File "HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option D HTML/HL-paper3html
File size: 223.37 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how some white dwarf stars become type Ia supernovae.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, explain why a type Ia supernova is used as a standard candle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the observation of type Ia supernovae led to the hypothesis that dark energy exists.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the observed orbital velocities of stars in a galaxy against their distance from the centre of the galaxy. The core of the galaxy has a radius of 4.0 kpc.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rotation velocity of stars 4.0 kpc from the centre of the galaxy. The average density of the galaxy is 5.0 × 10<sup>–21</sup> kg m<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the rotation curves are evidence for the existence of dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to star formation, what is meant by the Jeans criterion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the proton–proton cycle, four hydrogen nuclei fuse to produce one nucleus of helium releasing a total of 4.3 × 10<sup>–12</sup> J of energy. The Sun will spend 10<sup>10</sup> years on the&nbsp;main sequence. It may be assumed that during this time the Sun maintains a constant luminosity of 3.8 × 10<sup>26</sup> W.</p>
<p><br>Show that the total mass of hydrogen that is converted into helium while the Sun is on the main sequence is 2 × 10<sup>29</sup> kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Massive stars that have left the main sequence have a layered structure with different chemical elements in different layers. Discuss this structure by reference to the nuclear reactions taking place in such stars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>In 2017, two neutron stars were observed to merge, forming a black hole. The material released included chemical elements produced by the r process of neutron capture. Describe <strong>two</strong> characteristics of the elements produced by the r process.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Derive, using the concept of the cosmological origin of redshift, the relation</p>
<p><em>T</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \propto \frac{1}{R}">
  <mo>∝</mo>
  <mfrac>
    <mn>1</mn>
    <mi>R</mi>
  </mfrac>
</math></span></p>
<p>between the temperature <em>T</em> of the cosmic microwave background (CMB) radiation&nbsp;and the cosmic scale factor <em>R</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The present temperature of the CMB is 2.8 K. This radiation was emitted when&nbsp;the universe was smaller by a factor of 1100. Estimate the temperature of the&nbsp;CMB at the time of its emission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the anisotropies in the CMB distribution are interpreted.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Sun is a second generation star. Outline, with reference to the Jeans criterion (M<sub>J</sub>), how the Sun is likely to have been formed.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how fluctuations in the cosmic microwave background (CMB) radiation are linked to the observation that galaxies collide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the critical density of the universe is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{3{H^2}}}{{8\pi G}}">
  <mfrac>
    <mrow>
      <mn>3</mn>
      <mrow>
        <msup>
          <mi>H</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>8</mn>
      <mi>π</mi>
      <mi>G</mi>
    </mrow>
  </mfrac>
</math></span></p>
<p>where <em>H</em> is the Hubble parameter and <em>G</em> is the gravitational constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Recent evidence from the Planck observatory suggests that the matter density of the&nbsp;universe is <em>ρ</em><sub>m</sub> = 0.32 <em>ρ</em><sub>c</sub>, where <em>ρ</em><sub>c</sub> ≈ 10<sup>–26</sup> kg<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
  <mspace width="thinmathspace"></mspace>
</math></span>m<sup>–3</sup> is the critical density.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with time <em>t</em> of the cosmic scale factor <em>R</em> in the flat model&nbsp;of the universe in which dark energy is ignored.</p>
<p><img src="images/Schermafbeelding_2017-09-26_om_10.24.01.png" alt="M17/4/PHYSI/HP3/ENG/TZ1/17.a"></p>
<p>On the axes above draw a graph to show the variation of <em>R</em> with time, when dark&nbsp;energy is present.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of the observable matter in the universe is only 0.05 <em>ρ</em><sub>c</sub>. Suggest how&nbsp;the remaining 0.27 <em>ρ</em><sub>c</sub> is accounted for.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of dark energy is <em>ρ</em><sub>Λ</sub>c<sup>2</sup> where <em>ρ</em><sub>Λ</sub> = <em>ρ</em><sub>c</sub>&nbsp;– <em>ρ</em><sub>m</sub>. Calculate the amount of&nbsp;dark energy in 1 m<sup>3</sup> of space.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A galaxy can be modelled as a sphere of radius <em>R</em><sub>0</sub>. The distance of a star from the centre of the galaxy is <em>r</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_16.21.46.png" alt="M18/4/PHYSI/HP3/ENG/TZ1/19"></p>
<p>For this model the graph is a simplified representation of the variation with <em>r </em>of the mass of <strong>visible matter </strong>enclosed inside <em>r</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of visible matter in the galaxy is <em>M</em>.</p>
<p>Show that for stars where <em>r </em>&gt; <em>R</em><sub>0</sub> the velocity of orbit is&nbsp;<em>v</em> =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sqrt {\frac{{GM}}{r}} ">
  <msqrt>
    <mfrac>
      <mrow>
        <mi>G</mi>
        <mi>M</mi>
      </mrow>
      <mi>r</mi>
    </mfrac>
  </msqrt>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the axes the observed variation with <em>r </em>of the orbital speed <em>v </em>of stars in a galaxy.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the equation in (a) and the graphs, why the presence of visible matter alone cannot account for the velocity of stars when <em>r </em>&gt; <em>R</em><sub>0</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light from a distant galaxy shows that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>11</mn></math>.</p>
<p>Calculate the ratio&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>size</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>universe</mi><mo>&nbsp;</mo><mi>when</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>light</mi><mo>&nbsp;</mo><mi>was</mi><mo>&nbsp;</mo><mi>emitted</mi></mrow><mrow><mi>size</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>the</mi><mo>&nbsp;</mo><mi>universe</mi><mo>&nbsp;</mo><mi>at</mi><mo>&nbsp;</mo><mi>present</mi></mrow></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how Hubble’s law is related to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hubble originally linked galactic redshift to a Doppler effect arising from galactic recession. Hubble’s law is now regarded as being due to cosmological redshift, not the Doppler effect. Explain the observed galactic redshift in cosmological terms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The data for the star Eta Aquilae A are given in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mo>⊙</mo></msub></math> is the luminosity of the Sun and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mo>⊙</mo></msub></math> is the mass of the Sun.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show by calculation that Eta Aquilae A is not on the main sequence.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pc</mi></math>, the distance to Eta Aquilae A using the parallax angle in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>pc</mtext></math>, the distance to Eta Aquilae A using the luminosity in the table, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>L</mi><mo>⊙</mo></msub><mo>=</mo><mn>3</mn><mo>.</mo><mn>83</mn><mo>×</mo><msup><mn>10</mn><mn>26</mn></msup><mo> </mo><mi mathvariant="normal">W</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why your answers to (b)(i) and (b)(ii) are different.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Eta Aquilae A is a Cepheid variable. Explain why the brightness of Eta Aquilae A varies.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Eta Aquilae A was on the main sequence before it became a variable star. Compare, without calculation, the time Eta Aquilae A spent on the main sequence to the total time the Sun is likely to spend on the main sequence.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The cosmic microwave background (CMB) radiation is observed to have anisotropies.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the nature of the anisotropies observed in the CMB radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>two</strong> possible causes of the anisotropies in (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the evidence that indicates the location of dark matter in galaxies.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a hypothesis of dark energy has been developed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A distinctive feature of the constellation Orion is the Trapezium, an open cluster of stars&nbsp;within Orion.</p>
</div>

<div class="specification">
<p>Mintaka is one of the stars in Orion.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a constellation and an open cluster.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The parallax angle of Mintaka measured from Earth is 3.64 × 10<sup>–3</sup> arc-second. Calculate, in parsec, the approximate distance of Mintaka from Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why there is a maximum distance that astronomers can measure using stellar parallax.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Great Nebula is located in Orion. Describe, using the Jeans criterion, the necessary condition for a nebula to form a star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The surface temperature of the star Epsilon Indi is 4600 K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the peak wavelength of the radiation emitted by Epsilon Indi.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the axis, draw the variation with wavelength of the intensity of the radiation emitted by Epsilon Indi.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data are available for the Sun.</p>
<p style="padding-left:150px;">Surface temperature  = 5800 K</p>
<p style="padding-left:150px;">Luminosity                  = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_ \odot }">
  <mrow>
    <msub>
      <mi>L</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span></p>
<p style="padding-left:150px;">Mass                          = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{M_ \odot }">
  <mrow>
    <msub>
      <mi>M</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span></p>
<p style="padding-left:150px;">Radius                       = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R_ \odot }">
  <mrow>
    <msub>
      <mi>R</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span></p>
<p>Epsilon Indi has a radius of 0.73 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R_ \odot }">
  <mrow>
    <msub>
      <mi>R</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span>. Show that the luminosity of Epsilon Indi is 0.2 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_ \odot }">
  <mrow>
    <msub>
      <mi>L</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Epsilon Indi is a main sequence star. Show that the mass of Epsilon Indi is 0.64 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{M_ \odot }">
  <mrow>
    <msub>
      <mi>M</mi>
      <mo>⊙</mo>
    </msub>
  </mrow>
</math></span>.</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Sun will spend about nine billion years on the main sequence. Calculate how long Epsilon Indi will spend on the main sequence.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the stages in the evolution of Epsilon Indi from the point when it leaves the main sequence until its final stable state.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the variation with distance from the Earth of the recessional velocities of&nbsp;distant galaxies.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how Hubble measured the recessional velocities of galaxies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to determine the age of the universe in s.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline what is meant by dark energy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> candidates for dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the variation with time of the cosmic scale factor <em>R</em> of the universe for the flat model of the universe <strong>without</strong> dark energy.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light from distant galaxies is redshifted. Explain the cosmological origin of this redshift.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with time of the cosmic scale factor <em>R</em> for the flat model of the universe <strong>with</strong> dark energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast, the variation with time of the temperature of the cosmic background (CMB) radiation, for the two models from the present time onward.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distribution of mass in a spherical system is such that the density&nbsp;<em>ρ</em>&nbsp;varies with&nbsp;distance <em>r</em>&nbsp;from the centre as</p>
<p><em>ρ </em>=&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{k}{{{r^2}}}">
  <mfrac>
    <mi>k</mi>
    <mrow>
      <mrow>
        <msup>
          <mi>r</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span></p>
<p>where <em>k</em> is a constant.</p>
<p>Show that the rotation curve of this system is described by</p>
<p><em>v</em> = constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Curve A shows the actual rotation curve of a nearby galaxy. Curve B shows the&nbsp;predicted rotation curve based on the visible stars in the galaxy.</p>
<p><img src=""></p>
<p>Explain how curve A provides evidence for dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Evidence from the Planck space observatory suggests that the density of matter in the universe is about 32 % of the critical density of the universe.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how the light spectra of distant galaxies are used to confirm hypotheses about the expansion of the universe.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Light from a hydrogen source in a laboratory on Earth contains a spectral line of wavelength 122 nm. Light from the same spectral line reaching Earth from a distant galaxy has a wavelength of 392 nm. Determine the ratio of the present size of the universe to the size of the universe when the light was emitted by the galaxy.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what is meant by the critical density.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the density of matter in the universe, using the Hubble constant 70 km s<sup>–1 </sup>Mpc<sup>–1</sup>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">It is estimated that less than 20 % of the matter in the universe is observable. Discuss how scientists use galactic rotation curves to explain this.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>Type Ia supernovae typically have a peak luminosity of around 5 × 10<sup>5</sup> L<sub>s</sub>, where L<sub>s</sub> is the luminosity of the Sun (3.8 × 10<sup>26</sup> W). A type Ia supernova is observed with an apparent peak brightness of 1.6 × 10<sup>–6</sup> W m<sup>–2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the formation of a type Ia supernova.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance to the supernova is approximately 3.1 × 10<sup>18</sup> m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>assumption made in your calculation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The homogeneous model of the universe predicts that it may be considered as a spherical cloud of matter of radius r and uniform density <em>ρ</em>. Consider a particle of mass <em>m</em> at the edge of the universe moving with velocity <em>v</em> and obeying Hubble’s law.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify that the total energy of this particle is <span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E = \frac{1}{2}m{v^2} - \frac{4}{3}\pi G{\text{r}}{r^2}m">
  <mi>E</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mi>m</mi>
  <mrow>
    <msup>
      <mi>v</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−</mo>
  <mfrac>
    <mn>4</mn>
    <mn>3</mn>
  </mfrac>
  <mi>π</mi>
  <mi>G</mi>
  <mrow>
    <mtext>r</mtext>
  </mrow>
  <mrow>
    <msup>
      <mi>r</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mi>m</mi>
</math></span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At critical density there is zero total energy. Show that the critical density of the universe is:&nbsp;<span style="background-color:#ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{r}}_c} = \frac{{3H_0^2}}{{8\pi G}}">
  <mrow>
    <msub>
      <mrow>
        <mtext>r</mtext>
      </mrow>
      <mi>c</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3</mn>
      <msubsup>
        <mi>H</mi>
        <mn>0</mn>
        <mn>2</mn>
      </msubsup>
    </mrow>
    <mrow>
      <mn>8</mn>
      <mi>π</mi>
      <mi>G</mi>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The accepted value for the Hubble constant is 2.3 × 10<sup>−18</sup> s<sup>−1</sup>. Estimate the critical density of the universe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the mechanism of formation of type I a supernovae.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the mechanism of formation of type II supernovae.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why type I a supernovae were used in the study that led to the conclusion that the expansion of the universe is accelerating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Proxima Centauri is a main sequence star with a mass of 0.12 solar masses.</span></p>
<p><span style="background-color: #ffffff;">Estimate&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>lifetime</mi><mo>&nbsp;</mo><mi>on</mi><mo>&nbsp;</mo><mi>main</mi><mo>&nbsp;</mo><mi>sequence</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Proxima</mi><mo>&nbsp;</mo><mi>Centauri</mi></mrow><mrow><mi>lifetime</mi><mo>&nbsp;</mo><mi>on</mi><mo>&nbsp;</mo><mi>main</mi><mo>&nbsp;</mo><mi>sequence</mi><mo>&nbsp;</mo><mi>of</mi><mo>&nbsp;</mo><mi>Sun</mi></mrow></mfrac></math>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe why iron is the heaviest element that can be produced by nuclear fusion processes inside stars.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss <strong>one</strong> process by which elements heavier than iron are formed in stars.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the temperature of the universe is inversely proportional to the cosmic scale factor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The present temperature of the cosmic microwave background (CMB) radiation is 3 K. Estimate the size of the universe relative to the present size of the universe when the temperature of the CMB was 300 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the Jeans criterion, why a cold dense gas cloud is more likely&nbsp;to form new stars than a hot diffuse gas cloud.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how neutron capture can produce elements with an atomic number greater&nbsp;than iron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the formation of a type I a supernova which enables the star to be used as a standard candle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Describe the r process which occurs during type II supernovae nucleosynthesis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>