known that the probability that a lamp is found to be&nbsp;defective is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>05</mn></math>. A random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> lamps is tested.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that there is at least one defective lamp in the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that there is at least one defective lamp in the sample, find the probability that there are at most two defective lamps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weight, <em>W</em>, of basketball players in a tournament is found to be normally distributed with a mean of 65 kg and a standard deviation of 5 kg.</p>
</div>

<div class="specification">
<p>The probability that a basketball player has a weight that is within 1.5 standard deviations of the mean is <em>q</em>.</p>
</div>

<div class="specification">
<p>A basketball coach observed 60 of her players to determine whether their performance and their weight were independent of each other. Her observations were recorded as shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p>She decided to conduct a <em>χ </em><sup>2</sup> test for independence at the 5% significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a basketball player has a weight that is less than 61 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a training session there are 40 basketball players.</p>
<p>Find the expected number of players with a weight less than 61 kg in this training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a normal curve to represent this probability.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>q</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P(<em>W</em> &gt; <em>k</em>) = 0.225 , find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test state the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test find the<em> p</em>-value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a conclusion for this test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
  <mi>W</mi>
</math></span>, of newborn babies in Australia are normally distributed with a mean 3.41 kg and standard deviation 0.57 kg. A newborn baby has a low birth weight if it weighs less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> kg.</p>
</div>

<div class="question">
<p>Given that 5.3% of newborn babies have a low birth weight, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>160 students attend a dual language school in which the students are taught only in Spanish or taught only in English.</p>
<p>A survey was conducted in order to analyse the number of students studying Biology or Mathematics. The results are shown in the Venn diagram.</p>
<p>&nbsp;</p>
<p style="padding-left: 240px;">Set <em>S</em> represents those students who are <strong>taught</strong> in Spanish.</p>
<p style="padding-left: 240px;">Set <em>B</em> represents those students who <strong>study</strong> Biology.</p>
<p style="padding-left: 240px;">Set <em>M</em> represents those students who <strong>study</strong> Mathematics.</p>
<p style="padding-left: 210px;">&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A student from the school is chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that&nbsp;are taught in Spanish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study Mathematics in English.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study both Biology and Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {S \cap \left( {M \cup B} \right)} \right)">
  <mi>n</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>S</mi>
      <mo>∩</mo>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>M</mi>
          <mo>∪</mo>
          <mi>B</mi>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {B \cap M \cap S'} \right)">
  <mi>n</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>B</mi>
      <mo>∩</mo>
      <mi>M</mi>
      <mo>∩</mo>
      <msup>
        <mi>S</mi>
        <mo>′</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies neither Biology nor Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student is taught in Spanish, given that the student studies Biology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Lucy sells hot chocolate drinks at her snack bar and has noticed that she sells more&nbsp;hot chocolates on cooler days. On six different days, she records the maximum daily&nbsp;temperature, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, measured in degrees centigrade, and the number of hot chocolates sold, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>.&nbsp;The results are shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> can be modelled by the regression line with&nbsp;equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mi>a</mi><mi>T</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the regression equation, estimate the number of hot chocolates that Lucy will sell on a day when the maximum temperature is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>°</mo><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> be two independent events such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>&#8745;</mo><mi>B</mi><mo>'</mo><mo>&#8202;</mo><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>16</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>&#8242;</mo><mo>&#8745;</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>36</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>)</mo><mo>=</mo><mi>x</mi></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>A</mi><mo>'</mo><mo> </mo><menclose notation="left"><mo> </mo><mi>B</mi><mo>'</mo></menclose></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> minutes, taken to complete a jigsaw puzzle can be modelled by a normal&nbsp;distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>6</mn></math>.</p>
<p>It is found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>%</mo></math>&nbsp;of times taken to complete the jigsaw puzzle are longer than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mo>.</mo><mn>8</mn></math>&nbsp;minutes.</p>
</div>

<div class="specification">
<p>Use&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>29</mn></math> in the remainder of the question.</p>
</div>

<div class="specification">
<p>Six randomly chosen people complete the jigsaw puzzle.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By stating and solving an appropriate equation, show, correct to two decimal places,&nbsp;that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>32</mn><mo>.</mo><mn>29</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>86</mn></math>th percentile time to complete the jigsaw puzzle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly chosen person will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to&nbsp;complete the jigsaw puzzle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least five of them will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to&nbsp;complete the jigsaw puzzle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Having spent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math> minutes attempting the jigsaw puzzle, a randomly chosen person had not&nbsp;yet completed the puzzle.</p>
<p>Find the probability that this person will take more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to complete the&nbsp;jigsaw puzzle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All answers in this question should be given to four significant figures.</strong></p>
<p><br>In a local weekly lottery, tickets cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2</mn></math> each.</p>
<p>In the first week of the lottery, a player will receive <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>D</mi></math> for each ticket, with the probability&nbsp;distribution shown in the following table. For example, the probability of a player&nbsp;receiving <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>10</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>03</mn></math>. The grand prize in the first week of the lottery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1000</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>If nobody wins the grand prize in the first week, the probabilities will remain the same, but the&nbsp;value of the grand prize will be <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2000</mn></math> in the second week, and the value of the grand prize&nbsp;will continue to double each week until it is won. All other prize amounts will remain the same.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether this lottery is a fair game in the first week. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the grand prize is not won and the grand prize continues to double, write an&nbsp;expression in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> for the value of the grand prize in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mtext>th</mtext></math>&nbsp;week of the lottery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week is the first week in which the player is expected to make a profit. Ryan knows&nbsp;that if he buys a lottery ticket in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week, his expected profit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>p</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>χ</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>

<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down&nbsp;the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down&nbsp;the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The flight times, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> minutes, between two cities can be modelled by a normal distribution with&nbsp;a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>75</mn></math> minutes and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#963;</mi></math> minutes.</p>
</div>

<div class="specification">
<p>On a particular day, there are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>64</mn></math> flights scheduled between these two cities.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> of the flight times are longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>82</mn></math> minutes, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected flight will have a flight time of more than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a flight between the two cities takes longer than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes, find the&nbsp;probability that it takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>82</mn></math> minutes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of flights that will have a flight time of more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> of the flights on this particular day will have a flight&nbsp;time&nbsp;of more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> minutes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the data collected from an experiment.</p>
<p><img src=""></p>
<p>The data is also represented on the following scatter diagram.</p>
<p><img src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with&nbsp;equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&nbsp;</mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this model to predict the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>18</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>x</mi><mo>¯</mo></mover></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mi>y</mi><mo>¯</mo></mover></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>At a caf&eacute;, the waiting time between ordering and receiving a cup of coffee is dependent upon&nbsp;the number of customers who have already ordered their coffee and are waiting to receive it.</p>
<p>Sarah, a regular customer, visited the caf&eacute; on five consecutive days. The following table&nbsp;shows the number of customers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, ahead of Sarah who have already ordered and are&nbsp;waiting to receive their coffee and Sarah&rsquo;s waiting time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> minutes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> with&nbsp;equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of Pearson’s product-moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret, in context, the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> found in part (a)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On another day, Sarah visits the café to order a coffee. Seven customers have already&nbsp;ordered their coffee and are waiting to receive it.</p>
<p>Use the result from part (a)(i) to estimate Sarah’s waiting time to receive her coffee.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of hours spent exercising each week by a group of students is shown in the&nbsp;following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The median is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn></math> hours.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sila High School has 110 students. They each take exactly one language class from a choice of English, Spanish or Chinese. The following table shows the number of female and male students in the three different language classes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>&nbsp;test was carried out at the 5 % significance level to analyse the relationship between gender and student choice of language class.</p>
</div>

<div class="specification">
<p>Use your graphic display calculator to write down</p>
</div>

<div class="specification">
<p>The critical value at the 5 % significance level for this test is 5.99.</p>
</div>

<div class="specification">
<p>One student is chosen at random from this school.</p>
</div>

<div class="specification">
<p>Another student is chosen at random from this school.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis, H<sub>0&nbsp;</sub>, for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the expected frequency of female students who chose to take the Chinese class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not H<sub>0</sub> should be rejected. Justify your statement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student does not take the Spanish class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that neither of the two students take the Spanish class.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the two students is female.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The manager of a folder factory recorded the number of folders produced by the factory (in thousands) and the production costs (in thousand Euros), for six consecutive months.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.30.09.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03"></p>
</div>

<div class="specification">
<p>Every month the factory sells all the folders produced. Each folder is sold for 2.99 Euros.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for this data. Use a scale of 2 cm for 5000 folders on the horizontal axis and 2 cm for 10 000 Euros on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data&nbsp;the mean number of folders produced, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean production cost, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar C">
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(\bar x,{\text{ }}\bar C)">
  <mrow>
    <mtext>M</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on the scatter diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is appropriate to model the relationship between these variables.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the equation of the regression line to estimate the least number of folders that the factory needs to sell in a month to exceed its production cost for that month.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die is rolled. The following table gives the probability of each score.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected value of the score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is rolled 80 times. On how many rolls would you expect to obtain a three?</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the hand lengths and the heights of five athletes on a sports team.</p>
<p style="text-align: center;"><img src=""></p>
<p>The relationship between <em>x</em> and <em>y</em> can be modelled by the regression line with equation <em>y</em> = <em>ax</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another athlete on this sports team has a hand length of 21.5 cm. Use the regression equation to estimate the height of this athlete.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was conducted on a group of people. The first question asked how many pets they each own. The results are summarized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The second question asked each member of the group to state their age and preferred pet. The data obtained is organized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test is carried out at the 10 % significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of people, from this group, who are <strong>pet owners</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down&nbsp;the median number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the ratio of teenagers to non-teenagers in its simplest form.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State&nbsp;the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of teenagers that prefer cats.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>A transportation company owns 30 buses. The distance that each bus has travelled since being purchased by the company is recorded. The cumulative frequency curve for these data is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>It is known that 8 buses travelled more than <em>m</em> kilometres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance between 15000 and 20000 kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the median distance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the percentage of buses that travelled a distance greater than the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance less than or equal to 12 000 km.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>m</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The smallest distance travelled by one of the buses was 2500 km.<br>The longest distance travelled by one of the buses was 23 000 km.</p>
<p><strong>On graph paper</strong>, draw a box-and-whisker diagram for these data. Use a scale of 2 cm to represent 5000 km.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#956;</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#963;</mi></math>.</p>
</div>

<div class="specification">
<p>The avocados grown on a farm have weights, in grams, that are normally distributed with&nbsp;mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#956;</mi></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#963;</mi></math>. Avocados are categorized as small, medium, large or&nbsp;premium, according to their weight. The following table shows the probability an avocado&nbsp;grown on the farm is classified as small, medium, large or premium.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The maximum weight of a small avocado is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>106</mn><mo>.</mo><mn>2</mn></math> grams.</p>
<p>The minimum weight of a premium avocado is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>182</mn><mo>.</mo><mn>6</mn></math> grams.</p>
</div>

<div class="specification">
<p>A supermarket purchases all the avocados from the farm that weigh more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>106</mn><mo>.</mo><mn>2</mn></math> grams.</p>
</div>

<div class="specification">
<p>Find the probability that an avocado chosen at random from this purchase is categorized as</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mfenced><mrow><mi>μ</mi><mo>-</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi><mo>&lt;</mo><mi>X</mi><mo>&lt;</mo><mi>μ</mi><mo>+</mo><mn>1</mn><mo>.</mo><mn>5</mn><mi>σ</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>medium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>large.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>premium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The selling prices of the different categories of avocado at this supermarket are shown in the following table:</p>
<p><img style="float:left;" src=""></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>The supermarket pays the farm <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo> </mo><mn>200</mn></math> for the avocados and assumes it will then sell them in exactly the same proportion as purchased from the farm.</p>
<p>According to this model, find the minimum number of avocados that must be sold so that the net profit for the supermarket is at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo> </mo><mn>438</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Fiona walks from her house to a bus stop where she gets a bus to school. Her time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> minutes,&nbsp;to walk to the bus stop is normally distributed with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math>.</p>
<p>Fiona always leaves her house at 07:15. The first bus that she can get departs at 07:30.</p>
</div>

<div class="specification">
<p>The length of time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> minutes, of the bus journey to Fiona’s school is normally distributed&nbsp;with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>50</mn><mo>,</mo><mo>&nbsp;</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math>. The probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>941</mn></math>.</p>
</div>

<div class="specification">
<p>If Fiona misses the first bus, there is a second bus which departs at 07:45. She must arrive&nbsp;at school by 08:30&nbsp;to be on time. Fiona will not arrive on time if she misses both buses.&nbsp;The variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that it will take Fiona between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to walk to the bus stop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Fiona will arrive on time.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This year, Fiona will go to school on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>183</mn></math> days.</p>
<p>Calculate the number of days Fiona is expected to arrive on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - 0.5{x^4} + 3{x^2} + 2x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.09.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/08"></p>
<p>&nbsp;</p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>. There is a maximum at A where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>, and a point of inflexion at B where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span> be the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> , the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b"> <mi>x</mi> <mo>=</mo> <mi>b</mi> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R"> <mi>R</mi> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the BMI of an adult man whose waist size is 95 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A company produces bags of sugar whose masses, in grams, can be modelled by a normal&nbsp;distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>5</mn></math>. A bag of sugar is rejected for sale if&nbsp;its mass is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>995</mn></math> grams.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag selected at random is rejected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of bags which will be rejected from a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> bags.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a bag is not rejected, find the probability that it has a mass greater than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1005</mn></math> grams.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There are three fair six-sided dice. Each die has two green faces, two yellow faces and two red faces.</p>
<p>All three dice are rolled.</p>
</div>

<div class="specification">
<p>Ted plays a game using these dice. The rules are:</p>
<ul>
<li>Having a turn means to roll all three dice.</li>
<li>He wins $10 for each green face rolled and adds this to his winnings.</li>
<li>After a turn Ted can either:<br>
<ul>
<li>end the game (and keep his winnings), or</li>
<li>have another turn (and try to increase his winnings).</li>
</ul>
</li>
<li>If two or more red faces are rolled in a turn, all winnings are lost and the game ends.</li>
</ul>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> ($) represents how much is added to his winnings after a turn.</p>
<p>The following table shows the distribution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span>, where $<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> represents his winnings in the game so far.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling exactly one red face.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling two or more red faces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, after a turn, the probability that Ted adds exactly $10 to his winnings is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ted will always have another turn if he expects an increase to his winnings.</p>
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> for which Ted should end the game instead of having another turn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The length, <em>X </em>mm, of a certain species of seashell is normally distributed with mean 25 and&nbsp;variance, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2}">
  <mrow>
    <msup>
      <mi>σ<!-- σ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
<p>The probability that <em>X</em> is less than 24.15 is 0.1446.</p>
</div>

<div class="specification">
<p>A random sample of 10 seashells is collected on a beach. Let <em>Y</em> represent the number of&nbsp;seashells with lengths greater than 26 mm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(24.15 &lt; <em>X</em> &lt; 25).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>, the standard deviation of <em>X</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that a seashell selected at random has a length greater than 26 mm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find E(<em>Y</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly three of these seashells have a length greater than 26 mm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A seashell selected at random has a length less than 26 mm.</p>
<p>Find the probability that its length is between 24.15 mm and 25 mm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>3</mn><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>A</mi><mo>∪</mo><mi>B</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>68</mn></math>, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>B</mi><mo>)</mo></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following table below shows the marks scored by seven students on two different&nbsp;mathematics tests.</p>
<p><img src=""></p>
<p>Let <em>L</em><sub>1</sub> be the regression line of <em>x</em> on <em>y</em>. The equation of the line <em>L</em><sub>1</sub> can be written in the&nbsp;form <em>x</em> = <em>ay</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em>L</em><sub>2</sub> be the regression line of <em>y</em> on <em>x</em>. The lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> pass through the same point with coordinates (<em>p</em> , <em>q</em>).</p>
<p>Find the value of <em>p</em> and the value of <em>q</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Contestants in a TV gameshow try to get through three walls by passing through doors without falling into a trap. Contestants choose doors at random.<br>If they avoid a trap they progress to the next wall.<br>If a contestant falls into a trap they exit the game before the next contestant plays.<br>Contestants are not allowed to watch each other attempt the game.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The first wall has four doors with a trap behind one door.</p>
<p style="text-align: left;">Ayako is a contestant.</p>
</div>

<div class="specification">
<p>Natsuko is the second contestant.</p>
</div>

<div class="specification">
<p>The second wall has five doors with a trap behind two of the doors.</p>
<p>The third wall has six doors with a trap behind three of the doors.</p>
<p>The following diagram shows the branches of a probability tree diagram for a contestant in the game.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that Ayako avoids the trap in this wall.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that only one of Ayako and Natsuko falls into a trap while attempting to pass through a door <strong>in the first wall</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> the probability tree diagram and write down the relevant probabilities along the branches.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap while attempting to pass through a door in the second wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>120 contestants attempted this game.</p>
<p>Find the expected number of contestants who fell into a trap while attempting to pass through a door in the third wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The principal of a high school is concerned about the effect social media use might be having on the self-esteem of her students. She decides to survey a random sample of 9 students to gather some data. She wants the number of students in each grade in the sample to be, as far as possible, in the same proportion as the number of students in each grade in the school.</p>
</div>

<div class="specification">
<p>The number of students in each grade in the school is shown in table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>In order to select the 3 students from grade 12, the principal lists their names in alphabetical order and selects the 28<sup>th</sup>, 56<sup>th</sup> and 84<sup>th</sup> student on the list.</p>
</div>

<div class="specification">
<p>Once the principal has obtained the names of the 9 students in the random sample, she surveys each student to find out how long they used social media the previous day and measures their self-esteem using the Rosenberg scale. The Rosenberg scale is a number between 10 and 40, where a high number represents high self-esteem.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that 3 students will be selected from grade 12.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of students in each grade in the sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Pearson’s product moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the meaning of the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> in the context of the principal’s concerns.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> makes it appropriate to find the equation of a regression line.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another student at the school, Jasmine, has a self-esteem value of 29.            </p>
<p>By finding the equation of an appropriate regression line, estimate the time Jasmine spent on social media the previous day.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A healthy human body temperature is 37.0 °C. Eight people were medically examined and the difference in their body temperature (°C), from 37.0 °C, was recorded. Their heartbeat (beats per minute) was also recorded.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for temperature difference from 37 °C (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>) against heartbeat (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>). Use a scale of 2 cm for 0.1 °C on the horizontal axis, starting with −0.3 °C. Use a scale of 1 cm for 2 heartbeats per minute on the vertical axis, starting with 60 beats per minute.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean temperature difference from 37 °C, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of heartbeats per minute, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe the correlation between temperature difference from 37 °C and heartbeat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 66 people went on holiday to Hawaii. During their stay, three trips were arranged: a boat trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>), a coach trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>) and a helicopter trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
  <mi>H</mi>
</math></span>).</p>
<p>From this group of people:</p>
<table style="width: 691.333px;">
<tbody>
<tr>
<td style="width: 182px; text-align: right;">3&nbsp;</td>
<td style="width: 526.333px;">went on all three trips;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">16&nbsp;</td>
<td style="width: 526.333px;">went on the coach trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">13&nbsp;</td>
<td style="width: 526.333px;">went on the boat trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">5&nbsp;</td>
<td style="width: 526.333px;">went on the helicopter trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;"><em>x&nbsp;</em></td>
<td style="width: 526.333px;">went on the coach trip and the helicopter trip <strong>but not</strong> the boat trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">2<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the helicopter trip <strong>but not</strong> the coach trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">4<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the coach trip <strong>but not</strong> the helicopter trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">8&nbsp;</td>
<td style="width: 526.333px;">did not go on any of the trips.</td>
</tr>
</tbody>
</table>
</div>

<div class="specification">
<p>One person in the group is selected at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to represent the given information, using sets labelled <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
  <mi>H</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3">
  <mi>x</mi>
  <mo>=</mo>
  <mn>3</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(B \cap C)">
  <mi>n</mi>
  <mo stretchy="false">(</mo>
  <mi>B</mi>
  <mo>∩</mo>
  <mi>C</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person</p>
<p>(i) &nbsp; &nbsp; went on at most one trip;</p>
<p>(ii) &nbsp; &nbsp; went on the coach trip, given that this person also went on both the helicopter trip and the boat trip.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the mean weight, <em>y</em> kg , of children who are <em>x</em> years old.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between the variables is modelled by the regression line with equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your equation to estimate the mean weight of a child that is 1.95 years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ten students were surveyed about the number of hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma &nbsp;= 5{\text{ and median}} = 27.} ">
  <munderover>
    <mo movablelimits="false">∑<!-- ∑ --></mo>
    <mrow>
      <mi>i</mi>
      <mo>=</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </munderover>
  <mrow>
    <mrow>
      <msub>
        <mi>x</mi>
        <mi>i</mi>
      </msub>
    </mrow>
    <mo>=</mo>
    <mn>252</mn>
    <mo>,</mo>
    <mrow>
      <mtext>&nbsp;</mtext>
    </mrow>
    <mi>σ<!-- σ --></mi>
    <mo>=</mo>
    <mn>5</mn>
    <mrow>
      <mtext>&nbsp;and median</mtext>
    </mrow>
    <mo>=</mo>
    <mn>27.</mn>
  </mrow>
</math></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours spent browsing the Internet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down</p>
<p>(i) &nbsp; &nbsp; the mean;</p>
<p>(ii) &nbsp; &nbsp; the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find</p>
<p>(i) &nbsp; &nbsp; the median;</p>
<p>(ii) &nbsp; &nbsp; the variance.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the systolic blood pressures, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> mmHg, and the ages, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> years, of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> male patients at a medical clinic.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> can be modelled by the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> with&nbsp;equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></math> .</p>
</div>

<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>‐year‐old male patient enters the medical clinic for his appointment.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Pearson’s product‐moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret, in context, the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> found in part (a) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation from part (b) to predict this patient’s systolic blood&nbsp;pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math>‐year‐old male patient enters the medical clinic for his appointment.</p>
<p>Explain why the regression equation from part (b) should not be used to predict this&nbsp;patient’s systolic blood pressure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A nationwide study on reaction time is conducted on participants in two age groups. The participants in Group X are less than 40 years old. Their reaction times are normally distributed with mean 0.489 seconds and standard deviation 0.07 seconds.</p>
</div>

<div class="specification">
<p>The participants in Group Y are 40 years or older. Their reaction times are normally distributed with mean 0.592 seconds and standard deviation <em>σ</em> seconds.</p>
</div>

<div class="specification">
<p>In the study, 38 % of the participants are in Group X.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A person is selected at random from Group X. Find the probability that their reaction time is greater than 0.65 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The probability that the reaction time of a person in Group Y is greater than 0.65 seconds is 0.396. Find the value of <em>σ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A randomly selected participant has a reaction time greater than 0.65 seconds. Find the probability that the participant is in Group X.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the participants with reaction times greater than 0.65 are selected at random. Find the probability that at least two of them are in Group X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>SpeedWay airline flies from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The flight time is normally distributed with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="260">
  <mn>260</mn>
</math></span> minutes and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15">
  <mn>15</mn>
</math></span> minutes.</p>
<p>A flight is considered late if it takes longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes.</p>
</div>

<div class="specification">
<p>The flight is considered to be <strong>on time</strong> if it takes between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes. The probability that a flight is on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.830">
  <mn>0.830</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>During a week, SpeedWay has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12">
  <mn>12</mn>
</math></span> flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The time taken for any flight is independent of the time taken by any other flight.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability a flight is <strong>not</strong> late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are <strong>on time</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are on time, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10"> <mn>10</mn> </math></span> flights are on time.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>SpeedWay increases the number of flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20"> <mn>20</mn> </math></span> flights each week, and improves their efficiency so that more flights are on time. The probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19"> <mn>19</mn> </math></span> flights are on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.788"> <mn>0.788</mn> </math></span>.</p>
<p>A flight is chosen at random. Calculate the probability that it is on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass <em>M</em> of apples in grams is normally distributed with mean <em>μ</em>. The following table shows probabilities for values of <em>M</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The apples are packed in bags of ten.</p>
<p>Any apples with a mass less than 95 g are classified as small.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>μ</em> = 106.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>P</em>(M &lt; 95) .</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag of apples selected at random contains at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of bags in this crate that contain at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least 48 bags in this crate contain at most one small apple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two events <em>A</em> and <em>B</em> are such that P(<em>A</em>) = 0.62 and P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {A \cap B} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩<!-- ∩ --></mo>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> = 0.18.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>A</em> ∩ <em>B′ </em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P((<em>A</em> ∪ <em>B</em>)′<em> </em>) = 0.19, find P(<em>A </em>|<em> </em><em>B</em>′<em> </em>).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A bakery makes two types of muffins: chocolate muffins and banana muffins.</p>
<p>The weights, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> grams, of the chocolate muffins are normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>62</mn><mo>&#8202;</mo><mtext>g</mtext></math>&nbsp;and standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>9</mn><mo>&#8202;</mo><mtext>g</mtext></math>.</p>
</div>

<div class="specification">
<p>The weights, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> grams, of the banana muffins are normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>68</mn><mo>&#8202;</mo><mtext>g</mtext></math>&nbsp;and standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>4</mn><mo>&#8202;</mo><mtext>g</mtext></math>.</p>
<p>Each day <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo>%</mo></math> of the muffins made are chocolate.</p>
<p>On a particular day, a muffin is randomly selected from all those made at the bakery.</p>
</div>

<div class="specification">
<p>The machine that makes the chocolate muffins is adjusted so that the mean weight of the&nbsp;chocolate muffins remains the same but their standard deviation changes to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#963;</mi><mo>&#8202;</mo><mtext>g</mtext></math>. The&nbsp;machine that makes the banana muffins is not adjusted. The probability that the weight of a&nbsp;randomly selected muffin from these machines is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo>&#8202;</mo><mtext>g</mtext></math> is now <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>157</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected chocolate muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a random selection of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> chocolate muffins, find the probability that exactly <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> weigh less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the randomly selected muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that a randomly selected muffin weighs less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>61</mn><mo> </mo><mtext>g</mtext></math>, find the probability that it is chocolate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of messages, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
  <mi>M</mi>
</math></span>, that six randomly selected teenagers sent during the month of October is shown in the following table. The table also shows the time, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span>, that they spent talking on their phone during the same month.</p>
<p><img src=""></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M = aT + b">
  <mi>M</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>T</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression equation to predict the number of messages sent by a teenager that spent <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="154"> <mn>154</mn> </math></span> minutes talking on their phone in October.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A random sample of nine adults were selected to see whether sleeping well affected their&nbsp;reaction times to a visual stimulus. Each adult&rsquo;s reaction time was measured twice.</p>
<p>The first measurement for reaction time was taken on a morning after the adult had&nbsp;slept well. The second measurement was taken on a morning after the same adult had not&nbsp;slept well.</p>
<p>The box and whisker diagrams for the reaction times, measured in seconds, are shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Consider the box and whisker diagram representing the reaction times after sleeping well.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the median reaction time after sleeping well.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the measurement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>46</mn></math> seconds is not an outlier.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why it appears that the mean reaction time is greater than the median reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Now consider the two box and whisker diagrams.</p>
<p>Comment on whether these box and whisker diagrams provide any evidence that might suggest that not sleeping well causes an increase in reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A six-sided biased die is weighted in such a way that the probability of obtaining a “six” is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{7}{{10}}">
  <mfrac>
    <mn>7</mn>
    <mrow>
      <mn>10</mn>
    </mrow>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is tossed five times. Find the probability of obtaining at most three “sixes”.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is tossed five times. Find the probability of obtaining the third “six” on the fifth toss.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span> is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with mean, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>. In the following diagram, the shaded region between 9 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> represents 30% of the distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.15.49.png" alt="M17/5/MATME/SP2/ENG/TZ1/09"></p>
</div>

<div class="specification">
<p>The standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is 2.1.</p>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> and standard deviation 3.5. The events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X > 9">
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y > 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> are independent, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {(X > 9) \cap (Y > 9)} \right) = 0.4">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
      <mo>∩<!-- ∩ --></mo>
      <mo stretchy="false">(</mo>
      <mi>Y</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 9)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y &gt; 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y &lt; 13)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&lt;</mo>
  <mn>13</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A jigsaw puzzle consists of many differently shaped pieces that fit together to form a picture.</p>
<p style="text-align: center;"><img src=""></p>
<p>Jill is doing a 1000-piece jigsaw puzzle. She started by sorting the edge pieces from the interior pieces. Six times she stopped and counted how many of each type she had found. The following table indicates this information.</p>
<p style="text-align: center;"><img src=""></p>
<p>Jill models the relationship between these variables using the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the model to predict how many edge pieces she had found when she had sorted a <strong>total</strong> of 750 pieces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ten students were asked for the distance, in km, from their home to school. Their responses are recorded below.</p>
<p style="text-align: center;">0.3&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;0.4&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;3&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;3&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;3.5&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;5&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;8&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;8&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;10</p>
</div>

<div class="specification">
<p>The following box-and-whisker plot represents this data.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find the mean distance from a student’s home to school.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A jar contains 5 red discs, 10 blue discs and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> green discs. A disc is selected at random and replaced. This process is performed four times.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the first disc selected is red.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the number of red discs selected. Find the smallest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X{\text{ }}) &lt; 0.6">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>&lt;</mo>
  <mn>0.6</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In Lucy&rsquo;s music academy, eight students took their piano diploma examination and achieved&nbsp;scores out of 150. For her records, Lucy decided to record the average number of hours per&nbsp;week each student reported practising in the weeks prior to their examination. These results&nbsp;are summarized in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Pearson’s product-moment correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between the variables can be modelled by the regression equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>=</mo><mi>a</mi><mi>h</mi><mo>+</mo><mi>b</mi></math>. Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of these eight students was disappointed with her result and wished she had practised more. Based on the given data, determine how her score could have been expected to alter had she practised an extra five hours per week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has the following probability distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.34.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X &gt; 0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The maximum temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span>, in degrees Celsius, in a park on six randomly selected days is shown in the following table. The table also shows the number of visitors, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, to the park on each of those six days.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_17.34.22.png" alt="M17/5/MATME/SP2/ENG/TZ2/02"></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = aT + b">
  <mi>N</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>T</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the number of visitors on a day when the maximum temperature is 15 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>A data set consisting of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>16</mn></math> test scores has mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mo>.</mo><mn>5</mn></math> . One test score of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> requires a second marking and is removed from the data set.</p>
<p>Find the mean of the remaining <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> test scores.</p>
</div>
<br><hr><br><div class="specification">
<p>In a large university the probability that a student is left handed is 0.08. A sample of 150 students is randomly selected from the university. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> be the expected number of left-handed students in this sample.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> students are left handed;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that fewer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> students are left handed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, has the following probability distribution:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the following probability distribution.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> which gives the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}{{\text{e}}^{3x}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a horizontal tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
</div>
<br><hr><br>