File "SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 10/SL-paper2html
File size: 601.51 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>ϴ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p> 3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p>3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (b)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-09_om_15.01.32.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/03.c"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the characteristic reaction mechanism of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Halogenoalkanes can undergo substitution reactions with potassium hydroxide solution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation for the reaction of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Cl}}\) with KOH.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw four structural isomers of molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{O}}\) which contain the –OH group.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On reaction with acidified potassium dichromate(VII), two of the isomers are oxidised in two steps to produce different products. Draw the structural formula of the <strong>two </strong>products formed from one of the isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A third isomer is oxidized in one step. Draw the structural formula of the organic product formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the colour change that takes place in these oxidation reactions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the isomer which resists oxidation by acidified potassium dichromate(VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alkenes are an economically and chemically important family of organic compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reaction of alkenes with bromine water provides a test for unsaturation in the laboratory. Describe the colour change when bromine water is added to chloroethene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis structure of chloroethene and identify the formula of the repeating unit of the polymer poly(chloroethene).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Deduce the structural formulas of the <strong>two </strong>alcohol isomers of molecular formula \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}\). Name each isomer and identify each as either a primary or a secondary alcohol.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Oxidation of the alcohol isomers lead to the formation of different organic products. Determine the structures of the organic products formed from the oxidation of each alcohol isomer in (c) (i) above and list the conditions required to obtain the different products.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alkenes, alcohols and esters are three families of organic compounds with many commercial uses.</p>
</div>
<div class="specification">
<p class="p1">Esters are often used in perfumes. Analysis of a compound containing the ester functional group only, gives a percentage composition by mass of C: 62.0% and H: 10.4%.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the meaning of the term <em>structural isomers</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>X </strong>is an isomer of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">8 </span></sub>and has the structural formula shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_13.10.03.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/06.a.iii"></p>
<p class="p1">Apply IUPAC rules to name this isomer. Deduce the structural formulas of <strong>two</strong> other isomers of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">8</span></sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced chemical equation for the reaction of <strong>X </strong>with HBr to form <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>Y </strong>reacts with aqueous sodium hydroxide, NaOH(aq), to form an alcohol, <strong>Z</strong>. Identify whether <strong>Z </strong>is a primary, secondary or tertiary alcohol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain <strong>one </strong>suitable mechanism for the reaction in (v) using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the structural formula of the organic product formed when <strong>Z </strong>is oxidized by heating under reflux with acidified potassium dichromate(VI) <strong>and </strong>state the name of the functional group of this organic product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the ester functional group.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the empirical formula of the ester, showing your working.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The molar mass of the ester is \({\text{116.18 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Determine its molecular formula.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Cortisone is a therapeutic drug whose three-dimensional structure is represented below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_09.18.01.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/07.a"></p>
</div>
<div class="specification">
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_09.20.50.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/c.i"></p>
<p style="text-align: center;"><strong>P</strong></p>
</div>
<div class="specification">
<p class="p1">Menthol can be used in cough medicines. The compound contains 76.84% C, 12.92% H and 10.24% O by mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the names of <strong>two </strong>functional groups present in cortisone.</p>
<p class="p2"> </p>
<p class="p1">1.</p>
<p class="p2"> </p>
<p class="p1">2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a circle around each of these <strong>two </strong>functional groups in the structure above and label them 1 and 2 as identified in (a) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the term <em>structural isomers</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of <strong>P</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>X </strong>is a straight-chain structural isomer of <strong>P</strong>. Draw the structure of <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><img src="images/Schermafbeelding_2016-09-19_om_07.55.59.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/07.c.iii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify a suitable catalyst used in the reaction to form <strong>R</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>P</strong>, CH<sub><span class="s1">3</span></sub>CH=CHCH<sub><span class="s1">3</span></sub>, reacts with HBr to form CH<sub><span class="s1">3</span></sub>CHBrCH<sub><span class="s1">2</span></sub>CH<sub><span class="s1">3</span></sub>. Suggest <strong>one </strong>suitable mechanism for the reaction of CH<sub><span class="s1">3</span></sub>CHBrCH<sub><span class="s1">2</span></sub>CH<sub><span class="s1">3 </span></sub>with aqueous sodium hydroxide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the structural formula of the organic product formed, <strong>S</strong>, when <strong>Q </strong>is heated under reflux with acidified potassium dichromate(VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of this product, <strong>S</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>P </strong>can undergo a polymerization reaction. Draw <strong>two </strong>repeating units of the resulting polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.viii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine its empirical formula.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine its molecular formula given that its molar mass is \(M = 156.30{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Benzene is an aromatic hydrocarbon.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the physical evidence for the structure of benzene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the typical reactions that benzene and cyclohexene undergo with bromine.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alkenes are important starting materials for a variety of products.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the trend of the boiling points of the first five members of the alkene homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Below is a schematic diagram representing some reactions of ethene. The letters <strong>A</strong>–<strong>D</strong> represent the organic compounds formed from the reactants and catalysts shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-25_om_07.02.49_1.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.c"><img src="images/Schermafbeelding_2016-10-25_om_07.02.49.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.c"><img src="images/Schermafbeelding_2016-10-25_om_07.03.48.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.c_1"></p>
<p class="p1">Deduce the structural formulas of compounds <strong>A</strong>, <strong>B</strong>, <strong>C</strong>, and <strong>D </strong>and state the IUPAC name of compound <strong>C</strong>.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-25_om_07.04.58.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.c_2"></p>
<p class="p1"> </p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a chemical test that could be used to distinguish between pent-1-ene and pentane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain whether the following molecules are primary, secondary or tertiary halogenoalkanes.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-25_om_11.47.01.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.e_1"></p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-25_om_11.47.51.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.e_2"></p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-25_om_11.50.10.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/06.e_3"></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain, using equations, the following steps in the free-radical mechanism of the reaction of methane with chlorine.</p>
<p class="p1">• Initiation</p>
<p class="p1">• Propagation</p>
<p class="p1">• Termination</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aspirin, one of the most widely used drugs in the world, can be prepared according to the equation given below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_08.15.13.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01"></p>
</div>
<div class="specification">
<p class="p1">A student reacted some salicylic acid with excess ethanoic anhydride. Impure solid aspirin was obtained by filtering the reaction mixture. Pure aspirin was obtained by recrystallization. The following table shows the data recorded by the student.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_08.18.46.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the names of the <strong>three </strong>organic functional groups in aspirin.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the amount, in mol, of salicylic acid, \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{(OH)COOH}}\), used.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the theoretical yield, in g, of aspirin, \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{(OCOC}}{{\text{H}}_{\text{3}}}{\text{)COOH}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage yield of pure aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the number of significant figures associated with the mass of pure aspirin obtained, and calculate the percentage uncertainty associated with this mass.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another student repeated the experiment and obtained an experimental yield of 150%. The teacher checked the calculations and found no errors. Comment on the result.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The following is a three-dimensional computer-generated representation of aspirin.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_09.08.18.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b.vi_1"></p>
<p class="p1">A third student measured selected bond lengths in aspirin, using this computer program and reported the following data.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_09.09.34.png" alt="M09/4/CHEMI/SP2/ENG/TZ2/01.b.vi_2"></p>
<p class="p1">The following hypothesis was suggested by the student: “<em>Since all the measured </em><em>carbon-carbon bond lengths are equal, all the carbon-oxygen bond lengths must </em><em>also be equal in aspirin. Therefore, the C8–O4 bond length must be 1.4 </em>\( \times \)<em> 10</em><sup><span class="s1"><em>–10 </em></span></sup><em>m</em>”. Comment on whether or not this is a valid hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The other product of the reaction is ethanoic acid, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\). Define an acid according to the Brønsted-Lowry theory and state the conjugate base of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\).</p>
<p class="p1">Brønsted-Lowry definition of an acid:</p>
<p class="p1">Conjugate base of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.vii.</div>
</div>
<br><hr><br><div class="specification">
<p>Some reactions of but-2-ene are given below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_09.21.33.png" alt="M15/4/CHEMI/SP2/ENG/TZ2/07"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the full structural formula of compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply IUPAC rules to name compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the colour change observed when excess but-2-ene reacts with bromine to form compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of the reagents <strong>D </strong>and <strong>E</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline <strong>two </strong>reasons why the polymerization of alkenes is of economic importance.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Identify the structure of the repeating unit of poly(but-2-ene).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound <strong>C</strong>, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\), can also be formed directly from compound <strong>B</strong>, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\).</p>
<p>(i) State the reagent and the conditions required for this reaction.</p>
<p> </p>
<p> </p>
<p>(ii) State the name of the type of reaction occurring in this conversion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound <strong>C </strong>can be oxidized by acidified potassium dichromate(VI) to form compound <strong>F</strong>.</p>
<p>(i) State the name of the functional group present in compound <strong>F</strong>.</p>
<p> </p>
<p>(ii) Deduce the structural formula of an alcohol which is a structural isomer of compound <strong>C </strong>and <strong>cannot </strong>be oxidized by acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why but-2-ene is more volatile than compound <strong>C</strong>, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the equation for the complete combustion of compound <strong>C</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the complete combustion of compound <strong>C </strong>when all reactants and products are in the gaseous state, using table 10 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An example of a homogeneous reversible reaction is the reaction between hydrogen and iodine.</p>
<p class="p1">\[{{\text{H}}_{\text{2}}}{\text{(g)}} + {{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">Propane can be formed by the hydrogenation of propene.</p>
<p class="p2">\[{\text{C}}{{\text{H}}_3}{\text{CH=C}}{{\text{H}}_2}{\text{(g)}} + {{\text{H}}_2}{\text{(g)}} \to {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_3}{\text{(g)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the characteristics of a homogeneous chemical system that is in a state of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the expression for the equilibrium constant, \({K_{\text{c}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict what would happen to the position of equilibrium and the value of \({K_{\text{c}}}\) if the pressure is increased from 1 atm to 2 atm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The value of \({K_{\text{c}}}\) at 500 K is 160 and the value of \({K_{\text{c}}}\) at 700 K is 54. Deduce what this information tells us about the enthalpy change of the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reaction can be catalysed by adding platinum metal. State and explain what effect the addition of platinum would have on the value of the equilibrium constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the conditions necessary for the hydrogenation reaction to occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Enthalpy changes can be determined using average bond enthalpies. Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine a value for the hydrogenation of propene using information from Table 10 of the Data Booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the enthalpy of hydrogenation of propene is an exothermic process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a chemical test that could be used to distinguish between propane and propene. In <strong>each </strong>case state the result of the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Under certain conditions propene can polymerize to form poly(propene). State the type of polymerization taking place and draw a section of the polymer to represent the repeating unit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than polymerization, state <strong>one </strong>reaction of alkenes which is of economic importance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">2-methylbutan-2-ol, \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{C(OH)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\), is a liquid with a smell of camphor that was formerly used as a sedative. One way of producing it starts with 2-methylbut-2-ene.</p>
</div>
<div class="specification">
<p class="p1">2-chloro-2-methylbutane contains some molecules with a molar mass of approximately \({\text{106 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) and some with a molar mass of approximately \({\text{108 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structure of 2-methylbut-2-ene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the other substances required to convert 2-methylbut-2-ene to 2-methylbutan-2-ol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain whether you would expect 2-methylbutan-2-ol to react with acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why 2-methylbut-2-ene is less soluble in water than 2-methylbutan-2-ol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why there are molecules with different molar masses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chlorine occurs in Group 7, the halogens.</p>
</div>
<div class="specification">
<p class="p1">Two stable isotopes of chlorine are \(^{{\text{35}}}{\text{Cl}}\) and \(^{{\text{37}}}{\text{Cl}}\) with mass numbers 35 and 37 respectively.</p>
</div>
<div class="specification">
<p class="p1">Chlorine has an electronegativity value of 3.2 on the Pauling scale.</p>
</div>
<div class="specification">
<p class="p1">Chloroethene, H<sub><span class="s1">2</span></sub>C=CHCl, the monomer used in the polymerization reaction in the manufacture of the polymer poly(chloroethene), PVC, can be synthesized in the following two-stage reaction pathway.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Stage 1:}}}&{{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}}} \\ {{\text{Stage 2:}}}&{{\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}} + {\text{HC=CHCl(g)}} + {\text{HCl(g)}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>isotopes of an element</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the number of protons, neutrons and electrons in the isotopes <sup><span class="s1">35</span></sup>Cl and <sup><span class="s1">37</span></sup>Cl.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-19_om_06.41.13.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/06.a.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the mass numbers of the two isotopes and the relative atomic mass of chlorine from Table 5 of the Data Booklet, determine the percentage abundance of each isotope.</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">35</span></sup>Cl:</p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">37</span></sup>Cl:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>electronegativity</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using Table 7 of the Data Booklet, explain the trends in electronegativity values of the Group 7 elements from F to I.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced chemical equation for the reaction of potassium bromide, KBr(aq), with chlorine, Cl<sub><span class="s1">2</span></sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change likely to be observed in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for stage 1 using average bond enthalpy data from Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether the reaction given in stage 1 is exothermic or endothermic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structure of poly(chloroethene) showing <strong>two </strong>repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why monomers are often gases or volatile liquids whereas polymers are solids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p>Alkenes, such as <strong>A</strong> (shown below), are important intermediates in the petrochemical industry because they undergo addition reactions to produce a wide variety of products, such as the conversion shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.00.19.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>Another way to make <strong>B</strong> is the reaction shown below.</p>
<p><img src="images/Schermafbeelding_2016-08-17_om_17.11.56.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.c"></p>
</div>
<div class="specification">
<p><strong>B </strong>can be converted into <strong>C</strong>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.16.54.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.d"></p>
</div>
<div class="specification">
<p>In the gas phase, <strong>A</strong> reacts with hydrogen to form <strong>D</strong>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.41.44.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.g"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Applying IUPAC rules, state the name of <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagent required to convert <strong>A</strong> into <strong>B</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the conditions required for this reaction to occur.</p>
<p> </p>
<p>(ii) Outline why it would give a poor yield of the desired product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the reagent required.</p>
<p> </p>
<p>(ii) Explain the mechanism of this reaction, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>A </strong>can also be converted into <strong>C </strong>without going via <strong>B</strong>. State the reagent and conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State why <strong>C </strong>is <strong>not </strong>readily oxidized by acidified potassium dichromate(VI).</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the structural formula of an isomer of <strong>C </strong>that could be oxidized to a carboxylic acid by this reagent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conditions required for this reaction to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the homologous series to which <strong>D</strong> belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of <strong>A</strong> with hydrogen, using Table 10 of the Data Booklet, and state whether the reaction is exothermic or endothermic.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy change of combustion of <strong>A</strong> is \( - 4000{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the amount of <strong>A</strong>, in mol, that would have to be burned to raise the temperature of \({\text{1 d}}{{\text{m}}^{\text{3}}}\) of water from 20 °C to 100 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Bromomethane was used as a pesticide until it was found to be ozone-depleting.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction between methane and bromine to form bromomethane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using equations, the complete free-radical mechanism for the reaction of methane with bromine, including necessary reaction conditions.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine can be produced by the electrolysis of <strong>molten </strong>sodium bromide. Deduce the half-equation for the reaction at each electrode.</p>
<p> </p>
<p>Positive electrode (anode):</p>
<p> </p>
<p>Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine reacts with aqueous sodium iodide:</p>
<p>\[{\text{B}}{{\text{r}}_{\text{2}}}{\text{(aq)}} + {\text{2NaI(aq)}} \to {{\text{I}}_{\text{2}}}{\text{(aq)}} + {\text{2NaBr(aq)}}\]</p>
<p>Identify the oxidizing agent in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The open-chain structure of D-fructose is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_06.44.40.png" alt="N14/4/CHEMI/SP2/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of <strong>two</strong> functional groups in D-fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the empirical formula of D-fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage composition by mass of D-fructose.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the complete combustion of D-fructose.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Three compounds with similar relative molecular masses are butane, propanal and propan-1-ol.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List the three compounds in order of increasing boiling point (lowest first) and explain the differences in their boiling points.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with an explanation, which of the three compounds is <strong>least </strong>soluble or miscible in water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When propan-1-ol is oxidized using a warm acidified solution of potassium dichromate(VI) two different organic products can be obtained. Deduce the name and structural formula for each of these two products.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Propan-2-ol is an isomer of propan-1-ol. Draw the structure of propan-2-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the class of alcohols that propan-2-ol belongs to and state the name of the organic product formed when it is oxidized by an acidified solution of potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the three-dimensional structure of a molecule.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_15.40.59.png" alt="M13/4/CHEMI/SP2/ENG/TZ1/05"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of this molecule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the structural formula of <strong>two </strong>isomers of the molecule above with the same functional group.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe, using an equation, the oxidation by acidified potassium dichromate(VI) of the substance shown in the diagram. Use the symbol [O] to represent the oxidizing agent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol has many industrial uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State an equation for the formation of ethanol from ethene and the necessary reaction conditions.</p>
<p> </p>
<p>Equation:</p>
<p> </p>
<p>Conditions:</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the volume of ethanol, in dm<sup>3</sup>, produced from \({\text{1.5 d}}{{\text{m}}^{\text{3}}}\) of ethene, assuming both are gaseous and at the same temperature and pressure.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol can be used as a fuel. Determine the enthalpy of combustion of ethanol at 298 K, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using the values in table 10 of the data booklet, assuming all reactants and products are gaseous.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the value of the enthalpy of combustion of ethanol quoted in table 12 of the data booklet is different to that calculated using bond enthalpies.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction is exothermic in terms of the bonds involved.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the homologous series to which ethanol belongs and state <strong>two </strong>features of a homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>\({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ethanoic acid were added to \({\text{30.0 c}}{{\text{m}}^{\text{3}}}\) of a \({\text{0.150 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydrogencarbonate solution, \({\text{NaHC}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\).</p>
</div>
<div class="specification">
<p>The molar mass of a volatile organic liquid, <strong>X</strong>, can be determined experimentally by allowing it to vaporize completely at a controlled temperature and pressure. 0.348 g of <strong>X</strong> was injected into a gas syringe maintained at a temperature of 90 °C and a pressure of \(1.01 \times {10^5}{\text{ Pa}}\). Once it had reached equilibrium, the gas volume was measured as \({\text{95.0 c}}{{\text{m}}^{\text{3}}}\).</p>
</div>
<div class="specification">
<p>Bromoethane, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Br}}\), undergoes a substitution reaction to form ethanol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how electrical conductivity can be used to distinguish between a \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of ethanoic acid, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\), and a \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of hydrochloric acid, HCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State an equation for the reaction of ethanoic acid with a solution of sodium hydrogencarbonate.</p>
<p> </p>
<p> </p>
<p>(ii) Determine which is the limiting reagent. Show your working.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) Calculate the mass, in g, of carbon dioxide produced.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine the amount, in mol, of <strong>X </strong>in the gas syringe.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Calculate the molar mass of <strong>X</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Identify the reagent necessary for this reaction to occur.</p>
<p> </p>
<p>(ii) Deduce the mechanism for the reaction using equations and curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, in kJ mol\(^{ - 1}\), for this reaction, using Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromoethene, \({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHBr}}\), can undergo polymerization. Draw a section of this polymer that contains six carbon atoms.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chloroethene, C<sub><span class="s1">2</span></sub>H<sub><span class="s1">3</span></sub>Cl, is an important organic compound used to manufacture the polymer poly(chloroethene).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the Lewis structure for chloroethene and predict the H–C–Cl bond angle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a section of poly(chloroethene) containing six carbon atoms.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why the polymerization of alkenes is of economic importance and why the disposal of plastics is a problem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chloroethene can be converted to ethanol in two steps. For each step deduce an overall equation for the reaction taking place.</p>
<p class="p1">Step 1:</p>
<p class="p1">Step 2:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the reagents and conditions necessary to prepare ethanoic acid from ethanol in the laboratory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation, including state symbols, for the reaction of ethanoic acid with water. Identify a Brønsted-Lowry acid in the equation and its conjugate base.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Factors that affect the rate of a chemical reaction include particle size, concentration of reactants and the temperature of the reaction.</p>
</div>
<div class="specification">
<p class="p1">Propan-1-ol and propan-2-ol are two structural isomers of \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>rate of a chemical reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List the <strong>three </strong>characteristic properties of reactant particles which affect the rate of reaction as described by the collision theory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the axes below sketch <strong>two </strong>Maxwell-Boltzmann energy distribution curves for the same sample of gas, one at a temperature \(T\) and another at a higher temperature \(T'\). Label both axes. Explain why raising the temperature increases the rate of a chemical reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_10.42.58.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/07.a.iii"></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why coal dust burns much faster than a large piece of coal with the same mass.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the complete combustion of \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{O}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Both propan-1-ol and propan-2-ol can be oxidized in aqueous solution by potassium dichromate(VI). State any necessary conditions for the oxidation to occur and describe the colour change during the oxidation process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name(s) and structure(s) of the organic product(s) that can be formed when each of the alcohols is oxidized and suggest why one of the alcohols gives two organic products and the other only gives one organic product.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Intermolecular forces are attractive forces between molecules.</p>
</div>
<div class="specification">
<p class="p1">Consider the compounds \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{NH}}\) and \({\text{C}}{{\text{H}}_{\text{4}}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the intermolecular forces present in hydrogen iodide in the liquid state, HI(l).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the full structural formula for both compounds, showing <strong>all </strong>the bonds present.</p>
<p class="p2"> </p>
<p class="p1" style="text-align: center;">\({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{NH}}\)\(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \)\({\text{C}}{{\text{H}}_{\text{4}}}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain which compound can form hydrogen bonds <strong>with water</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a diagram showing the resulting hydrogen bonds between water and the compound chosen in (ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Halogenoalkanes can be classified as primary, secondary or tertiary.</p>
</div>
<div class="specification">
<p class="p1">Alkanes undergo few reactions other than combustion and halogenation.</p>
</div>
<div class="specification">
<p class="p1">Under certain conditions but-2-ene can react with water to form butan-2-ol.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) State the meaning of the term <em>isomers</em>.</p>
<p class="p1">(ii) Deduce the structural formulas of 2-bromobutane and 1-bromo-2-methylpropane, and identify each molecule as primary, secondary or tertiary.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Explain why alkanes have low reactivity.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Outline the meaning of the term <em>homolytic fission</em>.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Describe the meaning of the symbol \({\text{Br}} \bullet \).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>State an equation for the reaction of ethane with bromine.</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Explain the reaction of ethane with bromine using equations for the initiation step, two propagation steps and one termination step.</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Identify a suitable catalyst for this reaction.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>But-2-ene can be converted to 2-bromobutane and then to butan-2-ol as follows:</p>
<p class="p2" style="text-align: center;">\({\text{C}}{{\text{H}}_3}{\text{CH}}\)=\({\text{CHC}}{{\text{H}}_3}\xrightarrow{I}{\text{C}}{{\text{H}}_3}{\text{CH(Br)C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_3}\xrightarrow{{II}}{\text{C}}{{\text{H}}_3}{\text{CH(OH)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">Identify the reagent(s) and conditions necessary for each of the steps <strong>I </strong>and <strong>II</strong>.</p>
<p class="p1">Step <strong>I</strong>:</p>
<p class="p1">Step <strong>II</strong>:</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two students were asked to use information from the Data Booklet to calculate a value for the enthalpy of hydrogenation of ethene to form ethane.</p>
<p class="p1">\[{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_2}{{\text{H}}_6}{\text{(g)}}\]</p>
<p class="p1">John used the average bond enthalpies from Table 10. Marit used the values of enthalpies of combustion from Table 12.</p>
</div>
<div class="specification">
<p class="p1">John then decided to determine the enthalpy of hydrogenation of cyclohexene to produce cyclohexane.</p>
<p class="p1">\[{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{10}}}}{\text{(l)}} + {{\text{H}}_{\text{2}}}{\text{(g)}} \to {{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{\text{(l)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value for the enthalpy of hydrogenation of ethene obtained using the average bond enthalpies given in Table 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Marit arranged the values she found in Table 12 into an energy cycle.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-16_om_08.37.35.png" alt="M09/4/CHEMI/SP2/ENG/TZ1/02.b"></p>
<p class="p1">Calculate the value for the enthalpy of hydrogenation of ethene from the energy cycle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest <strong>one </strong>reason why John’s answer is slightly less accurate than Marit’s answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the average bond enthalpies to deduce a value for the enthalpy of hydrogenation of cyclohexene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The percentage difference between these two methods (average bond enthalpies and enthalpies of combustion) is greater for cyclohexene than it was for ethene. John’s hypothesis was that it would be the same. Determine why the use of average bond enthalpies is less accurate for the cyclohexene equation shown above, than it was for ethene. Deduce what extra information is needed to provide a more accurate answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, a member of the homologous series of alkanes, can react with bromine.</p>
<p>Explain the free-radical mechanism of this reaction, including any necessary reaction conditions.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethene belongs to the homologous series of the alkenes.</p>
</div>
<div class="specification">
<p class="p1">A bromoalkane, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\), reacts with a warm, aqueous sodium hydroxide solution, NaOH.</p>
</div>
<div class="specification">
<p class="p1">The time taken to produce a certain amount of product using different initial concentrations of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) and NaOH is measured. The results are shown in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_16.46.57.png" alt="M13/4/CHEMI/SP2/ENG/TZ1/08.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>three </strong>features of a homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a test to distinguish ethene from ethane, including what is observed in <strong>each </strong>case.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromoethane can be produced either from ethene or from ethane. State an equation for <strong>each </strong>reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) with NaOH.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest what would happen to the pH of the solution as the reaction proceeds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the effect of the concentration of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) and NaOH on the rate of reaction.</p>
<p class="p2"> </p>
<p class="p1">C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">NaOH:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why <strong>warm </strong>sodium hydroxide solution is used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce whether C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br is a primary or tertiary halogenoalkane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the structural formula of C<sub><span class="s1">4</span></sub>H<sub><span class="s1">9</span></sub>Br.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe, using an equation, how \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) can be converted into \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{\text{B}}{{\text{r}}_{\text{2}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the mechanism for the reaction in (c) of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{Br}}\) with NaOH, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The alkenes are an example of a homologous series.</p>
</div>
<div class="specification">
<p class="p1">Bromine water, Br<sub><span class="s1">2</span></sub>(aq), can be used to distinguish between the alkanes and the alkenes.</p>
</div>
<div class="specification">
<p class="p1">The polymerization of the alkenes is one of the most significant reactions of the twentieth century.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the alkene shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-30_om_05.11.39.png" alt="N10/4/CHEMI/SP2/ENG/TZ0/02.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromine water, Br<sub><span class="s1">2</span></sub>(aq), can be used to distinguish between the alkanes and the alkenes.</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Describe the colour change observed when the alkene shown in part (a) is added to bromine water.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Draw the structural formula and state the name of the product formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Outline <strong>two </strong>reasons why the polymers of the alkenes are of economic importance.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the type of polymerization reaction shown by the alkene in part (a).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Deduce the structure of the resulting polymer showing <strong>three </strong>repeating units.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Explain why monomers are often gases or volatile liquids, but polymers are solids.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In an experiment to measure the enthalpy change of combustion of ethanol, a student heated a copper calorimeter containing 100 cm<sup><span class="s1">3 </span></sup>of water with a spirit lamp and collected the following data.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Initial temperature of water:}}}&{{\text{20.0 }}^\circ {\text{C}}} \\ {{\text{Final temperature of water:}}}&{{\text{55.0 }}^\circ {\text{C}}} \\ {{\text{Mass of ethanol burned:}}}&{{\text{1.78 g}}} \\ {{\text{Density of water:}}}&{{\text{1.00 g}}\,{\text{c}}{{\text{m}}^{ - 3}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Use the data to calculate the heat evolved when the ethanol was combusted.</p>
<p class="p1">(ii) Calculate the enthalpy change of combustion per mole of ethanol.</p>
<p class="p1">(iii) Suggest two reasons why the result is not the same as the value in the Data Booklet.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol is part of the homologous series of alcohols. Describe <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Below are <strong>four structural </strong>isomers of alcohols with molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{O}}\). State the name of each of the isomers <strong>a</strong>, <strong>b</strong>, <strong>c </strong>and <strong>D</strong>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_09.52.00.png" alt="M10/4/CHEMI/SP2/ENG/TZ1/06.d"></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the isomer that cannot be oxidized by acidifi ed potassium dichromate(VI), \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Determine the isomer which can be oxidized to butanal.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Determine the isomer which can be oxidized to butanone.</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Suggest the structural formula of another isomer of \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{O}}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_09.52.00.png" alt="M10/4/CHEMI/SP2/ENG/TZ1/06.d"></p>
<p class="p1">(i) Isomer <strong>a </strong>is formed by reacting 1-bromobutane with aqueous sodium hydroxide. State whether the reaction would proceed via an S<sub><span class="s1">N</span></sub>1 or S<sub><span class="s1">N</span></sub>2 mechanism.</p>
<p class="p1">(ii) Explain the mechanism named in part (d) (i) using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An organic compound, <strong>X</strong>, with a molar mass of approximately \({\text{88 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) contains 54.5% carbon, 36.3% oxygen and 9.2% hydrogen by mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Distinguish between the terms <em>empirical formula </em>and <em>molecular formula</em>.</p>
<p class="p1">Empirical formula:</p>
<p class="p1">Molecular formula:</p>
<p class="p1">(ii) Determine the empirical formula of <strong>X</strong>.</p>
<p class="p1">(iii) Determine the molecular formula of <strong>X</strong>.</p>
<p class="p1">(iv) <strong>X </strong>is a straight-chain carboxylic acid. Draw its structural formula.</p>
<p class="p1">(v) Draw the structural formula of an isomer of <strong>X </strong>which is an ester.</p>
<p class="p1">(vi) The carboxylic acid contains two different carbon-oxygen bonds. Identify which bond is stronger and which bond is longer.</p>
<p class="p1">Stronger bond:</p>
<p class="p1">Longer bond:</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State and explain which of propan-1-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), and methoxyethane, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{OC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\), is more volatile.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Propan-1-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), and hexan-l-ol, \({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{4}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\), are both alcohols. State and explain which compound is more soluble in water.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Graphite is used as a lubricant and is an electrical conductor. Diamond is hard and does not conduct electricity. Explain these statements in terms of the structure and bonding of these allotropes of carbon.</p>
<p class="p1">Graphite:</p>
<p class="p1">Diamond:</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In some countries, ethanol is mixed with gasoline (petrol) to produce a fuel for cars called gasohol.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the information from Table 10 of the Data Booklet to determine the standard enthalpy change for the complete combustion of ethanol.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(g)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2C}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{O(g)}}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The standard enthalpy change for the complete combustion of octane, \({{\text{C}}_{\text{8}}}{{\text{H}}_{{\text{18}}}}\), is \( - 5471{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the amount of energy produced in kJ when 1 g of ethanol and 1 g of octane is burned completely in air.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol can be oxidized using acidified potassium dichromate, \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\), to form two different organic products.</p>
<p class="p1" style="text-align: center;">\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\xrightarrow[{{{\text{H}}^ + }}]{{{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }}}\) <strong>A</strong> \(\xrightarrow[{{{\text{H}}^ + }}]{{{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }}}\) <strong>B</strong></p>
<p class="p1">State the structural formulas of the organic products <strong>A </strong>and <strong>B </strong>and describe the conditions required to obtain a high yield of each of them.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce and explain whether ethanol or <strong>A </strong>has the higher boiling point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethene can be converted into ethanol by direct hydration in the presence of a catalyst according to the following equation.</p>
<p class="p1">\[{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {{\text{H}}_{\text{2}}}{\text{O(g)}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(g)}}\]</p>
<p class="p1">For this reaction identify the catalyst used and state <strong>one </strong>use of the ethanol formed other than as a fuel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of <strong>one </strong>structural isomer of pentane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the balanced chemical equation for the complete combustion of butan-1-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the complete combustion of butan-1-ol, using the information from Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Based on the types of intermolecular force present, explain why butan-1-ol has a higher boiling point than butanal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Acids play a key role in processes in everyday life.</p>
</div>
<div class="specification">
<p class="p1">The wine industry is important to the economy of many countries. Wine contains ethanol. In a laboratory in Chile, chemists tested the pH of a bottle of wine when opened and found it to have a pH of 3.8. After a few days, the pH had decreased to 2.8.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the change in hydrogen ion concentration, \({\text{[}}{{\text{H}}^ + }{\text{]}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the compound formed that is responsible for this decreased pH value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sulfuric acid present in acid rain can damage buildings made of limestone. Predict the balanced chemical equation for the reaction between limestone and sulfuric acid including state symbols.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The boiling points of the isomers of pentane, \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\), shown are 10, 28 and 36 °C, but not necessarily in that order.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-04_om_09.39.27.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/04.a"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the boiling points for each of the isomers <strong>A</strong>, <strong>B </strong>and <strong>C </strong>and state a reason for your answer.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-05_om_15.50.19.png" alt="N09/4/CHEMI/SP2/ENG/TZ0/04.a.i"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the IUPAC names of isomers <strong>B </strong>and <strong>C</strong>.</p>
<p class="p1"><strong>B</strong>:</p>
<p class="p1"><strong>C</strong>:</p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Both \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\) and \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{11}}}}{\text{OH}}\) can be used as fuels. Predict which compound would release a greater amount of heat per gram when it undergoes complete combustion. Suggest <strong>two</strong> reasons to support your prediction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In many cities around the world, public transport vehicles use diesel, a liquid hydrocarbon fuel, which often contains sulfur impurities and undergoes incomplete combustion. All public transport vehicles in New Delhi, India, have been converted to use compressed natural gas (CNG) as fuel. Suggest <strong>two </strong>ways in which this improves air quality, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Biodiesel makes use of plants’ ability to fix atmospheric carbon by photosynthesis. Many companies and individuals are now using biodiesel as a fuel in order to reduce their carbon footprint. Biodiesel can be synthesized from vegetable oil according to the following reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-16_om_07.10.38.png" alt="M09/4/CHEMI/SP2/ENG/TZ1/01"></p>
</div>
<div class="specification">
<p class="p1">The reversible arrows in the equation indicate that the production of biodiesel is an equilibrium process.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the organic functional group present in both vegetable oil and biodiesel.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For part of her extended essay investigation into the efficiency of the process, a student reacted a pure sample of a vegetable oil (where \({\text{R}} = {{\text{C}}_{{\text{17}}}}{{\text{H}}_{{\text{33}}}}\)) with methanol. The raw data recorded for the reaction is below.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{Mass of oil}}}&{ = 1013.0{\text{ g}}} \\ {{\text{Mass of methanol}}}&{ = 200.0{\text{ g}}} \\ {{\text{Mass of sodium hydroxide}}}&{ = 3.5{\text{ g}}} \\ {{\text{Mass of biodiesel produced}}}&{ = 811.0{\text{ g}}} \end{array}\]</p>
<p class="p1">The relative molecular mass of the oil used by the student is 885.6. Calculate the amount (in moles) of the oil and the methanol used, and hence the amount (in moles) of excess methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the term <em>dynamic equilibrium</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the abbreviations [vegetable oil], [methanol], [glycerol] and [biodiesel] deduce the equilibrium constant expression \({\text{(}}{K_{\text{c}}}{\text{)}}\) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest a reason why excess methanol is used in this process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the effect that the addition of the sodium hydroxide catalyst will have on the position of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reactants had to be stirred vigorously because they formed two distinct layers in the reaction vessel. Explain why they form two distinct layers and why stirring increases the rate of reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the percentage yield of biodiesel obtained in this process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethane reacts with chlorine in the presence of sunlight.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the overall equation for this reaction by stating the products.</p>
<p class="p2"> </p>
<p class="p1">\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}} + {\text{C}}{{\text{l}}_{\text{2}}} \to \)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of mechanism by which this reaction occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Traces of butane, \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}\), are also found amongst the products of this reaction. Explain how this product arises.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrocarbons, such as nonane, \({{\text{C}}_{\text{9}}}{{\text{H}}_{{\text{20}}}}\), are essential as fuels and as raw materials.</p>
</div>
<div class="specification">
<p>Propene, which can be obtained from nonane, can be polymerized.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the complete combustion of nonane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Combustion also often forms carbon and carbon monoxide. Outline what <strong>reaction conditions</strong> result in these being produced.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the type of polymerization that occurs.</p>
<p> </p>
<p>(ii) Draw the structure of a segment of the polymer containing six carbon atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following sequence of reactions.</p>
<p class="p1">\[{\text{RC}}{{\text{H}}_3}\xrightarrow{{reaction 1}}{\text{RC}}{{\text{H}}_2}{\text{Br}}\xrightarrow{{reaction 2}}{\text{RC}}{{\text{H}}_2}{\text{OH}}\xrightarrow{{reaction 3}}{\text{RCOOH}}\]</p>
<p class="p1">\({\text{RC}}{{\text{H}}_{\text{3}}}\) is an unknown alkane in which R represents an alkyl group.</p>
</div>
<div class="specification">
<p class="p1">The mechanism in <em>reaction 2 </em>is described as S<sub><span class="s1">N</span></sub>2.</p>
</div>
<div class="specification">
<p class="p1">Propan-1-ol has two structural isomers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The alkane contains 81.7% by mass of carbon. Determine its empirical formula, showing your working.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Equal volumes of carbon dioxide and the unknown alkane are found to have the same mass, measured to an accuracy of two significant figures, at the same temperature and pressure. Deduce the molecular formula of the alkane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the reagent and conditions needed for <em>reaction 1</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the reagent(s) and conditions needed for <em>reaction 3</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>Reaction 1 </em>involves a free-radical mechanism. Describe the stepwise mechanism, by giving equations to represent the initiation, propagation and termination steps.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the meaning of each of the symbols in S<sub><span class="s1">N</span></sub>2.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Explain the mechanism of this reaction using curly arrows to show the movement of electron pairs, and draw the structure of the transition state.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Deduce the structural formula of each isomer.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Identify the isomer from part (f) (i) which has the higher boiling point and explain your choice. Refer to both isomers in your explanation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A hydrocarbon has the empirical formula \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\). When 1.17 g of the compound is heated to 85 °C at a pressure of 101 kPa it occupies a volume of \({\text{400 c}}{{\text{m}}^{\text{3}}}\).</p>
<p>(i) Calculate the molar mass of the compound, showing your working.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Deduce the molecular formula of the compound.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{12}}}}\) exists as three isomers. Identify the structure of the isomer with the <strong>lowest</strong> boiling point and explain your choice.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol is a primary alcohol that can be oxidized by acidified potassium dichromate(VI). Distinguish between the reaction conditions needed to produce ethanal and ethanoic acid.</p>
<p> </p>
<p>Ethanal:</p>
<p> </p>
<p> </p>
<p>Ethanoic acid:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation number of carbon in ethanol and ethanal.</p>
<p> </p>
<p>Ethanol:</p>
<p> </p>
<p>Ethanal:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the half-equation for the oxidation of ethanol to ethanal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the overall redox equation for the reaction of ethanol to ethanal with acidified potassium dichromate(VI) by combining your answer to part (c) (iii) with the following half-equation:</p>
<p>\[{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }{\text{(aq)}} + {\text{14}}{{\text{H}}^ + }{\text{(aq)}} + {\text{6}}{{\text{e}}^ - } \to {\text{2C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {\text{7}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two </strong>characteristics of a reaction at equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how a catalyst increases the rate of a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of a catalyst on the position of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanoic acid reacts with ethanol to form the ester ethyl ethanoate.</p>
<p>\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(l)}} + {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(l)?????C}}{{\text{H}}_{\text{3}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{\text{(l)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<p>The esterification reaction is exothermic. State the effect of increasing temperature on the value of the equilibrium constant (\({K_{\text{c}}}\)) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethene, C<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, and hydrazine, N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, are hydrides of adjacent elements in the periodic table.</p>
</div>
<div class="specification">
<p class="p1">The polarity of a molecule can be explained in terms of electronegativity.</p>
</div>
<div class="specification">
<p class="p1">The reaction between N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>(aq) and HCl (aq) can be represented by the following equation.</p>
<p class="p1">\[{{\text{N}}_2}{{\text{H}}_4}({\text{aq)}} + 2{\text{HCl(aq)}} \to {{\text{N}}_2}{\text{H}}_6^{2 + }({\text{aq)}} + 2{\text{C}}{{\text{l}}^ - }({\text{aq)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Draw Lewis (electron dot) structures for \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\) and \({{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}\) showing all valence electrons.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State and explain the H–C–H bond angle in ethene and the H–N–H bond angle in hydrazine.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Define the term <em>electronegativity</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Compare the relative polarities of the C–H bond in ethene and the N–H bond in hydrazine.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The boiling point of hydrazine is much higher than that of ethene. Explain this difference in terms of the intermolecular forces in each compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hydrazine is a valuable rocket fuel.</p>
<p class="p1">The equation for the reaction between hydrazine and oxygen is given below.</p>
<p class="p2">\[{{\text{N}}_2}{{\text{H}}_4}({\text{g)}} + {{\text{O}}_2}({\text{g)}} \to {{\text{N}}_2}({\text{g)}} + 2{{\text{H}}_2}{\text{O(g)}}\]</p>
<p class="p1">Use the bond enthalpy values from Table 10 of the Data Booklet to determine the enthalpy change for this reaction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the product and identify the type of reaction which occurs between ethene and hydrogen chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Identify the type of reaction that occurs.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Predict the value of the H–N–H bond angle in \({{\text{N}}_{\text{2}}}{\text{H}}_6^{2 + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be formed according to the following reaction.</p>
<p style="text-align: center;">2CO (g) + 3H<sub>2 </sub>(g) \( \rightleftharpoons \) HOCH<sub>2</sub>CH<sub>2</sub>OH (g)</p>
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p> </p>
<p>(ii) State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of <em>K</em><sub>c</sub>.</p>
<p style="padding-left: 30px;">Position of equilibrium:</p>
<p style="padding-left: 30px;"><em>K</em><sub>c</sub>:</p>
<p style="padding-left: 30px;"> </p>
<p>(iii) Calculate the enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO (g) is 1077kJmol<sup>-1</sup>.</p>
<p> </p>
<p>(iv) The enthalpy change, ΔH<sup>θ</sup>, for the following similar reaction is –233.8 kJ.</p>
<p style="text-align: center;">2CO(g) + 3H<sub>2</sub>(g) \( \rightleftharpoons \) HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>Deduce why this value differs from your answer to (a)(iii).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.</p>
<p style="padding-left: 30px;">Ethene:</p>
<p style="padding-left: 30px;">Ethane-1,2-diol:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be oxidized first to ethanedioic acid, (COOH)<sub>2</sub>, and then to carbon dioxide and water. Suggest the reagents to oxidize ethane-1,2-diol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following reactions.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_15.38.14.png" alt="N11/4/CHEMI/SP2/ENG/TZ0/07.b"></p>
</div>
<div class="specification">
<p class="p1">An important environmental consideration is the appropriate disposal of cleaning solvents. An environmental waste treatment company analysed a cleaning solvent, <strong>J</strong>, and found it to contain the elements carbon, hydrogen and chlorine only. The chemical composition of <strong>J </strong>was determined using different analytical chemistry techniques.</p>
<p class="p1"><em>Combustion Reaction:</em></p>
<p class="p1">Combustion of 1.30 g of <strong>J </strong>gave 0.872 g \({\text{C}}{{\text{O}}_{\text{2}}}\) and 0.089 g \({{\text{H}}_{\text{2}}}{\text{O}}\).</p>
<p class="p1"><em>Precipitation Reaction with AgNO</em><sub><span class="s1"><em>3</em></span></sub><em>(aq):</em></p>
<p class="p1">0.535 g of <strong>J </strong>gave 1.75 g AgCl precipitate.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One example of a homologous series is the alcohols. Describe <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The IUPAC name of <strong>X </strong>is 4-methylpentan-1-ol. State the IUPAC names of <strong>Y </strong>and <strong>Z</strong>.</p>
<p class="p1"><strong>Y</strong>:</p>
<p class="p1"><strong>Z</strong>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the reagents and reaction conditions used to convert <strong>X </strong>to <strong>Y </strong>and <strong>X </strong>to <strong>Z</strong>.</p>
<p class="p1"><strong>X </strong>to <strong>Y</strong>:</p>
<p class="p1"><strong>X </strong>to <strong>Z</strong>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>Z </strong>is an example of a weak acid. State what is meant by the term <em>weak acid</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss the volatility of <strong>Y </strong>compared to <strong>Z</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of carbon and hydrogen in <strong>J</strong>, using the combustion data.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of chlorine in <strong>J</strong>, using the precipitation data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The molar mass was determined to be \({\text{131.38 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Deduce the molecular formula of <strong>J</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The photochemical chlorination of methane can occur at low temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using relevant equations, show the initiation and the propagation steps for this reaction.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Polyvinyl chloride (PVC) is a polymer with the following structure.</p>
<p style="text-align: center;"><img src=""></p>
<p>State the structural formula for the monomer of PVC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following list of organic compounds.</p>
<p> Compound 1: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\)</p>
<p> Compound 2: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
<p> Compound 3: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p> Compound 4: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
</div>
<div class="specification">
<p>Hydrochloric acid neutralizes sodium hydroxide, forming sodium chloride and water.</p>
<p style="text-align: center;">\({\text{NaOH(aq)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\) \(\Delta {H^\Theta } = -57.9{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply IUPAC rules to state the name of compound 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define the term <em>structural isomers</em>.</p>
<p> </p>
<p> </p>
<p>(ii) Identify the two compounds in the list that are structural isomers of each other.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the organic product formed when each of the compounds is heated under reflux with excess acidified potassium dichromate(VI). If no reaction occurs write NO REACTION in the table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_08.41.32.png" alt="N14/4/CHEMI/SP2/ENG/TZ0/07.c"></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism for the substitution reaction of bromoethane with sodium hydroxide. Use curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define the term <em>standard enthalpy change of reaction</em>, \(\Delta {H^\Theta }\).</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Determine the amount of energy released, in kJ, when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution reacts with \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid solution.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) In an experiment, 2.50 g of solid sodium hydroxide was dissolved in \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. The temperature rose by 13.3 °C. Calculate the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for dissolving one mole of solid sodium hydroxide in water.</p>
<p>\[{\text{NaOH(s)}} \to {\text{NaOH(aq)}}\]</p>
<p>(iv) Using relevant data from previous question parts, determine \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of solid sodium hydroxide with hydrochloric acid.</p>
<p>\[{\text{NaOH(s)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[9]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Oxidation and reduction can be defined in terms of electron transfer or oxidation numbers.</p>
</div>
<div class="specification">
<p>Alcohols with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) occur as four structural isomers. Three of the isomers can be oxidized with acidified potassium dichromate solution to form compounds with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{\text{O}}\). The half-equation for the dichromate ion is:</p>
<p>\[{\text{C}}{{\text{r}}_2}{\text{O}}_7^{2 - }{\text{(aq)}} + {\text{14}}{{\text{H}}^ + }{\text{(aq)}} + {\text{6}}{{\text{e}}^ - } \rightleftharpoons {\text{2C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {\text{7}}{{\text{H}}_2}{\text{O(l)}}\]</p>
</div>
<div class="specification">
<p>Electrolysis has made it possible to obtain reactive metals from their ores.</p>
</div>
<div class="specification">
<p>A reactivity series can be experimentally determined by adding the metals W, X, Y and Z to solutions of these metal ions. The following reactions were observed:</p>
<p> \({{\text{W}}^{2 + }}{\text{(aq)}} + {\text{X(s)}} \to {\text{W(s)}} + {{\text{X}}^{2 + }}{\text{(aq)}}\)</p>
<p> \({\text{Y(s)}} + {{\text{W}}^{2 + }}{\text{(aq)}} \to {{\text{Y}}^{2 + }}{\text{(aq)}} + {\text{W(s)}}\)</p>
<p> \({{\text{Z}}^{2 + }}{\text{(aq)}} + {\text{W(s)}} \to {\text{Z(s)}} + {{\text{W}}^{2 + }}{\text{(aq)}}\)</p>
<p> \({\text{Y(s)}} + {{\text{X}}^{2 + }}{\text{(aq)}} \to {{\text{Y}}^{2 + }}{\text{(aq)}} + {\text{X(s)}}\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>oxidation</em> in terms of electron transfer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Deduce the oxidation number of chromium in \({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }\).</p>
<p> </p>
<p>(ii) Deduce the half-equation for the oxidation of the alcohol \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<p> </p>
<p>(iii) Deduce the overall equation for the redox reaction.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iv) Two of the isomers with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) can be oxidized further to form compounds with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{2}}}\). Deduce the structural formulas of these two isomers.</p>
<p> </p>
<p>(v) One isomer cannot be oxidized by acidified potassium dichromate solution.</p>
<p>Deduce its structural formula, state its name and identify it as a primary, secondary or tertiary alcohol.</p>
<p> </p>
<p>Name:</p>
<p> </p>
<p> </p>
<p>Alcohol:</p>
<p> </p>
<p> </p>
<p>(vi) All isomers of the alcohol \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) undergo complete combustion. State an equation for the complete combustion of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a labelled electrolytic cell for the electrolysis of molten potassium bromide, KBr. Include the direction of electron flow, the positive electrode (anode) and the negative electrode (cathode), the location of oxidation and reduction, and the electrolyte.</p>
<p> </p>
<p>(ii) Deduce a half-equation for the reaction that occurs at each electrode.</p>
<p> </p>
<p>Positive electrode (anode):</p>
<p> </p>
<p> </p>
<p>Negative electrode (cathode):</p>
<p> </p>
<p> </p>
<p>(iii) Describe how current is conducted in a molten electrolyte.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Deduce the order of reactivity of these four metals, from the least to the most reactive.</p>
<p> </p>
<p>(ii) A voltaic cell is made by connecting a half-cell of X in \({\text{XC}}{{\text{l}}_{\text{2}}}{\text{(aq)}}\) to a half-cell of Z in \({\text{ZC}}{{\text{l}}_{\text{2}}}{\text{(aq)}}\). Deduce the overall equation for the reaction taking place when the cell is operating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formulas of propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both propane and propene react with bromine.</p>
<p>(i) State an equation and the condition required for the reaction of 1 mol of propane with 1 mol of bromine.</p>
<p>(ii) State an equation for the reaction of 1 mol of propene with 1 mol of bromine.</p>
<p>(iii) State the type of each reaction with bromine.</p>
<p style="padding-left: 30px;">Propane:</p>
<p style="padding-left: 30px;">Propene:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The structure of an organic molecule can help predict the type of reaction it can undergo.</p>
</div>
<div class="specification">
<p>Improvements in instrumentation have made identification of organic compounds routine.</p>
<p>The empirical formula of an unknown compound containing a phenyl group was found to be C<sub>4</sub>H<sub>4</sub>O. The molecular ion peak in its mass spectrum appears at <em>m</em>/<em>z </em>= 136.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Kekulé structure of benzene suggests it should readily undergo addition reactions.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_10.35.21.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.a_01"></p>
<p>Discuss two pieces of evidence, <strong>one </strong>physical and <strong>one </strong>chemical, which suggest this is not the structure of benzene.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the ionic equation for the oxidation of propan-1-ol to the corresponding aldehyde by acidified dichromate(VI) ions. Use section 24 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The aldehyde can be further oxidized to a carboxylic acid.</p>
<p>Outline how the experimental procedures differ for the synthesis of the aldehyde and the carboxylic acid.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the molecular formula of the compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bonds causing peaks <strong>A </strong>and <strong>B </strong>in the IR spectrum of the unknown compound using section 26 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.50.17.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.ii_01"></p>
<p> <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce full structural formulas of <strong>two </strong>possible isomers of the unknown compound, both of which are esters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the formula of the unknown compound based on its <sup>1</sup>H NMR spectrum using section 27 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.59.18.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.iv"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>The reactivity of organic compounds depends on the nature and positions of their functional groups.</p>
</div>
<div class="specification">
<p>The structural formulas of two organic compounds are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the type of chemical reaction and the reagents used to distinguish between these compounds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the observation expected for each reaction giving your reasons.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals and the ratio of areas under the signals in the <sup>1</sup>H NMR spectra of the two compounds.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with the help of equations, the mechanism of the free-radical substitution reaction of ethane with bromine in presence of sunlight.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, C<sub>2</sub>H<sub>6</sub>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p style="text-align: center;">carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H\(\,\)NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, C<sub>2</sub>H<sub>3</sub>Cl, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Alkenes are widely used in the production of polymers. The compound <strong>A</strong>, shown below, is used in the manufacture of synthetic rubber.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the name, applying IUPAC rules, of compound <strong>A</strong>.</p>
<p>(ii) Draw a section, showing three repeating units, of the polymer that can be formed from compound <strong>A</strong>.</p>
<p>(iii) Compound <strong>A</strong> is flammable. Formulate the equation for its complete combustion.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound <strong>B</strong> is related to compound <strong>A</strong>.</p>
<p><img src="" alt></p>
<p>(i) State the term that is used to describe molecules that are related to each other in the same way as compound <strong>A</strong> and compound <strong>B</strong>.</p>
<p>(ii) Suggest a chemical test to distinguish between compound <strong>A</strong> and compound <strong>B</strong>, giving the observation you would expect for each.</p>
<p>Test:</p>
<p>Observation with <strong>A</strong>:</p>
<p>Observation with <strong>B</strong>:</p>
<p>(iii) Spectroscopic methods could also be used to distinguish between compounds <strong>A</strong> and <strong>B</strong>.</p>
<p>Predict one difference in the IR spectra <strong>and</strong> one difference in the <sup>1</sup>H NMR spectra of these compounds, using sections 26 and 27 of the data booklet.</p>
<p>IR spectra:</p>
<p><sup>1</sup>H NMR spectra:</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A sample of compound <strong>A</strong> was prepared in which the <sup>12</sup>C in the CH<sub>2</sub> group was replaced by <sup>13</sup>C.</p>
<p>(i) State the main difference between the mass spectrum of this sample and that of normal compound <strong>A</strong>.</p>
<p>(ii) State the structure of the nucleus and the orbital diagram of <sup>13</sup>C in its ground state.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a 1s atomic orbital and a 2p atomic orbital.</p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>