File "SL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 1 HTML/SL-paper3html
File size: 685.38 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>An experiment to find the internal resistance of a cell of known emf is to be set. The following equipment is available:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.19.36.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a suitable circuit diagram that would enable the internal resistance to be determined.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is noticed that the resistor gets warmer. Explain how this would affect the calculated value of the internal resistance.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how using a variable resistance could improve the accuracy of the value found for the internal resistance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>To determine the acceleration due to gravity, a small metal sphere is dropped from rest and&nbsp;the time it takes to fall through a known distance and open a trapdoor is measured.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_15.43.42.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/01"></p>
<p>The following data are available.</p>
<p>\[\begin{array}{*{20}{l}} {{\text{Diameter of metal sphere}}}&amp;{ = 12.0 \pm 0.1{\text{ mm}}} \\ {{\text{Distance between the point of release and the trapdoor}}}&amp;{ = 654 \pm 2{\text{ mm}}} \\ {{\text{Measured time for fall}}}&amp;{ = 0.363 \pm 0.002{\text{ s}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance fallen, in m, by the centre of mass of the sphere including an estimate of the absolute uncertainty in your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the following equation</p>
<p>\[{\text{acceleration due to gravity}} = \frac{{2 \times {\text{distance fallen by centre of mass of sphere}}}}{{{{{\text{(measured time to fall)}}}^{\text{2}}}}}\]</p>
<p>calculate, for these data, the acceleration due to gravity including an estimate of the absolute uncertainty in your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple pendulum experiment, a student measures the period <em>T</em> of the pendulum many times and obtains an average value <em>T</em> = (2.540 &plusmn; 0.005) s. The length <em>L</em> of the pendulum is measured to be <em>L</em> = (1.60 &plusmn; 0.01) m.</p>
<p>Calculate, using \(g = \frac{{4{\pi ^2}L}}{{{T^2}}}\), the value of the acceleration of free fall, including its&nbsp;uncertainty. State the value of the uncertainty to one significant figure.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a different experiment a student investigates the dependence of the period <em>T</em> of a simple pendulum on the amplitude of oscillations <em>&theta;</em>. The graph shows the variation of \(\frac{T}{{{T_0}}}\) with <em>&theta;</em>, where <em>T</em><sub>0</sub> is the period for small amplitude oscillations.</p>
<p style="text-align: center;"><img src=""></p>
<p>The period may be considered to be independent of the amplitude <em>&theta;</em> as long as \(\frac{{T - {T_0}}}{{{T_0}}} &lt; 0.01\). Determine the maximum value of <em>&theta;</em> for which the period is independent&nbsp;of the amplitude.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The circuit shown may be used to measure the internal resistance of a cell.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.51.02.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02"></p>
</div>

<div class="specification">
<p>The ammeter used in the experiment in (b) is an analogue meter. The student takes&nbsp;measurements without checking for a &ldquo;zero error&rdquo; on the ammeter.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An ammeter and a voltmeter are connected in the circuit. Label the ammeter with the&nbsp;letter A and the voltmeter with the letter V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In one experiment a student obtains the following graph showing the variation with&nbsp;current <em>I</em> of the potential difference <em>V</em> across the cell.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_08.05.10.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/02b"></p>
<p>Using the graph, determine the best estimate of the internal resistance of the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a zero error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After taking measurements the student observes that the ammeter has a&nbsp;positive zero error. Explain what effect, if any, this zero error will have on the&nbsp;calculated value of the internal resistance in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The equipment shown in the diagram was used by a student to investigate the variation with&nbsp;volume, of the pressure <em>p</em> of air, at constant temperature. The air was trapped in a tube of&nbsp;constant cross-sectional area above a column of oil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The pump forces oil to move up the tube decreasing the volume of the trapped air.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student measured the height <em>H</em> of the air column and the corresponding air&nbsp;pressure <em>p</em>. After each reduction in the volume the student waited for some time before&nbsp;measuring the pressure. Outline why this was necessary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following graph of <em>p</em> versus \(\frac{1}{H}\) was obtained. Error bars were negligibly small.</p>
<p style="text-align: center;"><img src=""></p>
<p>The equation of the line of best fit is \(p = a + \frac{b}{H}\).</p>
<p>Determine the value of <em>b</em> including an appropriate unit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the results of this experiment are consistent with the ideal gas law at constant temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cross-sectional area of the tube is 1.3 &times; 10<sup>&ndash;3</sup>\(\,\)m<sup>2</sup> and the temperature of air is 300 K. Estimate the number of moles of air in the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation in (b) may be used to predict the pressure of the air at extremely large values of \(\frac{1}{H}\). Suggest why this will be an unreliable estimate of the pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A student carries out an experiment to determine the variation of intensity of the light with&nbsp;distance from a point light source. The light source is at the centre of a transparent spherical&nbsp;cover of radius <em>C</em>. The student measures the distance <em>x </em>from the surface of the cover to a&nbsp;sensor that measures the intensity <em>I </em>of the light.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_15.49.35.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/02"></p>
<p>The light source emits radiation with a constant power <em>P </em>and all of this radiation is&nbsp;transmitted through the cover. The relationship between <em>I </em>and <em>x </em>is given by</p>
<p>\[I = \frac{P}{{4\pi {{(C + x)}^2}}}\]</p>
</div>

<div class="specification">
<p>The student obtains a set of data and uses this to plot a graph of the variation of&nbsp;\(\frac{1}{{\sqrt I }}\)&nbsp;with <em>x</em>.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This relationship can also be written as follows.</p>
<p>\[\frac{1}{{\sqrt I }} = Kx + KC\]</p>
<p>Show that \(K = 2\sqrt {\frac{\pi }{P}} \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate <em>C</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>P</em>, to the correct number of significant figures including its unit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the disadvantage that a graph of <em>I </em>versus \(\frac{1}{{{x^2}}}\) has for the analysis in (b)(i) and (b)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A magnetized needle is oscillating on a string about a vertical axis in a horizontal magneticfield <em>B</em>. The time for 10 oscillations is recorded for different values of <em>B</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.15.15.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/01_01"></p>
<p>The graph shows the variation with <em>B </em>of the time for 10 oscillations together with the uncertainties in the time measurements. The uncertainty in <em>B </em>is negligible.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the graph the line of best fit for the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the time taken for one oscillation when <em>B </em>= 0.005 T with its absolute uncertainty.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student forms a hypothesis that the period of one oscillation <em>P </em>is given by:</p>
<p>\[P = \frac{K}{{\sqrt B }}\]</p>
<p>where <em>K </em>is a constant.</p>
<p>Determine the value of <em>K </em>using the point for which <em>B </em>= 0.005 T.</p>
<p>State the uncertainty in <em>K </em>to an appropriate number of significant figures.<span class="Apple-converted-space"> </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the unit of <em>K</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student plots a graph to show how <em>P</em><sup>2</sup> varies with \(\frac{1}{B}\) for the data.</p>
<p>Sketch the shape of the expected line of best fit on the axes below assuming that the relationship \(P = \frac{K}{{\sqrt B }}\) is verified. You do <strong>not </strong>have to put numbers on the axes.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the value of <em>K </em>can be obtained from the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An apparatus is used to verify a gas law. The glass jar contains a fixed volume of air. Measurements can be taken using the thermometer and the pressure gauge.</p>
<p style="text-align: center;"><img src=""></p>
<p>The apparatus is cooled in a freezer and then placed in a water bath so that the temperature of the gas increases slowly. The pressure and temperature of the gas are recorded.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the data recorded.</p>
<p><img src=""></p>
<p>Identify the fundamental SI unit for the gradient of the pressure&ndash;temperature graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The experiment is repeated using a different gas in the glass jar. The pressure for both experiments is low and both gases can be considered to be ideal.</p>
<p>(i) Using the axes provided in (a), draw the expected graph for this second experiment.</p>
<p>(ii) Explain the shape and intercept of the graph you drew in (b)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A student measures the refractive index of water by shining a light ray into a transparent container.</p>
<p>IO shows the direction of the normal at the point where the light is incident on the container. IX shows the direction of the light ray when the container is empty. IY shows the direction of the deviated light ray when the container is filled with water.</p>
<p>The angle of incidence&nbsp;<em>&theta;</em> is varied and the student determines the position of O, X and Y for each angle of incidence.</p>
<p style="text-align: center;"><img src=""></p>
<p>The table shows the data collected by the student. The uncertainty in each measurement of length is &plusmn;0.1 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline why OY has a greater percentage uncertainty than OX for each pair of data points.</p>
<p>(ii) The refractive index of the water is given by \(\frac{{{\rm{OX}}}}{{{\rm{OY}}}}\)when OX is small.</p>
<p>Calculate the fractional uncertainty in the value of the refractive index of water for OX = 1.8 cm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A graph of the variation of OY with OX is plotted.<img src=""></p>
<p>(i) Draw, on the graph, the error bars for OY when OX = 1.8 cm <strong>and</strong> when OY = 5.8 cm.</p>
<p>(ii) Determine, using the graph, the refractive index of the water in the container for values of OX less than 6.0 cm.</p>
<p>(iii) The refractive index for a material is also given by \(\frac{{\sin i}}{{\sin r}}\) where <em>i</em> is the angle of incidence and <em>r</em> is the angle of refraction.</p>
<p>Outline why the graph deviates from a straight line for large values of OX.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A radio wave of wavelength \(\lambda \) is incident on a conductor. The graph shows the variation with&nbsp;wavelength \(\lambda \) of the maximum distance <em>d</em> travelled inside the conductor.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>For \(\lambda \) = 5.0 x&nbsp;10<sup>5</sup> m, calculate the</p>
</div>

<div class="specification">
<p>The graph shows the variation with wavelength \(\lambda \) of <em>d&thinsp;</em><sup>2</sup>. Error bars are not shown and&nbsp;the line of best-fit has been drawn.</p>
<p style="text-align: center;"><img src=""></p>
<p>A student states that the equation of the line of best-fit is <em>d&thinsp;</em><sup>2</sup><sup>&nbsp;</sup>= <em>a</em> + <em>b</em>\(\lambda \). When <em>d&thinsp;</em><sup>2</sup>&nbsp;and \(\lambda \) are expressed in terms of fundamental SI units, the student finds that <em>a</em> = 0.040 x&nbsp;10<sup>&ndash;4</sup>&nbsp;and <em>b</em> = 1.8 x&nbsp;10<sup>&ndash;11</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is unlikely that the relation between<em> d</em> and \(\lambda \) is linear.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>fractional uncertainty in <em>d</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>percentage uncertainty in <em>d&thinsp;</em><sup>2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the fundamental SI unit of the constant <em>a</em> and of the constant <em>b</em>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance travelled inside the conductor by very high frequency&nbsp;electromagnetic waves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student measures the refractive index of the glass of a microscope slide.</p>
<p>He uses a travelling microscope to determine the position <em>x</em><sub>1</sub> of a mark on a sheet of paper. He then places the slide over the mark and finds the position&nbsp;<em>x</em><sub>2</sub> of the image of the mark when viewed through the slide. Finally, he uses the microscope to determine the position&nbsp;<em>x</em><sub>3</sub> of the top of the slide.</p>
<p><img src="" alt></p>
<p>The table shows the average results of a large number of repeated measurements.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The refractive index of the glass from which the slide is made is given by<br>\[\frac{{{x_3} - {x_1}}}{{{x_3} - {x_2}}}\].</p>
<p>Determine</p>
<p>(i) the refractive index of the glass to the correct number of significant figures, ignoring any uncertainty.</p>
<p>(ii) the uncertainty of the value calculated in (a)(i).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the experiment, the student finds that the travelling microscope is badly adjusted so that the measurement of each position is too large by 0.05mm.</p>
<p>(i) State the name of this type of error.</p>
<p>(ii) Outline the effect that the error in (b)(i) will have on the calculated value of the refractive index of the glass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After correcting the adjustment of the travelling microscope, the student repeats the experiment using a glass block 10 times thicker than the original microscope slide. Explain the change, if any, to the calculated result for the refractive index and its uncertainty.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student investigates the oscillation of a horizontal rod hanging at the end of a vertical string. The diagram shows the view from above.<br><img src="" alt></p>
<p>The student starts the rod oscillating and measures the largest displacement for each cycle of the oscillation on the scale and the time at which it occurs. The student begins to take measurements a few seconds after releasing the rod.</p>
<p>The graph shows the variation of displacement <em>x</em> with time <em>t</em> since the release of the rod. The uncertainty for <em>t</em> is negligible.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph above, draw the line of best fit for the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage uncertainty for the displacement when <em>t</em>=40s.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student hypothesizes that the relationship between <em>x</em> and <em>t</em> is \(x = \frac{a}{t}\) where <em>a</em> is a constant.<br>To test the hypothesis <em>x</em> is plotted against \(\frac{1}{t}\) as shown in the graph.</p>
<p><img src="" alt></p>
<p>(i) The data point corresponding to <em>t</em>=15s has not been plotted. Plot this point on the graph above.</p>
<p>(ii) Suggest the range of values of <em>t</em> for which the hypothesis may be assumed to be correct.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>