File "HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 8/HL-paper3html
File size: 263.58 KB
MIME-type: application/octet-stream
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p class="p1">A relation \(S\) is defined on \(\mathbb{R}\) by \(aSb\) if and only if \(ab > 0\).</p>
</div>
<div class="specification">
<p class="p1">A relation \(R\) is defined on a non-empty set \(A\). \(R\) is symmetric and transitive but not reflexive.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(S\) is</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>not reflexive;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>symmetric;</p>
<p class="p2">(iii) <span class="Apple-converted-space"> </span>transitive.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why there exists an element \(a \in A\) <span class="s1">that is not related to itself.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence prove that there is at least one element of \(A\) <span class="s1">that is not related to any other element of \(A\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(f:G \to H\) be a homomorphism between groups \(\{ G,{\text{ }} * \} \) and \(\{ H,{\text{ }} \circ \} \) with identities \({e_G}\) and \({e_H}\) respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that \(f({e_G}) = {e_H}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that \({\text{Ker}}(f)\) is a subgroup of \(\{ G,{\text{ }} * \} \).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>\(A\), \(B\) and \(C\) are three subsets of a universal set.</p>
</div>
<div class="specification">
<p>Consider the sets \(P = \{ 1,{\text{ }}2,{\text{ }}3\} ,{\text{ }}Q = \{ 2,{\text{ }}3,{\text{ }}4\} \) and \(R = \{ 1,{\text{ }}3,{\text{ }}5\} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Represent the following set on a Venn diagram,</p>
<p>\(A\Delta B\), the symmetric difference of the sets \(A\) and \(B\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Represent the following set on a Venn diagram,</p>
<p>\(A \cap (B \cup C)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For sets \(P\), \(Q\) and \(R\), verify that \(P \cup (Q\Delta R) \ne (P \cup Q)\Delta (P \cup R)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the distributive law, describe what the result in part (b)(i) illustrates.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The function \(f\,{\text{: }}\mathbb{Z} \to \mathbb{Z}\) is defined by \(f\left( n \right) = n + {\left( { - 1} \right)^n}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that \(f \circ f\) is the identity function.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f\) is injective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f\) is surjective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(\{ G,{\text{ }} \circ \} \) be the group of all permutations of \(1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6\) under the operation of composition of permutations.</p>
</div>
<div class="specification">
<p class="p1">Consider the following Venn diagram, where \(A = \{ 1,{\text{ }}2,{\text{ }}3,{\text{ }}4\} ,{\text{ }}B = \{ 3,{\text{ }}4,{\text{ }}5,{\text{ }}6\} \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-02_om_09.47.40.png" alt="N16/5/MATHL/HP3/ENG/TZ0/SG/01.f"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span>Write the permutation \(\alpha = \left( {\begin{array}{*{20}{c}} 1&2&3&4&5&6 \\ 3&4&6&2&1&5 \end{array}} \right)\) </span>as a composition of disjoint cycles.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>State the order of \(\alpha \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span>Write the permutation \(\beta = \left( {\begin{array}{*{20}{c}} 1&2&3&4&5&6 \\ 6&4&3&5&1&2 \end{array}} \right)\) </span>as a composition of disjoint cycles.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>State the order of \(\beta \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write the permutation \(\alpha \circ \beta \) as a composition of disjoint cycles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write the permutation \(\beta \circ \alpha \) as a composition of disjoint cycles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the order of \(\{ G,{\text{ }} \circ \} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find the number of permutations in \(\{ G,{\text{ }} \circ \} \) </span>which will result in \(A\), \(B\) and \(A \cap B\) remaining unchanged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operations \( \odot \) and \( * \) are defined on \({\mathbb{R}^ + }\) by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[a \odot b = \sqrt {ab} {\text{ and }}a * b = {a^2}{b^2}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \odot \) is commutative;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( * \) is associative;</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( * \) is distributive over \( \odot \) ;</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \odot \) has an identity element.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\{ G,{\text{ }} * \} \) be a finite group that contains an element <em>a</em> (that is not the identity element) and \(H = \{ {a^n}|n \in {\mathbb{Z}^ + }\} \), where \({a^2} = a * a,{\text{ }}{a^3} = a * a * a\) etc.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\{ H,{\text{ }} * \} \) is a subgroup of \(\{ G,{\text{ }} * \} \).</span></p>
</div>
<br><hr><br><div class="specification">
<p>The set \(A\) contains all positive integers less than 20 that are congruent to 3 modulo 4.</p>
<p>The set \(B\) contains all the prime numbers less than 20.</p>
</div>
<div class="specification">
<p>The set \(C\) is defined as \(C = \{ 7,{\text{ }}9,{\text{ }}13,{\text{ }}19\} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down all the elements of \(A\) and all the elements of \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the symmetric difference, \(A\Delta B\), of the sets \(A\) and \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down all the elements of \(A \cap B,{\text{ }}A \cap C\) and \(B \cup C\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence by considering \(A \cap (B \cup C)\), verify that in this case the operation \( \cap \) is distributive over the operation \( \cup \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The relation <em>R</em> is defined on \(\mathbb{R} \times \mathbb{R}\) such that \(({x_1},{\text{ }}{y_1})R({x_2},{\text{ }}{y_2})\) if and only if \({x_1}{y_1} = {x_2}{y_2}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>R</em> is an equivalence relation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equivalence class of <em>R</em> containing the element \((1,{\text{ }}2)\) and illustrate this graphically.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The group \(\{ G,{\text{ }}{ \times _7}\} \) is defined on the set {1, 2, 3, 4, 5, 6} where \({ \times _7}\) denotes multiplication modulo 7.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Write down the Cayley table for \(\{ G,{\text{ }}{ \times _7}\} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Determine whether or not \(\{ G,{\text{ }}{ \times _7}\} \) is cyclic.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the subgroup of <em>G</em> of order 3, denoting it by <em>H</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) Identify the element of order 2 in <em>G</em> and find its coset with respect to <em>H</em> .</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The group \(\{ K,{\text{ }} \circ \} \) is defined on the six permutations of the integers 1, 2, 3 and \( \circ \) denotes composition of permutations.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(\{ K,{\text{ }} \circ \} \) is non-Abelian.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Giving a reason, state whether or not \(\{ G,{\text{ }}{ \times _7}\} \) and \(\{ K,{\text{ }} \circ \} \) are isomorphic.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The set of all permutations of the elements \(1,{\text{ }}2,{\text{ }} \ldots 10\) </span>is denoted by \(H\) and the binary operation \( \circ \) represents the composition of permutations.</p>
<p class="p1">The permutation \(p = (1{\text{ }}2{\text{ }}3{\text{ }}4{\text{ }}5{\text{ }}6)(7{\text{ }}8{\text{ }}9{\text{ }}10)\) <span class="s1">generates the subgroup \(\{ G,{\text{ }} \circ \} \) of the group \(\{ H,{\text{ }} \circ \} \)</span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the order of \(\{ G,{\text{ }} \circ \} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the identity element in \(\{ G,{\text{ }} \circ \} \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(p \circ p\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the inverse of \(p \circ p\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the maximum possible order of an element in \(\{ H,{\text{ }} \circ \} \).</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Give an example of an element with this order.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R </em>is defined on the set \(\mathbb{N}\) such that for \(a{\text{ }},{\text{ }}b \in \mathbb{N}{\text{ }},{\text{ }}aRb\) if and only if \({a^3} \equiv {b^3}(\bmod 7)\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>R </em>is an equivalence relation.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equivalence class containing 0.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="line-height: normal; font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">Denote the equivalence class containing <em>n</em> by C<em><sub>n</sub></em> .</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">List the first six elements of \({C_1}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="line-height: normal; font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">Denote the equivalence class containing <em>n</em> by C<em><sub>n</sub></em> .</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \({C_n} = {C_{n + 7}}\) for all \(n \in \mathbb{N}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f:{\mathbb{R}^ + } \times {\mathbb{R}^ + } \to {\mathbb{R}^ + } \times {\mathbb{R}^ + }\) where \(f(x,{\text{ }}y) = \left( {\sqrt {xy} ,{\text{ }}\frac{x}{y}} \right)\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(f\) is an injection.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Prove that \(f\) is a surjection.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence, or otherwise, write down the inverse function \({f^{ - 1}}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The relation \(R=\) is defined on \({\mathbb{Z}^ + }\) such that \(aRb\) if and only if \({b^n} - {a^n} \equiv 0(\bmod p)\) where \(n,{\text{ }}p\) <span class="s1">are fixed positive integers greater than 1.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(R\) is an equivalence relation.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(n = 2\) and \(p = 7\), determine the first four members of each of the four equivalence classes of \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>c </em>be a positive, real constant. Let <em>G </em>be the set \(\{ \left. {x \in \mathbb{R}} \right| - c < x < c\} \) . The binary </span><span style="font-family: 'times new roman', times; font-size: medium;">operation \( * \) is defined on the set <em>G </em>by \(x * y = \frac{{x + y}}{{1 + \frac{{xy}}{{{c^2}}}}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 44.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Simplify \(\frac{c}{2} * \frac{{3c}}{4}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the identity element for <em>G </em>under \( * \).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For \(x \in G\) find an expression for \({x^{ - 1}}\) (the inverse of <em>x </em>under \( * \)).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the binary operation \( * \) is commutative on <em>G </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the binary operation \( * \) is associative on <em>G </em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) If \(x,{\text{ }}y \in G\) explain why \((c - x)(c - y) > 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that \(x + y < c + \frac{{xy}}{c}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>G </em>is closed under \( * \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why \(\{ G, * \} \) is an Abelian group.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Below are the graphs of the two functions \(F:P \to Q{\text{ and }}g:A \to B\) .</span></p>
<p><img src="" alt></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">Determine, with reference to features of the graphs, whether the functions are injective and/or surjective.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given two functions \(h:X \to Y{\text{ and }}k:Y \to Z\) . </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) if both <em>h</em> and <em>k</em> are injective then so is the composite function \(k \circ h\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) if both <em>h</em> and <em>k</em> are surjective then so is the composite function \(k \circ h\) .</span></p>
<div> </div>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the group \(\{ G,{\text{ }}{ \times _{18}}\} \) defined on the set \(\{ 1,{\text{ }}5,{\text{ }}7,{\text{ }}11,{\text{ }}13,{\text{ }}17\} \) where \({ \times _{18}}\) denotes multiplication modulo 18. The group \(\{ G,{\text{ }}{ \times _{18}}\} \) is shown in the following Cayley table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-10_om_09.24.56.png" alt="N17/5/MATHL/HP3/ENG/TZ0/SG/01"></p>
</div>
<div class="specification">
<p>The subgroup of \(\{ G,{\text{ }}{ \times _{18}}\} \) of order two is denoted by \(\{ K,{\text{ }}{ \times _{18}}\} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the order of elements 5, 7 and 17 in \(\{ G,{\text{ }}{ \times _{18}}\} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not \(\{ G,{\text{ }}{ \times _{18}}\} \) is cyclic, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements in set \(K\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the left cosets of \(K\) in \(\{ G,{\text{ }}{ \times _{18}}\} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A group \(\{ D,{\text{ }}{ \times _3}\} \) <span class="s1">is defined so that \(D = \{ 1,{\text{ }}2\} \) </span>and \({ \times _3}\) is multiplication modulo \(3\)<span class="s1">.</span></p>
<p class="p2">A function \(f:\mathbb{Z} \to D\) is defined as \(f:x \mapsto \left\{ {\begin{array}{*{20}{c}} {1,{\text{ }}x{\text{ is even}}} \\ {2,{\text{ }}x{\text{ is odd}}} \end{array}} \right.\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that the function \(f\) is a homomorphism from the group \(\{ \mathbb{Z},{\text{ }} + \} {\text{ to }}\{ D,{\text{ }}{ \times _3}\} \).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the kernel of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(\{ {\text{Ker}}(f),{\text{ }} + \} \) is a subgroup of \(\{ \mathbb{Z},{\text{ }} + \} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Associativity and commutativity are two of the five conditions for a set <em>S </em>with the binary operation \( * \) to be an Abelian group; state the other three conditions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The Cayley table for the binary operation \( \odot \) defined on the set <em>T </em>= {<em>p</em>, <em>q</em>, <em>r</em>, <em>s</em>, <em>t</em>} is given below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that exactly three of the conditions for {<em>T </em>, \( \odot \)} to be an Abelian group are satisfied, but that neither associativity nor commutativity are satisfied.</span><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the proper subsets of <em>T </em>that are groups of order 2, and comment on your result in the context of Lagrange’s theorem.</span><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the solutions of the equation \((p \odot x) \odot x = x \odot p\)<em> </em>.</span></p>
<div class="marks">[15]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The binary operation \( * \) is defined by</p>
<p style="text-align: center;">\(a * b = a + b - 3\) for \(a,{\text{ }}b \in \mathbb{Z}\).</p>
</div>
<div class="specification">
<p>The binary operation \( \circ \) is defined by</p>
<p style="text-align: center;">\(a \circ b = a + b + 3\) for \(a,{\text{ }}b \in \mathbb{Z}\).</p>
<p>Consider the group \(\{ \mathbb{Z},{\text{ }} \circ {\text{\} }}\) and the bijection \(f:\mathbb{Z} \to \mathbb{Z}\) given by \(f(a) = a - 6\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\{ \mathbb{Z},{\text{ }} * \} \) is an Abelian group.</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is no element of order 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a proper subgroup of \(\{ \mathbb{Z},{\text{ }} * \} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the groups \(\{ \mathbb{Z},{\text{ }} * \} \) and \(\{ \mathbb{Z},{\text{ }} \circ \} \) are isomorphic.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The set \(S\) is defined as the set of real numbers greater than 1.</p>
<p>The binary operation \( * \) is defined on \(S\) by \(x * y = (x - 1)(y - 1) + 1\) for all \(x,{\text{ }}y \in S\).</p>
</div>
<div class="specification">
<p>Let \(a \in S\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(x * y \in S\) for all \(x,{\text{ }}y \in S\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the operation \( * \) on the set \(S\) is commutative.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the operation \( * \) on the set \(S\) is associative.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that 2 is the identity element.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that each element \(a \in S\) has an inverse.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The elements of sets <em>P </em>and <em>Q </em>are taken from the universal set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. <em>P </em>= {1, 2, 3} and <em>Q </em>= {2, 4, 6, 8, 10}.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(R = (P \cap Q')'\) , list the elements of <em>R </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For a set <em>S </em>, let \({S^ * }\)<span style="font: 7.0px Times;"> </span>denote the set of all subsets of <em>S </em>,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) find \({P^ * }\)<span style="font: 7.0px Times;"> </span>;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) find \(n({R^ * })\)<span style="font: 12.5px Times;"> </span>.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The relation \(R\) is defined such that \(aRb\) if and only if \({4^a} - {4^b}\) is divisible by 7, where \(a,{\text{ }}b \in {\mathbb{Z}^ + }\).</p>
</div>
<div class="specification">
<p>The equivalence relation \(S\) is defined such that \(cSd\) if and only if \({4^c} - {4^d}\) is divisible by 6, where \(c,{\text{ }}d \in {\mathbb{Z}^ + }\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(R\) is an equivalence relation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equivalence classes of \(R\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of equivalence classes of \(S\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An Abelian group, \(\{ G,{\text{ }} * \} \), has <span class="s1">12 </span>different elements which are of the form \({a^i} * {b^j}\) where \(i \in \{ 1,{\text{ }}2,{\text{ }}3,{\text{ }}4\} \) and \(j \in \{ 1,{\text{ }}2,{\text{ }}3\} \). The elements \(a\) and \(b\) satisfy \({a^4} = e\) and \({b^3} = e\) where \(e\) is the identity.</p>
</div>
<div class="specification">
<p class="p1">Let \(\{ H,{\text{ }} * \} \) be the proper subgroup of \(\{ G,{\text{ }} * \} \) having the maximum possible order.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">State the possible orders of an element of \(\{ G,{\text{ }} * \} \) </span>and for each order give an example of an element of that order.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State a generator for \(\{ H,{\text{ }} * \} \).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Write down the elements of \(\{ H,{\text{ }} * \} \).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Write down the elements of the coset of \(H\) containing \(a\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The relation \(R\) is defined such that \(xRy\) if and only if \(\left| x \right| + \left| y \right| = \left| {x + y} \right|\) for \(x\), \(y\), \(y \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(R\) is reflexive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(R\) is symmetric.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show, by means of an example, that \(R\) is not transitive.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The group <em>G </em>has a unique element, <em>h </em>, of order 2.</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(gh{g^{ - 1}}\) has order 2 for all \(g \in G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Deduce that <em>gh </em>= <em>hg </em>for all \(g \in G\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Two functions, <em>F</em> and <em>G</em> , are defined on \(A = \mathbb{R}\backslash \{ 0,{\text{ }}1\} \) by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[F(x) = \frac{1}{x},{\text{ }}G(x) = 1 - x,{\text{ for all }}x \in A.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that under the operation of composition of functions each function is its own inverse.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <em>F</em> and <em>G</em> together with four other functions form a closed set under the operation of composition of functions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find these four functions.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The binary operation \( * \) is defined for \(x,{\text{ }}y \in S = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6\} \) by</p>
<p class="p1">\[x * y = ({x^3}y - xy)\bmod 7.\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the element \(e\) such that \(e * y = y\), for all \(y \in S\)<span class="s1">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the least solution of \(x * x = e\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Deduce that \((S,{\text{ }} * )\) is not a group.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether or not \(e\) is an identity element.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">All of the relations in this question are defined on \(\mathbb{Z}\backslash \{ 0\} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Decide, giving a proof or a counter-example, whether \(xRy \Leftrightarrow x + y > 7\) is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) reflexive;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) symmetric;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) transitive.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Decide, giving a proof or a counter-example, whether \(xRy \Leftrightarrow - 2 < x - y < 2\) is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) reflexive;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) symmetric;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) transitive.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Decide, giving a proof or a counter-example, whether \(xRy \Leftrightarrow xy > 0\) is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) reflexive;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) symmetric;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) transitive.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Decide, giving a proof or a counter-example, whether \(xRy \Leftrightarrow \frac{x}{y} \in \mathbb{Z}\) is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) reflexive;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) symmetric;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) transitive.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">One of the relations from parts (a), (b), (c) and (d) is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">For this relation, state what the equivalence classes are.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 39.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(A = \left\{ {a,{\text{ }}b} \right\}\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Let the set of all these subsets be denoted by \(P(A)\) . The binary operation symmetric difference, \(\Delta\) , is defined on \(P(A)\) by \(X\Delta Y = (X\backslash Y) \cup (Y\backslash X)\) where \(X\) , \(Y \in P(A)\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Let \({\mathbb{Z}_4} = \left\{ {0,{\text{ }}1,{\text{ }}2,{\text{ }}3} \right\}\) and \({ + _4}\) denote addition modulo \(4\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Let \(S\) be any non-empty set. Let \(P(S)\) be the set of all subsets of \(S\) . For the following parts, you are allowed to assume that \(\Delta\), \( \cup \) and \( \cap \) are associative.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down all four subsets of <em>A </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Construct the Cayley table for \(P(A)\) under \(\Delta \) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that </span><span style="font-family: 'times new roman', times; font-size: medium;">\(\left\{ {P(A),{\text{ }}\Delta } \right\}\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> is a group. You are allowed to assume that \(\Delta \) is associative.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Is \(\{ P(A){\text{, }}\Delta \} \) isomorphic to \(\{ {\mathbb{Z}_4},{\text{ }}{ + _4}\} \) ? Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State the identity element for \(\{ P(S){\text{, }}\Delta \} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Write down \({X^{ - 1}}\) for \(X \in P(S)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Hence prove that \(\{ P(S){\text{, }}\Delta \} \) is a group.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why \(\{ P(S){\text{, }} \cup \} \) is not a group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why \(\{ P(S){\text{, }} \cap \} \) is not a group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The binary operation \( * \) is defined on the set \(T = \{ 0,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6\} \) by \(a * b = (a + b - ab)(\bmod 7),{\text{ }}a,{\text{ }}b \in T\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Copy and complete the following Cayley table for \(\{ T,{\text{ }} * \} \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-21_om_14.49.34.png" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(\{ T,{\text{ }} * \} \) forms an Abelian group.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the order of each element in \(T\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(\{ H,{\text{ }} * \} \) is the subgroup of \(\{ T,{\text{ }} * \} \) of order \(2\)<span class="s1">, partition \(T\) into the left cosets with respect to \(H\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function \(f:\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) is defined by \(f(x,{\text{ }}y) = (2{x^3} + {y^3},{\text{ }}{x^3} + 2{y^3})\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f\) is a bijection.</p>
<div class="marks">[12]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the inverse function \({f^{ - 1}}(x,{\text{ }}y)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">Let \(A\) </span>be the set \(\{ x|x \in \mathbb{R},{\text{ }}x \ne 0\} \). Let \(B\) be the set \(\{ x|x \in ] - 1,{\text{ }} + 1[,{\text{ }}x \ne 0\} \).</p>
<p class="p1">A function \(f:A \to B\) is defined by \(f(x) = \frac{2}{\pi }\arctan (x)\).</p>
</div>
<div class="specification">
<p class="p1"><span class="s1">Let \(D\) </span>be the set \(\{ x|x \in \mathbb{R},{\text{ }}x > 0\} \).</p>
<p class="p1">A function \(g:\mathbb{R} \to D\) is defined by \(g(x) = {{\text{e}}^x}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Sketch the graph of \(y = f(x)\) and hence justify whether or not \(f\) <span class="s1">is a bijection.</span></p>
<p class="p2"><span class="s2">(ii) <span class="Apple-converted-space"> </span>Show that \(A\) </span>is a group under the binary operation of multiplication.</p>
<p class="p2"><span class="s2">(iii) <span class="Apple-converted-space"> </span>Give a reason why \(B\) </span>is not a group under the binary operation of multiplication.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Find an example to show that \(f(a \times b) = f(a) \times f(b)\) is not satisfied for all \(a,{\text{ }}b \in A\).</p>
<div class="marks">[13]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Sketch the graph of \(y = g(x)\) and hence justify whether or not \(g\) <span class="s1">is a bijection.</span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Show that \(g(a + b) = g(a) \times g(b)\) for all \(a,{\text{ }}b \in \mathbb{R}\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Given that \(\{ \mathbb{R},{\text{ }} + \} \) and \(\{ D,{\text{ }} \times \} \) are both groups, explain whether or not they are isomorphic.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(f:\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) defined by \(f(x,{\text{ }}y) = (2x + y,{\text{ }}x - y)\) is a bijection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the inverse of <em>f</em> .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \( * \) is defined on \(\mathbb{R}\) as follows. For any elements <em>a</em> , \(b \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[a * b = a + b + 1.\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \( * \) is commutative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the identity element.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the inverse of the element <em>a</em> .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \( \cdot \) is defined on \(\mathbb{R}\) as follows. For any elements <em>a</em> , \(b \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a \cdot b = 3ab\) . The set <em>S</em> is the set of all ordered pairs \((x,{\text{ }}y)\) of real numbers and the binary operation \( \odot \) is defined on the set <em>S</em> as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({x_1},{\text{ }}{y_1}) \odot ({x_2},{\text{ }}{y_2}) = ({x_1} * {x_2},{\text{ }}{y_1} \cdot {y_2}){\text{ }}.\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \( \odot \) is associative.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Draw the Cayley table for the set of integers <em>G</em> = {0, 1, 2, 3, 4, 5} under addition modulo 6, \({ + _6}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that \(\{ G,{\text{ }}{ + _6}\} \) is a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find the order of each element.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Show that \(\{ G,{\text{ }}{ + _6}\} \) is cyclic and state its generators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Find a subgroup with three elements. </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) Find the other proper subgroups of \(\{ G,{\text{ }}{ + _6}\} \).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f:[0,{\text{ }}\infty [ \to [0,{\text{ }}\infty [\) is defined by \(f(x) = 2{{\text{e}}^x} + {{\text{e}}^{ - x}} - 3\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find \(f'(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that <em>f</em> is a bijection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find an expression for \({f^{ - 1}}(x)\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The universal set contains all the positive integers less than 30. The set <em>A</em> contains all prime numbers less than 30 and the set <em>B</em> contains all positive integers of the form \(3 + 5n{\text{ }}(n \in \mathbb{N})\) that are less than 30. Determine the elements of</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>A</em> \ <em>B</em> ;</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A\Delta B\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \( * \) is defined on \(\mathbb{N}\) by \(a * b = 1 + ab\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \( * \)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">is closed;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">is commutative;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">is associative;</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">has an identity element.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-13_om_06.41.36.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the values represented by each of the letters in the table.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the order of each of the elements of the group.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the three sets that form subgroups of order 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the three sets that form subgroups of order 4.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>p</em> , <em>q</em> and <em>r</em> are elements of a group, prove the left-cancellation rule, <em>i.e.</em> \(pq = pr \Rightarrow q = r\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Your solution should indicate which group axiom is used at each stage of the proof.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the group <em>G</em> , of order 4, which has distinct elements <em>a</em> , <em>b</em> and <em>c</em> and the identity element <em>e</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Giving a reason in each case, explain why <em>ab</em> cannot equal <em>a</em> or <em>b</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Given that <em>c</em> is self inverse, determine the two possible Cayley tables for <em>G</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Determine which one of the groups defined by your two Cayley tables is isomorphic to the group defined by the set {1, −1, i, −i} under multiplication of complex numbers. Your solution should include a correspondence between <em>a</em>, <em>b</em>, <em>c</em>, <em>e</em> and 1, −1, i, −i .</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A binary operation is defined on {−1, 0, 1} by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[A \odot B = \left\{ {\begin{array}{*{20}{c}}<br> { - 1,}&{{\text{if }}\left| A \right| < \left| B \right|} \\ <br> {0,}&{{\text{if }}\left| A \right| = \left| B \right|} \\ <br> {1,}&{{\text{if }}\left| A \right| > \left| B \right|{\text{.}}} <br>\end{array}} \right.\]<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Construct the Cayley table for this operation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Giving reasons, determine whether the operation is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) closed;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) commutative;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) associative.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sets <em>X </em>and <em>Y </em>are defined by \({\text{ }}X = \left] {0,{\text{ }}1} \right[;{\text{ }}Y = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5\} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Sketch the set \(X \times Y\) in the Cartesian plane.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Sketch the set \(Y \times X\) in the Cartesian plane.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) State \((X \times Y) \cap (Y \times X)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f:X \times Y \to \mathbb{R}\) defined by \(f(x,{\text{ }}y) = x + y\) and the function \(g:X \times Y \to \mathbb{R}\) defined by \(g(x,{\text{ }}y) = xy\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the range of the function <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the range of the function <em>g</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Show that \(f\) is an injection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) Find \({f^{ - 1}}(\pi )\), expressing your answer in exact form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(v) Find all solutions to \(g(x,{\text{ }}y) = \frac{1}{2}\).</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f:G \to H\) be a homomorphism of finite groups.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(f({e_G}) = {e_H}\), where \({e_G}\) is the identity element in \(G\) and \({e_H}\) is the identity</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">element in \(H\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Prove that the kernel of \(f,{\text{ }}K = {\text{Ker}}(f)\), is closed under the group operation.</p>
<p>(ii) Deduce that \(K\) is a subgroup of \(G\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Prove that \(gk{g^{ - 1}} \in K\) for all \(g \in G,{\text{ }}k \in K\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Deduce that each left coset of <em>K </em>in <em>G </em>is also a right coset.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(X\) and \(Y\) be sets. The functions \(f:X \to Y\) and \(g:Y \to X\) are such that \(g \circ f\) is the identity function on \(X\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that: </p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(f\) is an injection,</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(g\) is a surjection.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(X = {\mathbb{R}^ + } \cup \{ 0\} \) and \(Y = \mathbb{R}\), choose a suitable pair of functions \(f\) and \(g\) to show that \(g\) is not necessarily a bijection.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \((H,{\text{ }} * {\text{)}}\) be a subgroup of the group \((G,{\text{ }} * {\text{)}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the relation \(R\) defined in \(G\) by \(xRy\) if and only if \({y^{ - 1}} * x \in H\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(R\) is an equivalence relation on \(G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine the equivalence class containing the identity element.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the set \(A\) consisting of all the permutations of the integers \(1,2,3,4,5\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two members of \(A\) are given by \(p = (1{\text{ }}2{\text{ }}5)\) and \(q = (1{\text{ }}3)(2{\text{ }}5)\).</p>
<p class="p1">Find the single permutation which is equivalent to \(q \circ p\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State a permutation belonging to<em> </em>\(A\) of order</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(4\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(6\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(P = \) {all permutations in \(A\) where exactly two integers change position},</p>
<p>and \(Q = \) {all permutations in \(A\) where the integer \(1\) changes position}.</p>
<p>(i) List all the elements in \(P \cap Q\).</p>
<p>(ii) Find \(n(P \cap Q')\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Given the sets \(A\) and \(B\), use the properties of sets to prove that \(A \cup (B' \cup A)' = A \cup B\), justifying each step of the proof.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Write down why the table below is a Latin square.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\begin{gathered}<br> \begin{array}{*{20}{c}}<br> {}&d&e&b&a&c <br>\end{array} \\<br> \begin{array}{*{20}{c}}<br> d \\ <br> e \\ <br> b \\ <br> a \\ <br> c <br>\end{array}\left[ {\begin{array}{*{20}{c}}<br> c&d&e&b&a \\ <br> d&e&b&a&c \\ <br> a&b&d&c&e \\ <br> b&a&c&e&d \\ <br> e&c&a&d&b <br>\end{array}} \right] \\ <br>\end{gathered} \]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Use Lagrange’s theorem to show that the table is not a group table.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(p = {2^k} + 1,{\text{ }}k \in {\mathbb{Z}^ + }\) be a prime number and let <em>G </em>be the group of integers 1, 2, ..., <em>p </em>− 1 under multiplication defined modulo <em>p</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">By first considering the elements \({2^1},{\text{ }}{2^2},{\text{ ..., }}{2^k}\) and then the elements \({2^{k + 1}},{\text{ }}{2^{k + 2}},{\text{ …,}}\) show that the order of the element 2 is 2<em>k</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Deduce that \(k = {2^n}{\text{ for }}n \in \mathbb{N}\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \((A \cap B)\backslash (A \cap C) = A \cap (B\backslash C)\) where <em>A</em>, <em>B</em> and <em>C</em> are three subsets of the universal set <em>U</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\{ G,{\text{ }} * \} \) be a finite group and let <em>H</em> be a non-empty subset of <em>G</em> . Prove that \(\{ H,{\text{ }} * \} \) is a group if <em>H</em> is closed under \( * \).</span></p>
</div>
<br><hr><br><div class="specification">
<p>The group \(\{ G,{\rm{ }} * {\rm{\} }}\) has identity \({e_G}\) and the group \(\{ H,{\text{ }} \circ \} \) has identity \({e_H}\). A homomorphism \(f\) is such that \(f:G \to H\). It is given that \(f({e_G}) = {e_H}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that for all \(a \in G,{\text{ }}f({a^{ - 1}}) = {\left( {f(a)} \right)^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(\{ H,{\text{ }} \circ \} \) be the cyclic group of order seven, and let \(p\) be a generator.</p>
<p class="p1">Let \(x \in G\) such that \(f(x) = {p^{\text{2}}}\).</p>
<p class="p1">Find \(f({x^{ - 1}})\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f(x * y) = p\), find \(f(y)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>H</em> and <em>K</em> are subgroups of a group <em>G</em>. By considering the four group axioms, prove that \(H \cap K\) is also a subgroup of <em>G</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that set difference is not associative.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Define \(f:\mathbb{R}\backslash \{ 0.5\} \to \mathbb{R}\) by \(f(x) = \frac{{4x + 1}}{{2x - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that <em>\(f\) </em>is an injection.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that <em>\(f\) </em>is not a surjection.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the sets</p>
<p class="p1">\[G = \left\{ {\frac{n}{{{6^i}}}|n \in \mathbb{Z},{\text{ }}i \in \mathbb{N}} \right\},{\text{ }}H = \left\{ {\frac{m}{{{3^j}}}|m \in \mathbb{Z},{\text{ }}j \in \mathbb{N}} \right\}.\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \((G,{\text{ }} + )\) forms a group where \( + \) denotes addition on \(\mathbb{Q}\). Associativity may be assumed.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Assuming that \((H,{\text{ }} + )\) forms a group, show that it is a proper subgroup of \((G,{\text{ }} + )\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The mapping \(\phi :G \to G\) is given by \(\phi (g) = g + g\), for \(g \in G\).</p>
<p class="p1">Prove that \(\phi \) is an isomorphism.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(f:\left] {1,{\text{ }} + \infty } \right[ \to {\mathbb{R}^ + }\) where \(f(x) = (x - 1)(x + 2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(g:\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) where \(g(x,{\text{ }}y) = \left( {\sin (x + y),{\text{ }}x + y} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(h:\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\) where \(h(x,{\text{ }}y) = (x + 3y,{\text{ }}2x + y)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(f\) is bijective.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine, with reasons, whether</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(g\) is injective;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(g\)<em> </em>is surjective.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find an expression for \({h^{ - 1}}(x,{\text{ }}y)\) and hence justify that \(h\)<em> </em>has an inverse function.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f:\mathbb{Z} \times \mathbb{R} \to \mathbb{R},{\text{ }}f(m,{\text{ }}x) = {( - 1)^m}x\). Determine whether <em>f</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) surjective;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) injective.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>P</em> is the set of all polynomials such that \(P = \left\{ {\sum\limits_{i = 0}^n {{a_i}{x^i}|n \in \mathbb{N}} } \right\}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g:P \to P,{\text{ }}g(p) = xp\). Determine whether <em>g</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) surjective;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) injective.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(h:\mathbb{Z} \to {\mathbb{Z}^ + }\), \(h(x) = \left\{ {\begin{array}{*{20}{c}}<br> {2x,}&{x > 0} \\ <br> {1 - 2x,}&{x \leqslant 0} <br>\end{array}} \right\}\). Determine whether <em>h</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) surjective;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) injective.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f:\mathbb{R} \to \mathbb{R}\) is defined as \(f:x \to \left\{ {\begin{array}{*{20}{c}} {1,{\text{ }}x \ge 0} \\ { - 1,{\text{ }}x < 0} \end{array}} \right.\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(f\) is</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>not injective;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>not surjective.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The relation \(R\) is defined for \(a,{\text{ }}b \in \mathbb{R}\) so that \(aRb\) if and only if \(f(a) \times f(b) = 1\)<span class="s1">.</span></p>
<p class="p1">Show that \(R\) is an equivalence relation.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The relation \(R\) is defined for \(a,{\text{ }}b \in \mathbb{R}\) so that \(aRb\) if and only if \(f(a) \times f(b) = 1\)<span class="s1">.</span></p>
<p class="p1">State the equivalence classes of \(R\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f:{\mathbb{R}^ + } \times {\mathbb{R}^ + } \to {\mathbb{R}^ + } \times {\mathbb{R}^ + }\) is defined by \(f(x,{\text{ }}y) = \left( {x{y^2},\frac{x}{y}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>f</em> is a bijection.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>G</em> be a finite cyclic group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Prove that <em>G</em> is Abelian.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Given that <em>a</em> is a generator of <em>G</em>, show that \({a^{ - 1}}\) is also a generator.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Show that if the order of <em>G</em> is five, then all elements of <em>G</em>, apart from the identity, are generators of <em>G</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f:\mathbb{R} \to \mathbb{R}\) is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = 2{{\text{e}}^x} - {{\text{e}}^{ - x}}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that <em>f</em> is a bijection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find an expression for \({f^{ - 1}}(x)\).</span></p>
</div>
<br><hr><br><div class="specification">
<p>The set of all permutations of the list of the integers 1, 2, 3 4 is a group, <em>S</em><sub>4</sub>, under the operation of function composition.</p>
</div>
<div class="specification">
<p>In the group <em>S</em><sub>4</sub> let \({p_1} = \left( \begin{gathered}<br> \begin{array}{*{20}{c}}<br> 1&2&3&4 <br>\end{array} \hfill \\<br> \begin{array}{*{20}{c}}<br> 2&3&1&4 <br>\end{array} \hfill \\ <br>\end{gathered} \right)\) and \({p_2} = \left( \begin{gathered}<br> \begin{array}{*{20}{c}}<br> 1&2&3&4 <br>\end{array} \hfill \\<br> \begin{array}{*{20}{c}}<br> 2&1&3&4 <br>\end{array} \hfill \\ <br>\end{gathered} \right)\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the order of <em>S</em><sub>4</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the proper subgroup <em>H</em> of order 6 containing \({p_1}\), \({p_2}\) and their compositions. Express each element of <em>H</em> in cycle form.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(f{\text{:}}\,{S_4} \to {S_4}\) be defined by \(f\left( p \right) = p \circ p\) for \(p \in {S_4}\).</p>
<p>Using \({p_1}\) and \({p_2}\), explain why \(f\) is not a homomorphism.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>aRb</em> is defined on {1, 2, 3, 4, 5, 6, 7, 8, 9} if and only if <em>ab</em> is the square of a positive integer. </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that <em>R</em> is an equivalence relation. </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the equivalence classes of <em>R</em> that contain more than one element.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given the group \((G,{\text{ }} * )\), a subgroup \((H,{\text{ }} * )\) and \(a,{\text{ }}b \in G\), we define \(a \sim b\) if and only if \(a{b^{ - 1}} \in H\). Show that \( \sim \) is an equivalence relation.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Set \(S = \{ {x_0},{\text{ }}{x_1},{\text{ }}{x_2},{\text{ }}{x_3},{\text{ }}{x_4},{\text{ }}{x_5}\} \) and a binary operation \( \circ \) on <em>S</em> is defined as \({x_i} \circ {x_j} = {x_k}\), where \(i + j \equiv k(\bmod 6)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Construct the Cayley table for \(\{ S,{\text{ }} \circ \} \) and hence show that it is a group.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Show that \(\{ S,{\text{ }} \circ \} \) is cyclic.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Let \(\{ G,{\text{ }} * \} \) be an Abelian group of order 6. The element \(a \in {\text{G}}\) has order 2 and the element \(b \in {\text{G}}\) has order 3.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) Write down the six elements of \(\{ G,{\text{ }} * \} \).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find the order of \({\text{a}} * b\) and hence show that \(\{ G,{\text{ }} * \} \) is isomorphic to \(\{ S,{\text{ }} \circ \} \).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \frac{{1 - {{\text{e}}^{ - x}}}}{{1 + {{\text{e}}^{ - x}}}},{\text{ }}x \in \mathbb{R}{\text{ .}}\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the range of <em>f </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Prove that <em>f </em>is an injection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Taking the codomain of <em>f </em>to be equal to the range of <em>f </em>, find an expression for \({f^{ - 1}}(x)\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R</em> is defined on \(\mathbb{Z} \times \mathbb{Z}\) such that \((a,{\text{ }}b)R(c,{\text{ }}d)\) if and only if <em>a</em> − <em>c</em> is divisible by 3 and <em>b</em> − <em>d</em> is divisible by 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Prove that <em>R</em> is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the equivalence class for (2, 1) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Write down the five remaining equivalence classes.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \( * \) is defined on the set <em>S</em> = {0, 1, 2, 3} by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[a * b = a + 2b + ab(\bmod 4){\text{ .}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Construct the Cayley table.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Write down, with a reason, whether or not your table is a Latin square.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Write down, with a reason, whether or not \( * \) is commutative.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Determine whether or not \( * \) is associative, justifying your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find all solutions to the equation \(x * 1 = 2 * x\) , for \(x \in S\) .</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the six roots of the equation \({z^6} - 1 = 0\) , giving your answers in the form \(r\,{\text{cis}}\,\theta {\text{, }}r \in {\mathbb{R}^ + }{\text{, }}0 \leqslant \theta < 2\pi \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Show that these six roots form a group <em>G </em>under multiplication of complex numbers.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Show that <em>G </em>is cyclic and find all the generators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) Give an example of another group that is isomorphic to <em>G</em>, stating clearly the corresponding elements in the two groups.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R</em> is defined on \({\mathbb{Z}^ + }\) by <em>aRb</em> if and only if <em>ab</em> is even. Show that only one of the conditions for <em>R</em> to be an equivalence relation is satisfied.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>S</em> is defined on \({\mathbb{Z}^ + }\) by <em>aSb</em> if and only if \({a^2} \equiv {b^2}(\bmod 6)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that <em>S</em> is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) For each equivalence class, give the four smallest members.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The groups \(\{ K,{\text{ }} * \} \) and \(\{ H,{\text{ }} \odot \} \) are defined by the following Cayley tables.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">G </span><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">H </span><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By considering a suitable function from <em>G</em> to <em>H</em> , show that a surjective homomorphism exists between these two groups. State the kernel of this homomorphism.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Three functions mapping \(\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}\) are defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{f_1}(m,{\text{ }}n) = m - n + 4;\,\,\,{f_2}(m,{\text{ }}n) = \left| m \right|;\,\,\,{f_3}(m,{\text{ }}n) = {m^2} - {n^2}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Two functions mapping \(\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}\) are defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{g_1}(k) = (2k,{\text{ }}k);\,\,\,{g_2}(k) = \left( {k,{\text{ }}\left| k \right|} \right).\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the range of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({f_1} \circ {g_1}\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \({f_3} \circ {g_2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find all the solutions of \({f_1} \circ {g_2}(k) = {f_2} \circ {g_1}(k)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find all the solutions of \({f_3}(m,{\text{ }}n) = p\) in each of the cases <em>p</em> =1 and <em>p</em> = 2 .</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">\(\{ G,{\text{ }} * \} \) is a group with identity element \(e\). Let \(a,{\text{ }}b \in G\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State Lagrange’s theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Verify that the inverse of \(a * {b^{ - 1}}\) is equal to \(b * {a^{ - 1}}\).</p>
<p class="p1"> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(\{ H,{\rm{ }} * {\rm{\} }}\) be a subgroup of \(\{ G,{\rm{ }} * {\rm{\} }}\). Let \(R\) be a relation defined on \(G\) by</p>
<p class="p1">\[aRb \Leftrightarrow a * {b^{ - 1}} \in H.\]</p>
<p class="p1">Prove that \(R\) is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(\{ H,{\rm{ }} * {\rm{\} }}\) be a subgroup of \(\{ G,{\rm{ }} * {\rm{\} }}\) .Let \(R\) be a relation defined on \(G\) by</p>
<p class="p1">\[aRb \Leftrightarrow a * {b^{ - 1}} \in H.\]</p>
<p class="p1">Show that \(aRb \Leftrightarrow a \in Hb\), where \(Hb\) is the right coset of \(H\) containing \(b\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(\{ H,{\rm{ }} * {\rm{\} }}\) be a subgroup of \(\{ G,{\rm{ }} * {\rm{\} }}\) .Let \(R\) be a relation defined on \(G\) by</p>
<p class="p1">\[aRb \Leftrightarrow a * {b^{ - 1}} \in H.\]</p>
<p class="p1">It is given that the number of elements in any right coset of \(H\) is equal to the order of \(H\).</p>
<p class="p1">Explain how this fact together with parts (c) and (d) prove Lagrange’s theorem.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Given a set \(U\), and two of its subsets \(A\) and \(B\), prove that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(A\backslash B) \cup (B\backslash A) = (A \cup B)\backslash (A \cap B),{\text{ where }}A\backslash B = A \cap B'.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Let \(S = \{ A,{\text{ }}B,{\text{ }}C,{\text{ }}D\} \) where \(A = \emptyset ,{\text{ }}B = \{ 0\} ,{\text{ }}C = \{ 0,{\text{ }}1\} \) and \(D = \{ {\text{0, 1, 2}}\} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">State, with reasons, whether or not each of the following statements is true.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) The operation \ is closed in \(S\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) The operation \( \cap \) has an identity element in \(S\) but not all elements have an inverse.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Given \(Y \in S\), the equation \(X \cup Y = Y\) always has a unique solution for \(X\) in \(S\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The relation \(R\) is defined on \(\mathbb{Z}\) by \(xRy\) if and only if \({x^2}y \equiv y\bmod 6\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the product of three consecutive integers is divisible by \(6\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence prove that \(R\) is reflexive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the set of all \(y\) for which \(5Ry\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the set of all \(y\) for which \(3Ry\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answers for (c) and (d) show that \(R\) is not symmetric.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine, giving reasons, which of the following sets form groups under the operations given below. Where appropriate you may assume that multiplication is associative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(\mathbb{Z}\) under subtraction.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) The set of complex numbers of modulus 1 under multiplication.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) The set {1, 2, 4, 6, 8} under multiplication modulo 10.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) The set of rational numbers of the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{3m + 1}}{{3n + 1}},{\text{ where }}m,{\text{ }}n \in \mathbb{Z}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">under multiplication.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the set <em>S </em>defined by \(S = \{ s \in \mathbb{Q}:2s \in \mathbb{Z}\} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">You may assume that \( + \) (addition) and \( \times \) (multiplication) are associative binary operations</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">on \(\mathbb{Q}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Write down the six smallest non-negative elements of \(S\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that \(\{ S,{\text{ }} + \} \) is a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Give a reason why \(\{ S,{\text{ }} \times \} \) is not a group. Justify your answer.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The relation \(R\) is defined on \(S\) by \({s_1}R{s_2}\) if \(3{s_1} + 5{s_2} \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(R\) is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Determine the equivalence classes.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \(\Delta\) is defined on the set \(S =\) {1, 2, 3, 4, 5} by the following Cayley table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-10_om_13.21.35.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) State whether <em>S </em>is closed under the operation Δ and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) State whether Δ is commutative and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) State whether there is an identity element and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Determine whether Δ is associative and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Find the solutions of the equation \(a\Delta b = 4\Delta b\), for \(a \ne 4\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operation \( * \) is defined for \(a{\text{, }}b \in {\mathbb{Z}^ + }\) by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[a * b = a + b - 2.\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Determine whether or not \( * \) is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) closed,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) commutative,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) associative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Find the identity element.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the set of positive integers having an inverse under \( * \).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A\), \(B\), \(C\) and \(D\) are subsets of \(\mathbb{Z}\) .</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \{ \left. m \right|m{\text{ is a prime number less than 15}}\}\)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(B = \{ \left. m \right|{m^4} = 8m\} \)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(C = \{ \left. m \right|(m + 1)(m - 2) < 0\} \)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(D = \{ \left. m \right|{m^2} < 2m + 4\} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) List the elements of each of these sets.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine, giving reasons, which of the following statements are true and which are false.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) \(n(D) = n(B) + n(B \cup C)\)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) \(D\backslash B \subset A\)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) \(B \cap A' = \emptyset \)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iv) \(n(B\Delta C) = 2\)</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Consider the set <em>A</em> = {1, 3, 5, 7} under the binary operation \( * \), where \( * \) denotes multiplication modulo 8.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) Write down the Cayley table for \(\{ A,{\text{ }} * \} \).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Show that \(\{ A,{\text{ }} * \} \) is a group.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) Find all solutions to the equation \(3 * x * 7 = y\). Give your answers in the form \((x,{\text{ }}y)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Now consider the set <em>B</em> = {1, 3, 5, 7, 9} under the binary operation \( \otimes \), where \( \otimes \) denotes multiplication modulo 10. Show that \(\{ B,{\text{ }} \otimes \} \) is not a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Another set <em>C</em> can be formed by removing an element from <em>B</em> so that \(\{ C,{\text{ }} \otimes \} \) is a group.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 25px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) State which element has to be removed.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 25px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Determine whether or not \(\{ A,{\text{ }} * \} \) and \(\{ C,{\text{ }} \otimes \} \) are isomorphic.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let {<em>G</em> , \( * \)} be a finite group of order <em>n</em> and let <em>H</em> be a non-empty subset of <em>G</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that any element \(h \in H\) has order smaller than or equal to <em>n</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) If <em>H</em> is closed under \( * \), show that {<em>H</em> , \( * \)} is a subgroup of {<em>G</em> , \( * \)}.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1"><span class="s1">The group \(\{ G,{\text{ }} * \} \) </span>is Abelian and the bijection \(f:{\text{ }}G \to G\) is defined by \(f(x) = {x^{ - 1}},{\text{ }}x \in G\).</p>
<p class="p1">Show that \(f\) is an isomorphism.</p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The group <em>G</em> has a subgroup <em>H</em>. The relation <em>R</em> is defined on <em>G</em> by <em>xRy</em> if and only if \(x{y^{ - 1}} \in H\), for \(x,{\text{ }}y \in G\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>R</em> is an equivalence relation.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The Cayley table for <em>G</em> is shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The subgroup <em>H</em> is given as \(H = \{ e,{\text{ }}{a^2}b\} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the equivalence class with respect to <em>R</em> which contains <em>ab</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Another equivalence relation \(\rho \) is defined on <em>G</em> by \(x\rho y\) if and only if \({x^{ - 1}}y \in H\), for \(x,{\text{ }}y \in G\). Find the equivalence class with respect to \(\rho \) which contains <em>ab</em>.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R</em> is defined on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} by <em>aRb</em> if and only if \(a(a + 1) \equiv b(b + 1)(\bmod 5)\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>R</em> is an equivalence relation.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the equivalence defining <em>R</em> can be written in the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(a - b)(a + b + 1) \equiv 0(\bmod 5).\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, determine the equivalence classes.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the set \({S_3} = \{ {\text{ }}p,{\text{ }}q,{\text{ }}r,{\text{ }}s,{\text{ }}t,{\text{ }}u\} \) of permutations of the elements of the set \(\{ 1,{\text{ }}2,{\text{ }}3\} \), defined by</p>
<p class="p1"><span class="Apple-converted-space"> </span>\(p = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 1&2&3 \end{array}} \right),{\text{ }}q = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 1&3&2 \end{array}} \right),{\text{ }}r = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 3&2&1 \end{array}} \right),{\text{ }}s = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 2&1&3 \end{array}} \right),{\text{ }}t = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 2&3&1 \end{array}} \right),{\text{ }}u = \left( {\begin{array}{*{20}{c}} 1&2&3 \\ 3&1&2 \end{array}} \right).\)</p>
<p class="p1">Let \( \circ \) denote composition of permutations, so \(a \circ b\) means \(b\) followed by \(a\). You may assume that \(({S_3},{\text{ }} \circ )\) forms a group.</p>
<p class="p1"> </p>
<p class="p1"> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following Cayley table</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-08_om_09.28.14.png" alt></p>
<p class="p1" style="text-align: left;"><em><strong>[5 marks]</strong></em></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) State the inverse of each element.</p>
<p class="p1">(ii) Determine the order of each element.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the subgroups containing</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(r\),</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(u\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The permutation \({p_1}\) of the set {1, 2, 3, 4} is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{p_1} = \left( {\begin{array}{*{20}{c}}<br> 1&2&3&4 \\ <br> 2&4&1&3 <br>\end{array}} \right)\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) State the inverse of \({p_1}\).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find the order of \({p_1}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Another permutation \({p_2}\) is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{p_2} = \left( {\begin{array}{*{20}{c}}<br> 1&2&3&4 \\ <br> 3&2&4&1 <br>\end{array}} \right)\]</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) Determine whether or not the composition of \({p_1}\) and \({p_2}\) is commutative.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find the permutation \({p_3}\) which satisfies</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{p_1}{p_3}{p_2} = \left( {\begin{array}{*{20}{c}}<br> 1&2&3&4 \\ <br> 1&2&3&4 <br>\end{array}} \right){\text{.}}\]</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>R</em> be a relation on the set \(\mathbb{Z}\) such that \(aRb \Leftrightarrow ab \geqslant 0\), for <em>a</em>, <em>b</em> \( \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Determine whether <em>R</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) reflexive;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) symmetric;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) transitive.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Write down with a reason whether or not <em>R</em> is an equivalence relation.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R</em> is defined for <em>a</em> , \(b \in {\mathbb{Z}^ + }\) such that <em>aRb</em> if and only if \({a^2} - {b^2}\) is divisible by 5.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>R</em> is an equivalence relation.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Identify the three equivalence classes.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(G\) be a group of order 12 with identity element <em>e</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(a \in G\) such that \({a^6} \ne e\) and \({a^4} \ne e\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Prove that \(G\) is cyclic and state two of its generators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Let \(H\) be the subgroup generated by \({a^4}\). Construct a Cayley table for \(H\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">State, with a reason, whether or not it is necessary that a group is cyclic given that all its proper subgroups are cyclic.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that {1, −1, i, −i} forms a group of complex numbers <em>G</em> under multiplication.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Consider \(S = \{ e,{\text{ }}a,{\text{ }}b,{\text{ }}a * b\} \) under an associative operation \( * \) where <em>e</em> is the identity element. If \(a * a = b * b = e\) and \(a * b = b * a\) , show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(a * b * a = b\) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(a * b * a * b = e\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) Write down the Cayley table for \(H = \{ S{\text{ , }} * \} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that <em>H</em> is a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Show that <em>H</em> is an Abelian group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) For the above groups, <em>G</em> and <em>H</em> , show that one is cyclic and write down why the other is not. Write down all the generators of the cyclic group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Give a reason why </span><em style="font-family: 'times new roman', times; font-size: medium;">G</em><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><em style="font-family: 'times new roman', times; font-size: medium;">H</em><span style="font-family: 'times new roman', times; font-size: medium;"> are not isomorphic.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The relations <em>R</em> and <em>S</em> are defined on quadratic polynomials <em>P</em> of the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[P(z) = {z^2} + az + b{\text{ , where }}a{\text{ , }}b \in \mathbb{R}{\text{ , }}z \in \mathbb{C}{\text{ .}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) The relation <em>R</em> is defined by \({P_1}R{P_2}\) if and only if the sum of the two zeros of \({P_1}\) is equal to the sum of the two zeros of \({P_2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that <em>R</em> is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Determine the equivalence class containing \({z^2} - 4z + 5\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) The relation <em>S</em> is defined by \({P_1}S{P_2}\) if and only if \({P_1}\) and \({P_2}\) have at least one zero in common. Determine whether or not <em>S</em> is transitive.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The relation <em>R </em>is defined on ordered pairs by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(a,{\text{ }}b)R(c,{\text{ }}d){\text{ if and only if }}ad = bc{\text{ where }}a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in {\mathbb{R}^ + }.\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that <em>R </em>is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Describe, geometrically, the equivalence classes.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the set <em>S</em> = {1, 3, 5, 7, 9, 11, 13} under the binary operation multiplication modulo 14 denoted by \({ \times _{14}}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Copy and complete the following Cayley table for this binary operation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give one reason why \(\{ S,{\text{ }}{ \times _{14}}\} \) is not a group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that a new set <em>G</em> can be formed by removing one of the elements of <em>S</em> such that \(\{ G,{\text{ }}{ \times _{14}}\} \) is a group.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the order of each element of \(\{ G,{\text{ }}{ \times _{14}}\} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the proper subgroups of \(\{ G,{\text{ }}{ \times _{14}}\} \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The binary operator multiplication modulo 14, denoted by \( * \), is defined on the set <em>S</em> = {2, 4, 6, 8, 10, 12}.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Copy and complete the following operation table.</span><br><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that {<em>S</em> , \( * \)} is a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the order of each element of {<em>S</em> , \( * \)}.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Hence show that {<em>S</em> , \( * \)} is cyclic and find all the generators.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The set <em>T</em> is defined by \(\{ x * x:x \in S\} \). Show that {<em>T</em> , \( * \)} is a subgroup of {<em>S</em> , \( * \)}.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The group \(\{ G,{\text{ }} * \} \) <span class="s1">is defined on the set \(G\) </span>with binary operation \( * \)<span class="s1">. \(H\) is a subset of \(G\) defined by \(H = \{ x:{\text{ }}x \in G,{\text{ }}a * x * {a^{ - 1}} = x{\text{ for all }}a \in G\} \)</span>. Prove that \(\{ H,{\text{ }} * \} \) is a subgroup of \(\{ G,{\text{ }} * \} \).</p>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The following Cayley table for the binary operation multiplication modulo 9, denoted by \( * \)</span>, is defined on the set \(S = \{ 1,{\text{ }}2,{\text{ }}4,{\text{ }}5,{\text{ }}7,{\text{ }}8\} \).</p>
<p class="p1"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Copy and complete the table.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that \(\{ S,{\text{ }} * \} \) </span>is an Abelian group.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the orders of all the elements of \(\{ S,{\text{ }} * \} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the two proper subgroups of \(\{ S,{\text{ }} * \} \).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the coset of each of these subgroups with respect to the element 5.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the equation \(2 * x * 4 * x * 4 = 2\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The binary operation multiplication modulo 10, denoted by ×<sub>10</sub>, is defined on the set <em>T</em> = {2 , 4 , 6 , 8} and represented in the following Cayley table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that {<em>T</em>, ×<sub>10</sub>} is a group. (You may assume associativity.)</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By making reference to the Cayley table, explain why<em> T</em> is Abelian.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the order of each element of {<em>T</em>, ×<sub>10</sub>}.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that {<em>T</em>, ×<sub>10</sub>} is cyclic and write down all its generators.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The binary operation multiplication modulo 10, denoted by ×<sub>10</sub> , is defined on the set <em>V</em> = {1, 3 ,5 ,7 ,9}.</p>
<p>Show that {<em>V</em>, ×<sub>10</sub>} is not a group.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the sets <em>A</em> = {1, 3, 5, 7, 9} , <em>B</em> = {2, 3, 5, 7, 11} and <em>C</em> = {1, 3, 7, 15, 31} .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\left( {A \cup B} \right) \cap \left( {A \cup C} \right)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <em>A</em> \ <em>C</em> ≠ <em>C </em>\ <em>A</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em>S</em> be a set containing \(n\) elements where \(n \in \mathbb{N}\).</p>
<p>Show that S has \({2^n}\) subsets.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following Cayley table for the set <em>G</em> = {1, 3, 5, 7, 9, 11, 13, 15} under the operation \({ \times _{16}}\), where \({ \times _{16}}\) denotes multiplication modulo 16.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the values of <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, <em>e</em>, <em>f</em>, <em>g</em>, <em>h</em>, <em>i</em> and <em>j</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Given that \({ \times _{16}}\) is associative, show that the set <em>G</em>, together with the operation \({ \times _{16}}\), forms a group.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The Cayley table for the set \(H = \{ e,{\text{ }}{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }}{b_1},{\text{ }}{b_2},{\text{ }}{b_3},{\text{ }}{b_4}\} \) under the operation \( * \), is shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Given that \( * \) is associative, show that <em>H</em> together with the operation \( * \) forms a group.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find two subgroups of order 4.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\{ G,{\text{ }}{ \times _{16}}\} \) and \(\{ H,{\text{ }} * \} \) are not isomorphic.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\{ H,{\text{ }} * \} \) is not cyclic.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(g:\mathbb{Z} \to \mathbb{Z}\) is defined by \(g(n) = \left| n \right| - 1{\text{ for }}n \in \mathbb{Z}\) . Show that <em>g </em>is neither surjective nor injective.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The set <em>S </em>is finite. If the function \(f:S \to S\) is injective, show that <em>f </em>is surjective.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the set \({\mathbb{Z}^ + }\) as both domain and codomain, give an example of an injective function that is not surjective.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions \(f:A \to B\) and \(g:B \to C\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that if both <em>f</em> and <em>g</em> are injective, then \(g \circ f\) is also injective.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that if both <em>f</em> and <em>g</em> are surjective, then \(g \circ f\) is also surjective.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show, using a single counter example, that both of the converses to the results in part (a) and part (b) are false.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f:\mathbb{R} \to \mathbb{R}\) is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br> {2x + 1}&{{\text{for }}x \leqslant 2} \\ <br> {{x^2} - 2x + 5}&{{\text{for }}x > 2.} <br>\end{array}} \right.\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Sketch the graph of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) By referring to your graph, show that <em>f</em> is a bijection.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \({f^{ - 1}}(x)\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine, using Venn diagrams, whether the following statements are true.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(A' \cup B' = (A \cup B)'\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \((A\backslash B) \cup (B\backslash A) = (A \cup B)\backslash (A \cap B)\)</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove, without using a Venn diagram, that \(A\backslash B\) and \(B\backslash A\) are disjoint sets.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>