File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 3 HTML/HL-paper2html
File size: 146.54 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>The electrical circuit shown is used to investigate the temperature change in a wire that is&nbsp;wrapped around a mercury-in-glass thermometer.</p>
<p style="text-align: center;"><img src=""></p>
<p>A power supply of emf (electromotive force) 24 V and of negligible internal resistance is&nbsp;connected to a capacitor and to a coil of resistance wire using an arrangement of two&nbsp;switches. Switch S<sub>1</sub> is closed and, a few seconds later, opened. Then switch S<sub>2</sub> is closed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The capacitance of the capacitor is 22 mF. Calculate the energy stored in the capacitor&nbsp;when it is fully charged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the wire is 8.0 Ω. Determine the time taken for the capacitor to&nbsp;discharge through the resistance wire. Assume that the capacitor is completely&nbsp;discharged when the potential difference across it has fallen to 0.24 V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the resistance wire is 0.61 g and its observed temperature&nbsp;rise is 28 K. Estimate the specific heat capacity of the wire. Include an&nbsp;appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> other energy loss in the experiment and the effect it will have on the value for the specific heat capacity of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>0.46 mole of an ideal monatomic gas is trapped in a cylinder. The gas has a volume of 21 m<sup>3</sup> and a pressure of 1.4 Pa.</p>
<p>(i) State how the internal energy of an ideal gas differs from that of a real gas.</p>
<p>(ii) Determine, in kelvin, the temperature of the gas in the cylinder.</p>
<p>(iii) The kinetic theory of ideal gases is one example of a scientific model. Identify <strong>two</strong> reasons why scientists find such models useful.</p>
</div>
<br><hr><br><div class="specification">
<p>The first scientists to identify alpha particles by a direct method were Rutherford and Royds.&nbsp;They knew that radium-226 (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{86}^{226}{\text{Ra}}">
  <msubsup>
    <mrow>

    </mrow>
    <mrow>
      <mn>86</mn>
    </mrow>
    <mrow>
      <mn>226</mn>
    </mrow>
  </msubsup>
  <mrow>
    <mtext>Ra</mtext>
  </mrow>
</math></span>) decays by alpha emission to form a nuclide known as radon (Rn).</p>
</div>

<div class="specification">
<p>At the start of the experiment, Rutherford and Royds put 6.2 x&nbsp;10<sup>–4</sup> mol of&nbsp;pure radium-226 in a small closed cylinder A. Cylinder A is fixed in the centre of a&nbsp;larger closed cylinder B.</p>
<p style="text-align: center;"><img src=""></p>
<p>The experiment lasted for 6 days. The decay constant of radium-226 is 1.4 x&nbsp;10<sup>–11</sup> s<sup>–1</sup>.</p>
</div>

<div class="specification">
<p>At the start of the experiment, all the air was removed from cylinder B. The&nbsp;alpha particles combined with electrons as they moved through the wall of cylinder A to&nbsp;form helium gas in cylinder B.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the nuclear equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the activity of the radium-226 is almost constant during the&nbsp;experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that about 3 x&nbsp;10<sup>15</sup> alpha particles are emitted by the radium-226 in 6 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wall of cylinder A is made from glass. Outline why this glass wall had to be very thin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment was carried out at a temperature of 18 °C. The volume of&nbsp;cylinder B was 1.3 x&nbsp;10<sup>–5</sup> m<sup>3</sup> and the volume of cylinder A was negligible.&nbsp;Calculate the pressure of the helium gas that was collected in cylinder B over the 6 day period. Helium is a monatomic gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A closed box of fixed volume 0.15 m<sup>3</sup> contains 3.0 mol of an ideal monatomic gas. The temperature of the gas is 290 K.</p>
</div>

<div class="specification">
<p>When the gas is supplied with 0.86 kJ of energy, its temperature increases by 23 K. The specific heat capacity of the gas is 3.1 kJ kg<sup>–1</sup> K<sup>–1</sup>.</p>
</div>

<div class="specification">
<p>A closed box of fixed volume 0.15 m<sup>3</sup> contains 3.0 mol of an ideal monatomic gas. The temperature of the gas is 290 K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in kJ, the total kinetic energy of the particles of the gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the kinetic model of an ideal gas, how an increase in temperature of the gas leads to an increase in pressure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid oxygen at its boiling point is stored in an insulated tank. Gaseous oxygen is produced&nbsp;from the tank when required using an electrical heater placed in the liquid.</p>
<p>The following data are available.</p>
<p style="padding-left: 60px;">Mass of 1.0 mol of oxygen&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 32 g</p>
<p style="padding-left: 60px;">Specific latent heat of vaporization of oxygen&nbsp; &nbsp;= 2.1 × 10<sup>5</sup> J kg<sup>–1</sup></p>
</div>

<div class="specification">
<p>An oxygen flow rate of 0.25 mol s<sup>–1</sup> is needed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between the internal energy of the oxygen at the boiling point when it is in its liquid phase and when it is in its gas phase.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in kW, the heater power required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of the oxygen produced in one second when it is allowed to expand to a pressure of 0.11 MPa and to reach a temperature of –13 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> assumption of the kinetic model of an ideal gas that does not apply to oxygen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A square loop of side 5.0&thinsp;cm enters a region of uniform magnetic field at <em>t</em> = 0. The loop exits&nbsp;the region of magnetic field at <em>t</em> = 3.5&thinsp;s. The magnetic field strength is 0.94&thinsp;T and is directed&nbsp;into the plane of the paper. The magnetic field extends over a length 65&thinsp;cm. The speed of the&nbsp;loop is constant.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed of the loop is 20 cm s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnetic flux linkage <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Φ</mi></math> in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the axes, a graph to show the variation with time of the magnitude of the emf induced in the loop.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are 85 turns of wire in the loop. Calculate the maximum induced emf in the loop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the loop is 2.4 Ω. Calculate the magnitude of the magnetic force on the loop as it enters the region of magnetic field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy dissipated in the loop from <em>t </em>= 0 to <em>t </em>= 3.5 s is 0.13 J.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the wire is 18 g. The specific heat capacity of copper is 385 J kg<sup>−1</sup> K<sup>−1</sup>. Estimate the increase in temperature of the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A container of volume 3.2 × 10<sup>-6</sup> m<sup>3</sup> is filled with helium gas at a pressure of 5.1 × 10<sup>5</sup> Pa and temperature 320 K. Assume that this sample of helium gas behaves as an ideal gas.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">A helium atom has a volume of 4.9 × 10<sup>-31</sup> m<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The mass of a helium atom is 6.6 × 10<sup>-27</sup> kg. Estimate the average speed of the helium atoms in the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the number of helium atoms in the container is 4 × 10<sup>20</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{volume of helium atoms}}}}{{{\text{volume of helium gas}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>volume of helium atoms</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>volume of helium gas</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Discuss, by reference to the kinetic model of an ideal gas and the answer to (c)(i), whether the assumption that helium behaves as an ideal gas is justified.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">cii.</div>
</div>
<br><hr><br><div class="specification">
<p>An ideal monatomic gas is kept in a container of volume 2.1 × 10<sup>–4</sup> m<sup>3</sup>, temperature&nbsp;310 K and pressure 5.3 × 10<sup>5</sup> Pa.</p>
</div>

<div class="specification">
<p>The volume of the gas in (a) is increased to 6.8 × 10<sup>–4</sup> m<sup>3</sup> at constant temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an ideal gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of atoms in the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in J, the internal energy of the gas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in Pa, the new pressure of the gas.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of molecular motion, this change in pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="specification">
<p>The molar mass of nitrogen is 28&thinsp;g&thinsp;mol<sup>&minus;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Titan is 0.025 times the mass of the Earth and its radius is 0.404 times the radius of the Earth. The escape speed from Earth is 11.2 km s<sup>−1</sup>. Show that the escape speed from Titan is 2.8 km s<sup>−1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of a nitrogen molecule is 4.7 × 10<sup>−26</sup> kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the root mean square speed of nitrogen molecules in the Titan atmosphere. Assume an atmosphere temperature of 90 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, by reference to the answer in (b), whether it is likely that Titan will lose its atmosphere of nitrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Plutonium-238 (Pu) decays by alpha (&alpha;) decay into uranium (U).</p>
<p>The following data are available for binding energies per nucleon:</p>
<p style="padding-left: 30px;">plutonium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 7.568&thinsp;MeV</p>
<p style="padding-left: 30px;">uranium&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;7.600&thinsp;MeV</p>
<p style="padding-left: 30px;">alpha particle&nbsp; &nbsp; &nbsp;7.074&thinsp;MeV</p>
</div>

<div class="specification">
<p>The energy in b(i) can be transferred into electrical energy to run the instruments of&nbsp;a spacecraft. A spacecraft carries 33&thinsp;kg of pure plutonium-238 at launch. The decay&nbsp;constant of plutonium is 2.50 &times; 10<sup>&minus;10</sup>&thinsp;s<sup>&minus;1</sup>.</p>
</div>

<div class="specification">
<p>Solar radiation falls onto a metallic surface carried by the spacecraft causing&nbsp;the emission of photoelectrons. The radiation has passed through a filter so it is&nbsp;monochromatic. The spacecraft is moving away from the Sun.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the axes, a graph to show the variation with nucleon number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> of the binding energy per nucleon, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>BE</mtext><mi>A</mi></mfrac></math>. Numbers are not required on the vertical axis.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, with a cross, on the graph in (a)(ii), the region of greatest stability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some unstable nuclei have many more neutrons than protons. Suggest the likely decay for these nuclei.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in this decay is about 6 MeV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plutonium nucleus is at rest when it decays.</p>
<p>Calculate the ratio <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>kinetic energy of alpha particle</mtext><mtext>kinetic energy of uranium</mtext></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power, in kW, that is available from the plutonium at launch.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft will take 7.2 years (2.3 × 10<sup>8</sup> s) to reach a planet in the solar system. Estimate the power available to the spacecraft when it gets to the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the kinetic energy of an emitted photoelectron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> State and explain what happens to the rate at which charge leaves the metallic surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Three identical light bulbs, X, Y and Z, each of resistance 4.0 Ω are connected to a cell of emf 12 V. The cell has negligible internal resistance.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">When fully charged the space between the plates of the capacitor is filled with a dielectric with double the permittivity of a vacuum.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch S is initially open. Calculate the total power dissipated in the circuit.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. State, without calculation, why the current in the cell will increase.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The switch is now closed. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Deduce the ratio }}\frac{{{\text{power dissipated in Y with S open}}}}{{{\text{power dissipated in Y with S closed}}}}">
  <mrow>
    <mtext>Deduce the ratio&nbsp;</mtext>
  </mrow>
  <mfrac>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S open</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>power dissipated in Y with S closed</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span>.</span></p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">bii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">The cell is used to charge a parallel-plate capacitor in a vacuum. The fully charged capacitor is then connected to an ideal voltmeter.</span></p>
<p><span style="background-color:#ffffff;"><img src=""></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">The capacitance of the capacitor is 6.0 μF and the reading of the voltmeter is 12 V.</span></span></p>
<p><span style="background-color:#ffffff;"><span style="background-color:#ffffff;">Calculate the energy stored in the capacitor.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Calculate the change in the energy stored in the capacitor.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">di.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Suggest, in terms of conservation of energy, the cause for the above change.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">dii.</div>
</div>
<br><hr><br><div class="specification">
<p>Potassium-40&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mmultiscripts><mtext>K</mtext><mprescripts></mprescripts><mn>19</mn><mn>40</mn></mmultiscripts></mfenced></math>&nbsp;decays by two processes.</p>
<p>The first process is that of beta-minus (&beta;<sup>&minus;</sup>) decay to form a calcium (Ca) nuclide.</p>
</div>

<div class="specification">
<p>Potassium-40 decays by a second process to argon-40. This decay accounts for 11&thinsp;%&nbsp;of the total decay of the potassium-40.</p>
<p>Rocks can be dated by measuring the quantity of argon-40 gas trapped in them. One&nbsp;rock sample contains 340&thinsp;&micro;mol of potassium-40 and 12&thinsp;&micro;mol of argon-40.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the initial quantity of potassium-40 in the rock sample was about 450 µmol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3 × 10<sup>9</sup> years. Estimate the age of the rock sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the decay constant of potassium-40 was determined in the laboratory for a pure sample of the nuclide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the gravitational field lines of planet X.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how this diagram shows that the gravitational field strength of planet X decreases with distance from the surface.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows part of the surface of planet X. The gravitational potential at the surface of planet X is –3<em>V</em> and the gravitational potential at point Y is –<em>V</em>.</p>
<p><img src=""></p>
<p>Sketch on the grid the equipotential surface corresponding to a gravitational potential of –2<em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A meteorite, very far from planet X begins to fall to the surface with a negligibly small initial speed. The mass of planet X is 3.1 × 10<sup>21</sup> kg and its radius is 1.2 × 10<sup>6</sup> m. The planet has no atmosphere. Calculate the speed at which the meteorite will hit the surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the instant of impact the meteorite which is made of ice has a temperature of 0 °C. Assume that all the kinetic energy at impact gets transferred into internal energy in the meteorite. Calculate the percentage of the meteorite’s mass that melts. The specific latent heat of fusion of ice is 3.3 × 10<sup>5</sup> J kg<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>