File "SL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Prior learning/SL-paper1html
File size: 152.43 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{\cos x + \sin y}}{{\sqrt {{w^2} - z} }}">
<mi>p</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>cos</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>+</mo>
<mi>sin</mi>
<mo><!-- --></mo>
<mi>y</mi>
</mrow>
<mrow>
<msqrt>
<mrow>
<msup>
<mi>w</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mi>z</mi>
</msqrt>
</mrow>
</mfrac>
</math></span>,</p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 36^\circ ,{\text{ }}y = 18^\circ ,{\text{ }}w = 29">
<mi>x</mi>
<mo>=</mo>
<msup>
<mn>36</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>y</mi>
<mo>=</mo>
<msup>
<mn>18</mn>
<mo>∘<!-- ∘ --></mo>
</msup>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>w</mi>
<mo>=</mo>
<mn>29</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z = 21.8">
<mi>z</mi>
<mo>=</mo>
<mn>21.8</mn>
</math></span>.</p>
</div>
<div class="question">
<p>Write your answer to <strong>part (b)(ii) </strong>in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \times {10^k}">
<mi>a</mi>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mi>k</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant a < 10,{\text{ }}k \in \mathbb{Z}">
<mn>1</mn>
<mo>⩽</mo>
<mi>a</mi>
<mo><</mo>
<mn>10</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>k</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following table shows four different sets of numbers: <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{N}">
<mrow>
<mi mathvariant="double-struck">N</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Z}">
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Q}">
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R}">
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the second column of the table by giving <strong>one</strong> example of a number from each set.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Josh states: “Every integer is a natural number”.</p>
<p>Write down whether Josh’s statement is correct. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers to two decimal places.</strong></p>
<p>Karl invests 1000 US dollars (USD) in an account that pays a nominal annual interest of 3.5%, <strong>compounded quarterly</strong>. He leaves the money in the account for 5 years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of money he has in the account after 5 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amount of <strong>interest</strong> he earned after 5 years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Karl decides to donate this <strong>interest</strong> to a charity in France. The charity receives 170 euros (EUR). The exchange rate is 1 USD = <em>t</em> EUR.</p>
<p>Calculate the value of <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>For a study, a researcher collected 200 leaves from oak trees. After measuring the lengths of the leaves, in cm, she produced the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.29.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/06"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median length of these leaves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of leaves with a length less than or equal to 8 cm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The speed of light is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{300}}\,{\text{000}}">
<mrow>
<mtext>300</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>000</mtext>
</mrow>
</math></span> kilometres per second. The average distance from the Sun to the Earth is 149.6 million km.</p>
</div>
<div class="question">
<p>Calculate the time, <strong>in minutes</strong>, it takes for light from the Sun to reach the Earth.</p>
</div>
<br><hr><br><div class="specification">
<p>Little Green island originally had no turtles. After 55 turtles were introduced to the island, their population is modelled by</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="N\left( t \right) = a \times {2^{ - t}} + 10{\text{,}}\,\,\,t \geqslant 0{\text{,}}">
<mi>N</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mo>−<!-- − --></mo>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>10</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
<mrow>
<mtext>,</mtext>
</mrow>
</math></span></p>
<p>where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is a constant and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time in years since the turtles were introduced.</p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in years, for the population to decrease to 20 turtles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span> beyond which the turtle population will not decrease.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
<mi>m</mi>
</math></span>. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following sets:</p>
<p style="padding-left: 210px;">The universal set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
<mi>U</mi>
</math></span> consists of all positive integers less than 15;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> is the set of all numbers which are multiples of 3;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> is the set of all even numbers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B">
<mi>A</mi>
<mo>∩</mo>
<mi>B</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B'">
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>B</mi>
<mo>′</mo>
</msup>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {A \cap B'} \right)">
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩</mo>
<msup>
<mi>B</mi>
<mo>′</mo>
</msup>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Place the numbers <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi {\text{,}}\,\, - 5{\text{,}}\,\,{3^{ - 1}}">
<mn>2</mn>
<mi>π</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>−</mo>
<mn>5</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mrow>
<msup>
<mn>3</mn>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{\frac{3}{2}}}">
<mrow>
<msup>
<mn>2</mn>
<mrow>
<mfrac>
<mn>3</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span> in the correct position on the Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the table indicate which <strong>two</strong> of the given statements are true by placing a tick (✔) in the right hand column.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm.<br>A smaller right circular cone has a height of 12 cm and a slant height of 15 cm, and is removed from the top of the larger cone, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question">
<p>Calculate the radius of the base of the cone which has been removed.</p>
</div>
<br><hr><br><div class="specification">
<p>A solid glass paperweight consists of a hemisphere of diameter 6 cm on top of a cuboid with a square base of length 6 cm, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The height of the cuboid, <em>x </em>cm, is equal to the height of the hemisphere.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the paperweight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>1 cm<sup>3</sup> of glass has a mass of 2.56 grams.</p>
<p>Calculate the mass, in grams, of the paperweight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Harry travelled from the USA to Mexico and changed 700 dollars (USD) into pesos (MXN).</p>
<p>The exchange rate was 1 USD = 18.86 MXN.</p>
</div>
<div class="specification">
<p>On his return, Harry had 2400 MXN to change back into USD.</p>
<p>There was a 3.5 % commission to be paid on the exchange.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of MXN Harry received.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the commission, in MXN, that Harry paid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The exchange rate for this exchange was 1 USD = 17.24 MXN.</p>
<p>Calculate the amount of USD Harry received. Give your answer correct to the nearest cent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question give all answers correct to two decimal places.</strong></p>
<p>Javier takes 5000 US dollars (USD) on a business trip to Venezuela. He exchanges 3000 USD into Venezuelan bolívars (VEF).</p>
<p>The exchange rate is 1 USD <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> 6.3021 VEF.</p>
</div>
<div class="specification">
<p>During his time in Venezuela, Javier spends 1250 USD and 12 000 VEF. On his return home, Javier exchanges his remaining VEF into USD.</p>
<p>The exchange rate is 1 USD <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> 8.7268 VEF.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of VEF that Javier receives.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total amount, in USD, that Javier has remaining from his 5000 USD after his trip to Venezuela.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers correct to 2 decimal places.</strong></p>
<p>Jose travelled from Buenos Aires to Sydney. He used Argentine pesos, ARS, to buy 350 Australian dollars, AUD, at a bank. The exchange rate was 1 ARS = 0.1559 AUD.</p>
</div>
<div class="specification">
<p>The bank charged Jose a commission of 2%.</p>
</div>
<div class="specification">
<p>Jose used his credit card to pay his hotel bill in Sydney. The bill was 585 AUD. The value the credit card company charged for this payment was 4228.38 ARS. The exchange rate used by the credit card company was 1 AUD = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ARS. No commission was charged.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this exchange rate to calculate the amount of ARS that is equal to 350 AUD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total </strong>amount of ARS Jose paid to get 350 AUD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Complete the following table by placing ticks (✓) to show which of the number sets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{N}"> <mrow> <mi mathvariant="double-struck">N</mi> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Z}"> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{Q}"> <mrow> <mi mathvariant="double-struck">Q</mi> </mrow> </math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathbb{R}"> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> these numbers belong to. The first row has been completed as an example.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<br><hr><br><div class="specification">
<p>Claudia travels from Buenos Aires to Barcelona. She exchanges 8000 Argentine Pesos (ARS) into Euros (EUR).</p>
<p>The exchange rate is 1 ARS = 0.09819 EUR. The bank charges a 2% commission on the exchange.</p>
</div>
<div class="specification">
<p>When Claudia returns to Buenos Aires she has 85 EUR left and exchanges this money back into ARS. The exchange rate is 1 ARS = 0.08753 EUR. The bank charges <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>% commission. The commission charged on this exchange is 14.57 ARS.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of Euros that Claudia receives. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers to two decimal places.</strong></p>
<p>Velina travels from New York to Copenhagen with 1200 US dollars (USD). She exchanges her money to Danish kroner (DKK). The exchange rate is 1 USD = 7.0208 DKK.</p>
</div>
<div class="specification">
<p>At the end of her trip Velina has 3450 DKK left that she exchanges to USD. The bank charges a 5 % commission. The exchange rate is still 1 USD = 7.0208 DKK .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount that Velina receives in DKK.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in DKK, that will be left to exchange after commission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, calculate the amount of USD she receives.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Daniela is going for a holiday to South America. She flies from the US to Argentina stopping in Peru on the way.</p>
<p>In Peru she exchanges 85 United States dollars (USD) for Peruvian nuevo sol (PEN). The exchange rate is 1 USD = 3.25 PEN and a flat fee of 5 USD commission is charged.</p>
</div>
<div class="specification">
<p>At the end of Daniela’s holiday she has 370 Argentinean peso (ARS). She converts this back to USD at a bank that charges a 4% commission on the exchange. The exchange rate is 1 USD = 9.60 ARS.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of PEN she receives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of USD she receives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>