File "SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Option A HTML/SL-paper3html
File size: 1.09 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>Observer A detects the creation (event 1) and decay (event 2) of a nuclear particle. After creation, the particle moves at a constant speed relative to A. As measured by A, the distance between the events is 15 m and the time between the events is 9.0 × 10<sup>–8</sup> s.</p>
<p>Observer B moves with the particle.</p>
<p>For event 1 and event 2,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by the statement that the spacetime interval is an invariant quantity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>calculate the spacetime interval.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the time between them according to observer B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observed times are different for A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rocket A and rocket B are travelling in opposite directions from the Earth along the same straight line.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.33.49.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/03"></p>
<p>In the reference frame of the Earth, the speed of rocket A is 0.75<em>c </em>and the speed of rocket B is 0.50<em>c</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the Galilean transformation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the Lorentz transformation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to special relativity, which of your calculations in (a) is more likely to be valid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the motion of the electrons in a metal wire carrying an electric current as seen by an observer X at rest with respect to the wire. The distance between adjacent positive charges is <em>d</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.22.52.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/03"></p>
</div>
<div class="specification">
<p>Observer Y is at rest with respect to the electrons.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the field around the wire according to observer X is electric, magnetic or a combination of both.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the change in <em>d </em>according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the overall field around the wire is electric, magnetic or a combination of both according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Identical twins, A and B, are initially on Earth. Twin A remains on Earth while twin B leaves the Earth at a speed of 0.6<em>c</em> for a return journey to a point three light years from Earth.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the journey in the reference frame of twin A as measured on Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time taken for the journey in the reference frame of twin B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, for the reference frame of twin A, a spacetime diagram that represents the worldlines for both twins.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the twin paradox arises and how it is resolved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Muons are created in the upper atmosphere of the Earth at an altitude of 10 km above the surface. The muons travel vertically down at a speed of 0.995<em>c </em>with respect to the Earth. When measured at rest the average lifetime of the muons is 2.1 μs.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to Galilean relativity, the time taken for a muon to travel to the ground.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce why only a small fraction of the total number of muons created is expected to be detected at ground level according to Galilean relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the theory of special relativity, the time taken for a muon to reach the ground in the reference frame of the muon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how your result in (b)(i) and the outcome of the muon decay experiment support the theory of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about simultaneity.</p>
<p class="p1">Daniela is standing in the middle of a train that is moving at a constant velocity relative to Jaime, who is standing on the platform. At the moment the train passes Jaime, two beams of light, X and Y, are emitted simultaneously from a device held by Daniela. Both beams are reflected by mirrors at the end of the train and then return to Daniela.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_16.30.41.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/11"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the order of arrival of X and Y at the mirrors according to Jaime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline whether the return of X and Y to Daniela are simultaneous according to Jaime.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A long current-carrying wire is at rest in the reference frame S of the laboratory. A positively charged particle P outside the wire moves with velocity <em>v</em> relative to S. The electrons making up the current in the wire move with the same velocity<em> v</em> relative to S.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a reference frame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in reference frame S.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in the rest frame of P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about a Galilean transformation and time dilation.</p>
<p class="p1">Ben is in a spaceship that is travelling in a straight-line with constant speed \(v\) as measured by Jill who is in a space station.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_13.51.29.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D1"></p>
<p class="p1">Ben switches on a light pulse that bounces vertically (as observed by Ben) between two horizontal mirrors \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{2}}}\) separated by a distance \(d\). At the instant that the mirrors are opposite Jill, the pulse is just leaving the mirror \({{\text{M}}_{\text{2}}}\). The speed of light in air is \(c\).</p>
</div>
<div class="specification">
<p class="p1">The time for the light pulse to travel from \({{\text{M}}_{\text{2}}}\) to \({{\text{M}}_{\text{1}}}\) as measured by Jill is \(\Delta t\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the diagram, sketch the path of the light pulse between \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{2}}}\) as observed by Jill.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_17.16.38.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D1.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State, according to Jill, the distance moved by the spaceship in time \(\Delta t\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Using a Galilean transformation, derive an expression for the length of the path of the light between \({{\text{M}}_{\text{2}}}\) and \({{\text{M}}_{\text{1}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State, according to special relativity, the length of the path of the light between \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{1}}}\) as measured by Jill in terms of \(c\) and \(\Delta t\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The time for the pulse to travel from \({{\text{M}}_{\text{2}}}\) to \({{\text{M}}_{\text{1}}}\) as measured by Ben is \(\Delta t'\). Use your answer to (b)(i) and (c) to derive a relationship between <span class="s3">\(\Delta t\) </span>and \(\Delta t'\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">According to a clock at rest with respect to Jill, a clock in the spaceship runs slow by a factor of 2.3. Show that the speed \(v\)<em> </em>of the spaceship is 0.90c.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about relativistic kinematics.</p>
</div>
<div class="specification">
<p class="p1">A spacecraft is flying in a straight line above a base station at a speed of 0.8<em>c</em>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_10.29.59.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/12.b"></p>
<p class="p1">Suzanne is inside the spacecraft and Juan is on the base station.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
[N/A]
<div class="marks">[[N/A]]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
[N/A]
<div class="marks">[[N/A]]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">While moving away from the base station, Suzanne observes another spacecraft travelling towards her at a speed of 0.8<em>c</em>. Using Galilean transformations, calculate the relative speed of the two spacecraft.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the postulates of special relativity, state and explain why Galilean transformations cannot be used in this case to find the relative speeds of the two spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using relativistic kinematics, the relative speeds of the two spacecraft is shown to be 0.976<em>c</em>. Suzanne measures the other spacecraft to have a length of 8.00 m. Calculate the proper length of the other spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suzanne’s spacecraft is on a journey to a star. According to Juan, the distance from the base station to the star is 11.4 ly. Show that Suzanne measures the time taken for her to travel from the base station to the star to be about 9 years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Muons are unstable particles with a proper lifetime of 2.2 μs. Muons are produced 2.0 km above ground and move downwards at a speed of 0.98<em>c</em> relative to the ground. For this speed \(\gamma \) = 5.0. Discuss, with suitable calculations, how this experiment provides evidence for time dilation.</p>
</div>
<br><hr><br><div class="specification">
<p>An electron is emitted from a nucleus with a speed of 0.975<em>c</em> as observed in a laboratory. The electron is detected at a distance of 0.800m from the emitting nucleus as measured in the laboratory.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the electron, calculate the distance travelled by the detector.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the laboratory, calculate the time taken for the electron to reach the detector after its emission from the nucleus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the electron, calculate the time between its emission at the nucleus and its detection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the answer to (c) represents a proper time interval.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define<em> proper length.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A charged pion decays spontaneously in a time of 26 ns as measured in the frame of reference in which it is stationary. The pion moves with a velocity of 0.96<em>c</em> relative to the Earth. Calculate the pion’s lifetime as measured by an observer on the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the pion reference frame, the Earth moves a distance X before the pion decays. In the Earth reference frame, the pion moves a distance Y before the pion decays. Demonstrate, with calculations, how length contraction applies to this situation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Outline the conclusion from Maxwell’s work on electromagnetism that led to one of the postulates of special relativity.</p>
</div>
<br><hr><br><div class="specification">
<p>One of the postulates of special relativity states that the laws of physics are the same in all inertial frames of reference.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by inertial in this context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An observer is travelling at velocity <em>v</em> towards a light source. Determine the value the observer would measure for the speed of light emitted by the source according to</p>
<p>(i) Maxwell’s theory.</p>
<p>(ii) Galilean transformation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about relativistic kinematics.</p>
<p class="p1">The diagram shows a spaceship as it moves past Earth on its way to a planet P. The planet is at rest relative to Earth.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_10.50.39.png" alt="M14/4/PHYSI/SP3/ENG/TZ2/10"></p>
<p class="p1">The distance between the Earth and planet P is 12 ly as measured by observers on Earth. The spaceship moves with speed 0.60c relative to Earth.</p>
<p class="p1">Consider two events:</p>
<p class="p1"> Event 1: when the spaceship is above Earth</p>
<p class="p1"> Event 2: when the spaceship is above planet P</p>
<p class="p1">Judy is in the spaceship and Peter is at rest on Earth.</p>
</div>
<div class="specification">
<p class="p1">Judy considers herself to be at rest. According to Judy, the Earth and planet P are moving to the left.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the reason why the time interval between event 1 and event 2 is a proper time interval as measured by Judy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate the time interval between event 1 and event 2 according to Peter.</p>
<p class="p1">(ii) Calculate the time interval between event 1 and event 2 according to Judy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate, according to Judy, the distance separating the Earth and planet P.</p>
<p class="p1">(ii) Using your answers to (b)(ii) and (c)(i), determine the speed of planet P relative to the spaceship.</p>
<p class="p1">(iii) Comment on your answer to (c)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine, according to Judy in the spaceship, which signal is emitted first.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about a light clock.</p>
</div>
<div class="question">
<p class="p1">One of the postulates of special relativity refers to the speed of light. State the other postulate of special relativity.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An observer at rest relative to Earth observes two spaceships. Each spaceship is moving with a speed of 0.85 <em>c</em> but in opposite directions. The observer measures the rate of increase of distance between the spaceships to be 1.7 <em>c</em>. Outline whether this observation contravenes the theory of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The observer on Earth in (a) watches one spaceship as it travels to a distant star at a speed of 0.85 <em>c</em>. According to observers on the spaceship, this journey takes 8.0 years.</p>
<p>(i) Calculate, according to the observer on Earth, the time taken for the journey to the star.</p>
<p>(ii) Calculate, according to the observer on Earth, the distance from Earth to the star.</p>
<p>(iii) At the instant when the spaceship passes the star, the observer on the spaceship sends a radio message to Earth. The spaceship continues to move at a speed of 0.85 <em>c</em>. Determine, according to the spaceship observer, the time taken for the message to arrive on Earth.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> prediction of Maxwell’s theory of electromagnetism that is consistent with special relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A current is established in a long straight wire that is at rest in a laboratory.</p>
<p style="text-align: center;"><img src=""></p>
<p>A proton is at rest relative to the laboratory and the wire.</p>
<p>Observer X is at rest in the laboratory. Observer Y moves to the right with constant speed relative to the laboratory. Compare and contrast how observer X and observer Y account for any non-gravitational forces on the proton.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Two protons are moving with the same velocity in a particle accelerator.<br><img src="" alt><br>Observer X is at rest relative to the accelerator. Observer Y is at rest relative to the protons.</p>
<p>Explain the nature of the force between the protons as observed by observer X <strong>and</strong> observer Y.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about simultaneity.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the postulate of special relativity that is related to the speed of light.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A rocket moving at a relativistic speed passes an observer who is at rest on the ground equidistant from two trees L and R. At the moment that an observer in the rocket is opposite the ground observer, lightning strikes L and R at the same time according to the<br>ground observer. Light from the strikes reaches the observer in the rocket as well as the observer on the ground.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) Explain why, according to the observer in the rocket, light from the two strikes will reach the ground observer at the same time.</p>
<p style="text-align: left;">(ii) Using your answer to (a) and (b)(i), outline why, according to the rocket observer, tree R was hit by lightning before tree L.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A train is passing through a tunnel of proper length 80 m. The proper length of the train is 100 m. According to an observer at rest relative to the tunnel, when the front of the train coincides with one end of the tunnel, the rear of the train coincides with the other end of the tunnel.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by proper length.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a spacetime diagram for this situation according to an observer at rest relative to the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the train, according to an observer at rest relative to the tunnel, at which the train fits the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an observer on the train, it is the tunnel that is moving and therefore will appear length contracted. This seems to contradict the observation made by the observer at rest to the tunnel, creating a paradox. Explain how this paradox is resolved. You may refer to your spacetime diagram in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about time dilation.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two space stations X and Y are at rest relative to each other. The separation of X and Y as measured in their frame of reference is 1.80×10<sup>11</sup>m.</p>
<p><img src="" alt></p>
<p>State what is meant by a frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A radio signal is sent to both space stations in (a) from a point midway between them. On receipt of the signal a clock in X and a clock in Y are each set to read zero. A spaceship S travels between X and Y at a speed of 0.750c as measured by X and Y. In the frame of reference of S, station X passes S at the instant that X’s clock is set to zero. A clock in S is also set to zero at this instant.</p>
<p>(i) Calculate the time interval, as measured by the clock in X, that it takes S to travel from X to Y.</p>
<p>(ii) Calculate the time interval, as measured by the clock in S, that it takes S to travel from X to Y.</p>
<p>(iii) Explain whether the clock in X <strong>or</strong> the clock in S measures the proper time.</p>
<p>(iv) Explain why, according to S, the setting of the clock in X and the setting of the clock in Y does not occur simultaneously.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two rockets, A and B, are moving towards each other on the same path. From the frame of reference of the Earth, an observer measures the speed of A to be 0.6<em>c</em> and the speed of B to be 0.4<em>c</em>. According to the observer on Earth, the distance between A and B is 6.0 x 10<sup>8</sup> m.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the observer on Earth, the time taken for A and B to meet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the terms in the formula.</p>
<p style="text-align: center;"><em>u′</em> = \(\frac{{u - v}}{{1 - \frac{{uv}}{{{c^2}}}}}\)</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the velocity of B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the time taken for B to meet A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, without further calculation, how the time taken for A to meet B, according to an observer in B, compares with the time taken for the same event according to an observer in A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativity.</p>
<p>Carrie is in a spaceship that is travelling towards a star in a straight-line at constant velocity as observed by Peter. Peter is at rest relative to the star.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carrie measures her spaceship to have a length of 100m. Peter measures Carrie’s spaceship to have a length of 91m.</p>
<p><img src="" alt></p>
<p>(i) Explain why Carrie measures the proper length of the spaceship.</p>
<p>(ii) Show that Carrie travels at a speed of approximately 0.4 c relative to Peter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>According to Carrie, it takes the star ten years to reach her. Using your answer to (a)(ii), calculate the distance to the star as measured by Peter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>According to Peter, as Carrie passes the star she sends a radio signal. Determine the time, as measured by Carrie, for the message to reach Peter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>A source of light S and a detector of light D are placed on opposite walls of a box as shown in the diagram.</p>
<p><img src="" alt></p>
<p>According to an observer in the box the distance <em>L</em> between S and D is 6.0m. The box moves with speed <em>v</em>= 0.80c relative to the ground.</p>
<p>Consider the following events.</p>
<p style="padding-left: 30px;">Event 1: a photon is emitted by S towards D<br>Event 2: the photon arrives at D</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the theory of relativity, state what is meant by an event.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the time interval <em>t</em> between event 1 and event 2 according to an observer in the box.</p>
<p>(ii) According to an observer on the ground the time interval between event 1 and event 2 is <em>T</em>. One student claims that \(T = \frac{t}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\) and another that \(T = t\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} \).</p>
<p>Explain why both students are wrong.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Relative to an observer on the <strong>ground</strong>,</p>
<p>(i) calculate the distance between S and D.</p>
<p>(ii) state the speed of the photon leaving S.</p>
<p>(iii) state an expression for the distance travelled by detector D in the time interval <em>T</em> (<em>T</em> is the interval in (b)(ii)).</p>
<p>(iv) determine <em>T</em>, using your answers to (c)(i), (ii) and (iii).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about length contraction and simultaneity.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>proper length</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A spaceship is travelling to the right at speed 0.75 c, through a tunnel which is open at both ends. Observer A is standing at the centre of one side of the tunnel. Observer A, for whom the tunnel is at rest, measures the length of the tunnel to be 240 m and the length of the spaceship to be 200 m. The diagram below shows this situation from the perspective of observer A.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Observer B, for whom the spaceship is stationary, is standing at the centre of the spaceship.</p>
<p style="text-align: left;">(i) Calculate the Lorentz factor, γ, for this situation.</p>
<p style="text-align: left;">(ii) Calculate the length of the tunnel according to observer B.</p>
<p style="text-align: left;">(iii) Calculate the length of the spaceship according to observer B.</p>
<p style="text-align: left;">(iv) According to observer A, the spaceship is completely inside the tunnel for a short time. State and explain whether or not, according to observer B, the spaceship is ever completely inside the tunnel.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two sources of light are located at each end of the tunnel. The diagram below shows this situation from the perspective of observer A.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">According to observer A, at the instant when observer B passes observer A, the two sources of light emit a flash. Observer A sees the two flashes simultaneously. Discuss whether or not observer B sees the two flashes simultaneously.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A spaceship S leaves the Earth with a speed <em>v </em>= 0.80<em>c</em>. The spacetime diagram for the Earth is shown. A clock on the Earth and a clock on the spaceship are synchronized at the origin of the spacetime diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle between the worldline of S and the worldline of the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the diagram, the <em>x′</em>-axis for the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An event Z is shown on the diagram. Label the co-ordinates of this event in the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer on Earth watches rocket A travel away from Earth at a speed of 0.80<em>c</em>. The spacetime diagram shows the worldline of rocket A in the frame of reference of the Earth observer who is at rest at <em>x </em>= 0.</p>
<p style="text-align: left;"><img src=""></p>
<p>Another rocket, B, departs from the same location as A but later than A at <em>ct </em>= 1.2 km according to the Earth observer. Rocket B travels at a constant speed of 0.60<em>c </em>in the opposite direction to A according to the Earth observer.</p>
</div>
<div class="specification">
<p>Rocket A and rocket B both emit a flash of light that are received simultaneously by the Earth observer. Rocket A emits the flash of light at a time coordinate <em>ct </em>= 1.8 km according to the Earth observer.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the spacetime diagram the worldline of B according to the Earth observer and label it B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, showing your working on the spacetime diagram, the value of <em>ct </em>according to the Earth observer at which the rocket B emitted its flash of light.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain whether or not the arrival times of the two flashes in the Earth frame are simultaneous events in the frame of rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of rocket B relative to rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket of proper length 450 m is approaching a space station whose proper length is 9.0 km. The speed of the rocket relative to the space station is 0.80<em>c</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>X is an observer at rest in the space station.</p>
<p> </p>
</div>
<div class="specification">
<p>Two lamps at opposite ends of the space station turn on at the same time according to X. Using a Lorentz transformation, determine, according to an observer at rest in the rocket,</p>
</div>
<div class="specification">
<p>The rocket carries a different lamp. Event 1 is the flash of the rocket’s lamp occurring at the origin of <strong>both</strong> reference frames. Event 2 is the flash of the rocket’s lamp at time<em> ct'</em> = 1.0 m according to the rocket. The coordinates for event 2 for observers in the space station are <em>x</em> and <em>ct</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.57.21.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/05c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the rocket according to X.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A space shuttle is released from the rocket. The shuttle moves with speed 0.20<em>c</em> <strong>to the right</strong> according to X. Calculate the <strong>velocity</strong> of the shuttle relative to the rocket.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the time interval between the lamps turning on.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>which lamp turns on first.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram label the coordinates <em>x</em> and <em>ct</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the <em>ct</em> coordinate in (c)(i) is less than, equal to <strong>or </strong>greater than 1.0 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>c</em> <sup>2</sup><em>t </em><sup>2</sup> – <em>x </em><sup>2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron X is moving parallel to a current-carrying wire. The positive ions and the wire are fixed in the reference frame of the laboratory. The drift speed of the free electrons in the wire is the same as the speed of the external electron X.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>frame of reference.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the reference frame of the laboratory the force on X is magnetic.</p>
<p>(i) State the nature of the force acting on X in this reference frame where X is at rest.</p>
<p>(ii) Explain how this force arises.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about special relativity, simultaneity and length contraction.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the two postulates of special relativity may be stated as:</p>
<p style="padding-left: 30px;">“The laws of physics are the same for all observers in inertial reference frames.”</p>
<p>State</p>
<p>(i) what is meant by an inertial frame of reference.</p>
<p>(ii) the other postulate of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a thought experiment to illustrate the concept of simultaneity, Vladimir is standing on the ground close to a straight, level railway track. Natasha is in a railway carriage that is travelling along the railway track with constant speed <em>v</em> in the direction shown.</p>
<p><img src="" alt></p>
<p>Natasha is sitting on a chair that is equidistant from each end of the carriage. At either end of the carriage are two clocks C<sub>1</sub> and C<sub>2</sub>. Next to Natasha is a switch that, when operated, sends a signal to each clock. The clocks register the time of arrival of the signals. At the instant that Natasha and Vladimir are opposite each other, Natasha operates the switch. According to Natasha, C<sub>1</sub> and C<sub>2</sub> register the same time of arrival of each signal.</p>
<p>Explain, according to Vladimir, whether or not C<sub>1</sub> and C<sub>2</sub> register the same time of arrival for each signal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed <em>v</em> of the carriage is 0.70c. Vladimir measures the length of the table at which Natasha is sitting to be 1.0 m.</p>
<p>(i) Calculate the length of the table as measured by Natasha.</p>
<p>(ii) Explain which observer measures the proper length of the table.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>When a spaceship passes the Earth, an observer on the Earth and an observer on the spaceship both start clocks. The initial time on both clocks is 12 midnight. The spaceship is travelling at a constant velocity with <em>γ</em> = 1.25. A space station is stationary relative to the Earth and carries clocks that also read Earth time.</p>
</div>
<div class="specification">
<p>Some of the radio signal is reflected at the surface of the Earth and this reflected signal is later detected at the spaceship. The detection of this signal is event B. The spacetime diagram is shown for the Earth, showing the space station and the spaceship. Both axes are drawn to the same scale.</p>
<p style="text-align: left;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the spaceship relative to the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spaceship passes the space station 90 minutes later as measured by the spaceship clock. Determine, for the reference frame of the Earth, the distance between the Earth and the space station.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As the spaceship passes the space station, the space station sends a radio signal back to the Earth. The reception of this signal at the Earth is event A. Determine the time on the Earth clock when event A occurs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct event A and event B on the spacetime diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the spacetime diagram, the time at which event B occurs for the spaceship.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an inertial frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A spaceship travels from space station Alpha to space station Zebra at a constant speed of 0.90c relative to the space stations. The distance from Alpha to Zebra is 10ly according to space station observers. At this speed <em>γ</em>=2.3.</p>
<p><img src="" alt></p>
<p>Calculate the time taken to travel between Alpha and Zebra in the frame of reference of an observer</p>
<p>(i) on the Alpha space station.</p>
<p>(ii) on the spaceship.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which of the time measurements in (b)(i) and (b)(ii) is a proper time interval.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spaceship arrives at Zebra and enters an airlock at constant speed. O is an observer at rest relative to the airlock. Two lamps P and Q emit a flash simultaneously according to the observer S in the spaceship. At that instant, O and S are opposite each other and midway between the lamps.</p>
<p><img src="" alt></p>
<p>Discuss whether the lamps flash simultaneously according to observer O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>Speedy is in a spacecraft being chased by Police Officer Sylvester. In Officer Sylvester’s frame of reference, Speedy is moving directly towards Officer Sylvester at 0.25c.</p>
<p><img src="" alt></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by a frame of reference.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a later time the police spacecraft is alongside Speedy’s spacecraft. The police spacecraft is overtaking Speedy’s spacecraft at a constant velocity.</p>
<p>Officer Sylvester is at a point midway between the flashing lamps, both of which he can see. At the instant when Officer Sylvester and Speedy are opposite each other, Speedy observes that the blue lamps flash simultaneously.</p>
<p><img src="" alt></p>
<p>State and explain which lamp is observed to flash first by Officer Sylvester.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The police spacecraft is travelling at a constant speed of 0.5c relative to Speedy’s frame of reference. The light from a flash of one of the lamps travels across the police spacecraft and is reflected back to the light source. Officer Sylvester measures the time taken for<br>the light to return to the source as 1.2 × 10<sup>–8</sup>s.</p>
<p>(i) Outline why the time interval measured by Officer Sylvester is a proper time interval.</p>
<p>(ii) Determine, as observed by Speedy, the time taken for the light to travel across the police spacecraft and back to its source.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>A spacecraft leaves Earth and moves towards a planet. The spacecraft moves at a speed 0.60c relative to the Earth. The planet is a distance of 12ly away according to the observer on Earth.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time, in years, that it takes the spacecraft to reach the planet according to the</p>
<p>(i) observer on Earth.</p>
<p>(ii) observer in the spacecraft.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft passes a space station that is at rest relative to the Earth. The proper length of the space station is 310 m.</p>
<p>(i) State what is meant by proper length.</p>
<p>(ii) Calculate the length of the space station according to the observer in the spacecraft.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>F and B are two flashing lights located at the ends of the space station, as shown. As the spacecraft approaches the space station in (b), F and B turn on. The lights turn on simultaneously according to the observer on the space station who is midway between the lights.</p>
<p><img src="" alt></p>
<p>State and explain which light, F <strong>or</strong> B, turns on first according to the observer in the <strong>spacecraft</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>In a thought experiment, a train is moving at a speed of 0.950c relative to the ground. A pendulum attached to the ceiling of the train is set into oscillation.</p>
<p><img src="" alt></p>
<p>An observer T on the train and an observer G on the ground measure the period of oscillation of the pendulum.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the pendulum period is a proper time interval for observer T, observer G <strong>or</strong> both T and G.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Observer T measures the period of oscillations of the pendulum to be 0.850s. Calculate the period of oscillations according to observer G.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Observer T is standing in the middle of a train watched by observer G at the side of the track. Two lightning strikes hit the ends of<br>the train. The strikes are simultaneous <strong>according to observer T.</strong></p>
<p><strong><img src="" alt></strong></p>
<p> </p>
<p>Light from the strikes reaches both observers.</p>
<p>(i) Explain why, according to observer G, light from the two strikes reaches observer T at the same time.</p>
<p>(ii) Using your answer to (i), explain why, according to observer G, end X of the train was hit by lightning first.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer P sitting in a train moving at a speed <em>v</em> measures that his journey takes a time Δ<em>t</em><sub>P</sub>. An observer Q at rest with respect to the ground measures that the journey takes a time Δ<em>t</em><sub>Q</sub>.</p>
</div>
<div class="specification">
<p>According to Q there is an instant at which the train is completely within the tunnel.</p>
<p>At that instant two lights at the front and the back of the train are turned on simultaneously according to Q.</p>
<p style="text-align: center;"><img src=""></p>
<p>The spacetime diagram according to observer Q shows event B (back light turns on) and event F (front light turns on).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_14.55.20.png" alt="M17/4/PHYSI/SP3/ENG/TZ1/4d_02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which of the two time intervals is a proper time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed <em>v</em> of the train for the ratio \(\frac{{\Delta {t_{\text{P}}}}}{{\Delta {t_{\text{Q}}}}} = 0.30\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Later the train is travelling at a speed of 0.60c. Observer P measures the length of the train to be 125 m. The train enters a tunnel of length 100 m according to observer Q.</p>
<p>Show that the length of the train according to observer Q is 100 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the time \(ct'\) and space \(x'\) axes for observer P’s reference frame on the spacetime diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, using the spacetime diagram, which light was turned on first according to observer P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply a Lorentz transformation to show that the time difference between events B and F according to observer P is 2.5 × 10<sup>–7</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that the spacetime interval between events B and F is invariant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second train is moving at a velocity of –0.70c with respect to the ground.</p>
<p style="text-align: center;"><img src=""></p>
<p>Calculate the speed of the second train relative to observer P.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer on Earth watches a rocket A. The spacetime diagram shows part of the motion of A in the reference frame of the Earth observer. Three flashing light beacons, X, Y and Z, are used to guide rocket A. The flash events are shown on the spacetime diagram.<br>The diagram shows the axes for the reference frames of Earth and of rocket A. The Earth observer is at the origin.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the Earth observer, calculate the speed of rocket A in terms of the speed of light <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph opposite, deduce the order in which</p>
<p>(i) the beacons <strong>flash</strong> in the reference frame of rocket A.</p>
<p>(ii) the Earth observer <strong>sees</strong> the beacons flash.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>