File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 18/HL-paper2html
File size: 667.33 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Cobalt forms the transition metal complex [Co(NH<sub>3</sub>)<sub>4</sub> (H<sub>2</sub>O)Cl]Br.</p>
</div>
<div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group whereas the melting points of the group 17 elements (F → I) increase down the group.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the complex ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the complex ion and the oxidation state of cobalt.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of acid-base theories, the type of reaction that takes place between the cobalt ion and water to form the complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
<mrow>
<mtext>TiC</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
</math></span> reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p>Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{Ti}}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mtext>22</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>48</mtext>
</mrow>
</mrow>
</msubsup>
<mrow>
<mtext>Ti</mtext>
</mrow>
</math></span> atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}">
<msubsup>
<mi></mi>
<mrow>
<mrow>
<mtext>22</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>48</mtext>
</mrow>
</mrow>
</msubsup>
<mrow>
<mtext>T</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>i</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mo>+</mo>
</mrow>
</msup>
</mrow>
</math></span> ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{TiC}}{{\text{l}}_{\text{4}}}">
<mrow>
<mtext>TiC</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
</math></span>, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is another ore of iron that contains both Fe<sup>2+</sup> and Fe<sup>3+</sup>.</p>
</div>
<div class="specification">
<p>Iron exists as several isotopes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the ratio of Fe<sup>2+</sup>:Fe<sup>3+</sup> in Fe<sub>3</sub>O<sub>4</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of spectroscopy that could be used to determine their relative abundances.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in each species.</p>
<p><img src="" width="502" height="151"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Iron has a relatively small specific heat capacity; the temperature of a 50 g sample rises by 44.4°C when it absorbs 1 kJ of heat energy.</p>
<p>Determine the specific heat capacity of iron, in J g<sup>−1 </sup>K<sup>−1</sup>. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is set up between the Fe<sup>2+ </sup>(aq) | Fe (s) and Fe<sup>3+</sup> (aq) | Fe<sup>2+</sup> (aq) half-cells.</p>
<p>Deduce the equation and the cell potential of the spontaneous reaction. Use section 24 of the data booklet.</p>
<p><img src="" width="651" height="204"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The figure shows an apparatus that could be used to electroplate iron with zinc. Label the figure with the required substances.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why, unlike typical transition metals, zinc compounds are not coloured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals like iron can form complex ions. Discuss the bonding between transition metals and their ligands in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p> </p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
</math></span>. One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-20_om_11.35.47.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/05"></p>
</div>
<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{O}}_{\text{2}}}{\text{(aq)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mrow>
<mtext>O</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
<mo stretchy="false">→<!-- → --></mo>
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>2</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>O(l)</mtext>
</mrow>
</math></span></p>
<p>The concentration of dissolved oxygen in a sample of water is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8.0 \times {10^{ - 3}}{\text{ g}}\,{\text{d}}{{\text{m}}^{ - 3}}">
<mn>8.0</mn>
<mo>×<!-- × --></mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron domain geometry around the nitrogen atom and its hybridization in methanamine.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.<br><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {\text{NH}}_{\text{4}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}">
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>O(l)</mtext>
</mrow>
<mo stretchy="false">⇌</mo>
<msubsup>
<mrow>
<mtext>NH</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
<mo>+</mo>
</msubsup>
<mrow>
<mtext>(aq)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>O</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>−</mo>
</msup>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
</math></span><br>Explain the effect of adding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{H}}^ + }{\text{(aq)}}">
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>+</mo>
</msup>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
</math></span> ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. (The association of a molecule of hydrazine with a second H<sup>+</sup> is so small it can be neglected.)</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {{\text{N}}_{\text{2}}}{\text{H}}_{\text{5}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>O(l)</mtext>
</mrow>
<mo stretchy="false">⇌</mo>
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<msubsup>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>5</mtext>
</mrow>
<mo>+</mo>
</msubsup>
<mrow>
<mtext>(aq)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>O</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>H</mtext>
</mrow>
<mo>−</mo>
</msup>
</mrow>
<mrow>
<mtext>(aq)</mtext>
</mrow>
</math></span></p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{p}}{K_{\text{b}}}{\text{ (hydrazine)}} = 5.77">
<mrow>
<mtext>p</mtext>
</mrow>
<mrow>
<msub>
<mi>K</mi>
<mrow>
<mtext>b</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext> (hydrazine)</mtext>
</mrow>
<mo>=</mo>
<mn>5.77</mn>
</math></span></p>
<p>Calculate the pH of a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
<mn>0.0100</mn>
<mrow>
<mtext> mol</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span> solution of hydrazine.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a suitable indicator for the titration of hydrazine solution with dilute sulfuric acid using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta H">
<mi mathvariant="normal">Δ</mi>
<mi>H</mi>
</math></span>, in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
<mo stretchy="false">→</mo>
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
<mo>+</mo>
<mrow>
<mtext>2</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
</math></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(l)</mtext>
</mrow>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + 50.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}">
<mo>+</mo>
<mn>50.6</mn>
<mrow>
<mtext> kJ</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>. Calculate the enthalpy of vaporization, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta {H_{{\text{vap}}}}">
<mi mathvariant="normal">Δ</mi>
<mrow>
<msub>
<mi>H</mi>
<mrow>
<mrow>
<mtext>vap</mtext>
</mrow>
</mrow>
</msub>
</mrow>
</math></span>, of hydrazine in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}">
<mrow>
<mtext>kJ</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>. <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}} \to {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}}">
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(l)</mtext>
</mrow>
<mo stretchy="false">→</mo>
<mrow>
<msub>
<mrow>
<mtext>N</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>4</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>(g)</mtext>
</mrow>
</math></span> (If you did not get an answer to (f), use <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 85{\text{ kJ}}">
<mo>−</mo>
<mn>85</mn>
<mrow>
<mtext> kJ</mtext>
</mrow>
</math></span> but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{1000 d}}{{\text{m}}^{\text{3}}}">
<mrow>
<mtext>1000 d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</math></span> of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{d}}{{\text{m}}^{\text{3}}}">
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</math></span>, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{24.8 d}}{{\text{m}}^{\text{3}}}">
<mrow>
<mtext>24.8 d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</math></span> at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Butanoic acid, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH, is a weak acid and ethylamine, CH<sub>3</sub>CH<sub>2</sub>NH<sub>2</sub>, is a weak base.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of each substance with water.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram showing the delocalization of electrons in the conjugate base of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A 0.250 mol dm<sup>−3</sup> aqueous solution of butanoic acid has a concentration of hydrogen ions, [H<sup>+</sup>], of 0.00192 mol dm<sup>−3</sup>. Calculate the concentration of hydroxide ions, [OH<sup>−</sup>], in the solution at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of a 0.250 mol dm<sup>−3</sup> aqueous solution of ethylamine at 298 K, using section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the pH curve for the titration of 25.0 cm<sup>3</sup> of ethylamine aqueous solution with 50.0 cm<sup>3</sup> of butanoic acid aqueous solution of equal concentration. No calculations are required.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why butanoic acid is a liquid at room temperature while ethylamine is a gas at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable reagent for the reduction of butanoic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the complete reduction reaction in (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Soluble acids and bases ionize in water.</p>
</div>
<div class="specification">
<p>A solution containing 0.510 g of an unknown monoprotic acid, HA, was titrated with 0.100 mol dm<sup>–3</sup> NaOH(aq). 25.0 cm<sup>3</sup> was required to reach the equivalence point.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following curve was obtained using a pH probe.</p>
<p><img src=""></p>
<p>State, giving a reason, the strength of the acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a technique other than a pH titration that can be used to detect the equivalence point.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the p<em>K</em><sub>a</sub> for this acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The p<em>K</em><sub>a</sub> of an anthocyanin is 4.35. Determine the pH of a 1.60 × 10<sup>–3</sup> mol dm<sup>–3</sup> solution to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">A student performs a titration to determine the concentration of ethanoic acid, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></math></span><span class="fontstyle0">, in vinegar using potassium hydroxide.</span> </p>
</div>
<div class="specification">
<p><span class="fontstyle0">The pH curve for the reaction is given.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="446" height="312"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write a balanced equation for the reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Identify the </span><span class="fontstyle2"><strong>major</strong> </span><span class="fontstyle0">species, other than water and potassium ions, at these points.</span></p>
<p><span class="fontstyle0"><img src="" width="651" height="162"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State a suitable indicator for this titration. Use section 22 of the data booklet</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest, giving a reason, which point on the curve is considered a buffer region.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">a</mi></msub></math> <span class="fontstyle0">expression for ethanoic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mi mathvariant="normal">b</mi></msub></math> <span class="fontstyle0">of the conjugate base of ethanoic acid using sections 2 and 21 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">In a titration, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>25</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">of vinegar required <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>20</mn><mo>.</mo><mn>75</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> </span><span class="fontstyle0">of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math></span><span class="fontstyle0"> </span><span class="fontstyle0">potassium hydroxide to reach the end-point.</span></p>
<p><span class="fontstyle0">Calculate the concentration of ethanoic acid in the vinegar.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Potassium hydroxide solutions can react with carbon dioxide from the air. The solution was made one day prior to using it in the titration.</span></p>
<p><span class="fontstyle0"> State the type of error that would result from the student’s approach.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Potassium hydroxide solutions can react with carbon dioxide from the air. The solution was made one day prior to using it in the titration.</span></p>
<p><span class="fontstyle0">Predict, giving a reason, the effect of this error on the calculated concentration of ethanoic acid in 5(e).</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Graphing is an important tool in the study of rates of chemical reactions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph represents the titration of 25.00 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> aqueous ethanoic acid with 0.100 mol dm<sup>−3</sup> aqueous sodium hydroxide.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_13.41.48.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/02.d.i_01"></p>
<p>Deduce the <strong>major </strong>species, other than water and sodium ions, present at points A and B during the titration.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.100 mol dm<sup>−3</sup> aqueous ethanoic acid.</p>
<p><em>K</em><sub>a</sub> = 1.74 × 10<sup>−5</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an equation, why sodium ethanoate is basic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict whether the pH of an aqueous solution of ammonium chloride will be greater than, equal to or less than 7 at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the reaction of nitrogen dioxide, NO<sub>2</sub>, with water to form two acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the reaction of one of the acids produced in (e)(i) with calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the weak acid methanoic acid, HCOOH.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.0100 mol dm<sup>–3</sup> methanoic acid stating any assumption you make. <em>K</em><sub>a </sub>= 1.6 × 10<sup>–4</sup>.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch a graph of pH against volume of a strong base added to a weak acid showing how you would determine p<em>K</em><sub>a</sub> for the weak acid.</p>
<p><img src="" alt></p>
<p>(ii) Explain, using an equation, why the pH increases very little in the buffer region when a small amount of alkali is added.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>50.00 cm<sup>3</sup> of 0.75 mol dm<sup>−3</sup> sodium hydroxide was added in 1.00 cm<sup>3</sup> portions to 22.50 cm<sup>3</sup> of 0.50 mol dm<sup>−3</sup> chloroethanoic acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the initial pH before any sodium hydroxide was added, using section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of excess sodium hydroxide was 0.362 mol dm<sup>−3</sup>. Calculate the pH of the solution at the end of the experiment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the neutralisation curve obtained <strong>and</strong> label the equivalence point.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propanoic acid, CH<sub>3</sub>CH<sub>2</sub>COOH, is a weak organic acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of 0.00100 mol dm<sup>–3</sup> propanoic acid solution. Use section 21 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the general shape of the variation of pH when 50 cm<sup>3</sup> of 0.001 mol dm<sup>–3</sup> NaOH (aq) is gradually added to 25 cm<sup>3</sup> of 0.001 mol dm<sup>–3</sup> CH<sub>3</sub>CH<sub>2</sub>COOH (aq).</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The overall equation for the production of hydrogen cyanide, HCN, is shown below.</p>
<p style="text-align: center;">CH<sub>4</sub> (g) + NH<sub>3</sub> (g) +<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>O<sub>2</sub> (g) → HCN (g) + 3H<sub>2</sub>O (g)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why NH<sub>3</sub> is a Lewis base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of a 1.00 × 10<sup>−2</sup> mol dm<sup>−3</sup> aqueous solution of ammonia.</p>
<p style="text-align:center;">p<em>K</em><sub>b</sub> = 4.75 at 298 K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether a 1.0 dm<sup>3</sup> solution made from 0.10 mol NH<sup>3</sup> and 0.20 mol HCl will form a buffer solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the shape of one sigma (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math>) and one pi (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>) bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the number of sigma and pi bonds in HCN.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the carbon atom in HCN.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why hydrogen chloride, HCl, has a lower boiling point than hydrogen cyanide, HCN.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metal cyanide complexes are coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>When heated in air, magnesium ribbon reacts with oxygen to form magnesium oxide.</p>
</div>
<div class="specification">
<p>The reaction in (a)(i) was carried out in a crucible with a lid and the following data was recorded:</p>
<p style="text-align: right;">Mass of crucible and lid = 47.372 ±0.001 g</p>
<p style="text-align: right;">Mass of crucible, lid and magnesium ribbon before heating = 53.726 ±0.001 g</p>
<p style="text-align: right;">Mass of crucible, lid and product after heating = 56.941 ±0.001 g</p>
<p style="text-align: left;"> </p>
</div>
<div class="specification">
<p>When magnesium is burnt in air, some of it reacts with nitrogen to form magnesium nitride according to the equation:</p>
<p style="text-align: center;">3 Mg (s) + N<sub>2 </sub>(g) → Mg<sub>3</sub>N<sub>2 </sub>(s)</p>
</div>
<div class="specification">
<p>The presence of magnesium nitride can be demonstrated by adding water to the product. It is hydrolysed to form magnesium hydroxide and ammonia.</p>
</div>
<div class="specification">
<p>Most nitride ions are <sup>14</sup>N<sup>3–</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write a balanced equation for the reaction that occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a metal, in the same period as magnesium, that does <strong>not</strong> form a basic oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of magnesium, in mol, that was used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty of the mass of product after heating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume the reaction in (a)(i) is the only one occurring and it goes to completion, but some product has been lost from the crucible. Deduce the percentage yield of magnesium oxide in the crucible.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Evaluate whether this, rather than the loss of product, could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an explanation, other than product being lost from the crucible or reacting with nitrogen, that could explain the yield found in (b)(iii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate coefficients that balance the equation for the following reaction.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia is added to water that contains a few drops of an indicator. Identify an indicator that would change colour. Use sections 21 and 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of nitrogen in Mg<sub>3</sub>N<sub>2</sub> and in NH<sub>3</sub>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving reasons, whether the reaction of magnesium nitride with water is an acid–base reaction, a redox reaction, neither or both.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of subatomic particles in this ion.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some nitride ions are <sup>15</sup>N<sup>3–</sup>. State the term that describes the relationship between <sup>14</sup>N<sup>3–</sup> and <sup>15</sup>N<sup>3–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nitride ion and the magnesium ion are isoelectronic (they have the same electron configuration). Determine, giving a reason, which has the greater ionic radius.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, whether magnesium or nitrogen would have the greater sixth ionization energy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> reasons why atoms are no longer regarded as the indivisible units of matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the types of bonding in magnesium, oxygen and magnesium oxide, and how the valence electrons produce these types of bonding.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Carbonated water is produced when carbon dioxide is dissolved in water under pressure. The following equilibria are established.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Equilibrium (1) CO<sub>2</sub> (g) <img src="images/5.PNG" alt width="64" height="25"> CO<sub>2</sub> (aq)</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Equilibrium (2) CO<sub>2</sub> (aq) + H<sub>2</sub>O (l) <img src="" width="49" height="14"> H<sup>+</sup> (aq) + HCO<sub>3</sub><sup>−</sup> (aq)</span></span></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Carbon dioxide acts as a weak acid.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Soda water has sodium hydrogencarbonate, NaHCO<sub>3</sub>, dissolved in the carbonated water.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between a weak and strong acid.</span></p>
<p><span style="background-color: #ffffff;">Weak acid: </span></p>
<p><span style="background-color: #ffffff;">Strong acid: </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The hydrogencarbonate ion, produced in Equilibrium (2), can also act as an acid.</span></p>
<p><span style="background-color: #ffffff;">State the formula of its conjugate base.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When a bottle of carbonated water is opened, these equilibria are disturbed.</span></p>
<p><span style="background-color: #ffffff;">State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">At 298 K the concentration of aqueous carbon dioxide in carbonated water is 0.200 mol dm<sup>−3</sup> and the pK<sub>a</sub> for Equilibrium (2) is 6.36.</span></p>
<p><span style="background-color: #ffffff;">Calculate the pH of carbonated water.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in sodium hydrogencarbonate.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between sodium and hydrogencarbonate:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Between hydrogen and oxygen in hydrogencarbonate:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">100.0cm<sup>3</sup> of soda water contains 3.0 × 10<sup>−2</sup>g NaHCO<sub>3</sub>.</span></p>
<p><span style="background-color: #ffffff;">Calculate the concentration of NaHCO<sub>3</sub> in mol dm<sup>−3</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The uncertainty of the 100.0cm<sup>3</sup> volumetric flask used to make the solution was ±0.6cm<sup>3</sup>.</span></p>
<p><span style="background-color: #ffffff;">Calculate the maximum percentage uncertainty in the mass of NaHCO<sub>3</sub> so that the concentration of the solution is correct to ±1.0 %.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The reaction of the hydroxide ion with carbon dioxide and with the hydrogencarbonate ion can be represented by Equations 3 and 4.</span></p>
<p><span style="background-color: #ffffff;">Equation (3) OH<sup>−</sup> (aq) + CO<sub>2</sub> (g) → HCO<sub>3</sub><sup>−</sup> (aq)<br>Equation (4) OH<sup>−</sup> (aq) + HCO</span><sub>3</sub><sup>−</sup><span style="background-color: #ffffff;"> (aq) → H<sub>2</sub>O (l) + CO<sub>3</sub><sup>2−</sup> (aq)<br></span></p>
<p><span style="background-color: #ffffff;">Discuss how these equations show the difference between a Lewis base and a Brønsted–Lowry base.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Equation (3):</span></p>
<p><span style="background-color: #ffffff;">Equation (4):</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Aqueous sodium hydrogencarbonate has a pH of approximately 7 at 298 K.</span></p>
<p><span style="background-color: #ffffff;">Sketch a graph of pH against volume when 25.0cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> NaOH (aq) is gradually added to 10.0cm<sup>3</sup> of 0.0500 mol dm<sup>−3</sup> NaHCO<sub>3</sub> (aq).</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="569" height="344"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Both vinegar (a dilute aqueous solution of ethanoic acid) and bleach are used as cleaning agents.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Bleach reacts with ammonia, also used as a cleaning agent, to produce the poisonous compound chloramine, NH<sub>2</sub>Cl.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why ethanoic acid is classified as a weak acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">Cl<sub>2</sub> (g) + 2NaOH (aq) ⇌ NaOCl (aq) + NaCl (aq) + H<sub>2</sub>O (l)</span></p>
<p><span style="background-color: #ffffff;">Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar </span><span style="background-color: #ffffff;">and bleach together as cleaners.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a Lewis (electron dot) structure of chloramine.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the hybridization of the nitrogen atom in chloramine.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the molecular geometry of chloramine and estimate its H–N–H bond angle.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">H–N–H bond angle:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of bond formed when chloramine is protonated.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch a graph of pH against volume of hydrochloric acid added to ammonia solution, showing how you would determine the pK<sub>a</sub> of the ammonium ion.</span></p>
<p><img src="images/5di.PNG" alt width="478" height="387"></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a suitable indicator for the titration, using section 22 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain, using <strong>two</strong> equations, how an equimolar solution of ammonia and ammonium ions acts as a buffer solution when small amounts of acid or base are added.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Another common acid found in food is ethanoic acid.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A sample of ethanoic acid was titrated with sodium hydroxide solution, and the following pH curve obtained.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate the graph to show the buffer region and the volume of sodium hydroxide at the equivalence point.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the most suitable indicator for the titration using section 22 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe, using a suitable equation, how the buffer solution formed during the titration resists pH changes when a small amount of acid is added.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ammonia is soluble in water and forms an alkaline solution:</p>
<p style="text-align: center;">NH<sub>3 </sub>(g) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> NH<sub>4</sub><sup>+ </sup>(aq) + HO<sup>– </sup>(aq)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between NH<sub>4</sub><sup>+</sup> and NH<sub>3</sub> in terms of the Brønsted–Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration, in mol dm<sup>–3</sup>, of the solution formed when 900.0 dm<sup>3</sup> of NH<sub>3 </sub>(g) at 300.0 K and 100.0 kPa, is dissolved in water to form 2.00 dm<sup>3</sup> of solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of hydroxide ions in an ammonia solution with pH = 9.3. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration, in mol dm<sup>–3</sup>, of ammonia molecules in the solution with pH = 9.3. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An aqueous solution containing high concentrations of both NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> acts as an acid-base buffer solution as a result of the equilibrium:</p>
<p style="text-align:center;">NH<sub>3</sub> (aq) + H<sup>+</sup> (aq) <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>⇌</mo></math> NH<sub>4</sub><sup>+</sup> (aq)</p>
<p>Referring to this equilibrium, outline why adding a small volume of strong acid would leave the pH of the buffer solution almost unchanged.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium salts form slightly acidic solutions owing to equilibria such as:</p>
<p style="text-align:center;">Mg<sup>2+ </sup>(aq) + H<sub>2</sub>O (l) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> Mg(OH)<sup>+ </sup>(aq) + H<sup>+ </sup>(aq)</p>
<p>Comment on the role of Mg<sup>2+</sup> in forming the Mg(OH)<sup>+</sup> ion, in acid-base terms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mg(OH)<sup>+</sup> is a complex ion, but Mg is not regarded as a transition metal. Contrast Mg with manganese, Mn, in terms of one characteristic chemical property of transition metals, other than complex ion formation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol and methanoic acid are important industrial products.</p>
</div>
<div class="specification">
<p>Ethanol is used as a fuel.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the chemical equation for the complete combustion of ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the change in enthalpy, Δ<em>H</em>, in kJ, when 56.00 g of ethanol is burned. Use section 13 in the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src="" width="667" height="189"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the titration curve of methanoic acid with sodium hydroxide, showing how you would determine methanoic acid p<em>K</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify an indicator that could be used for the titration in 5(d)(i), using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of methanoic acid in a solution of pH = 4.12. Use section 21 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify if aqueous solutions of the following salts are acidic, basic, or neutral.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Many reactions are in a state of equilibrium.</p>
</div>
<div class="specification">
<p>The following reaction was allowed to reach equilibrium at 761 K.</p>
<p style="text-align: center;">H<sub>2</sub> (g) + I<sub>2</sub> (g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> 2HI (g) Δ<em>H</em><sup>θ</sup> < 0</p>
</div>
<div class="specification">
<p>The pH of 0.010 mol dm<sup>–3</sup> carbonic acid, H<sub>2</sub>CO<sub>3</sub> (aq), is 4.17 at 25 °C.</p>
<p style="text-align: center;">H<sub>2</sub>CO<sub>3</sub> (aq) + H<sub>2</sub>O (l) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> HCO<sub>3</sub><sup>–</sup> (aq) + H<sub>3</sub>O<sup>+</sup> (aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression,<em> K</em><sub>c</sub> , for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following equilibrium concentrations in mol dm<sup>–3</sup> were obtained at 761 K.</p>
<p><img src=""></p>
<p>Calculate the value of the equilibrium constant at 761 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>G</em><sup>θ</sup>, in kJ, for the above reaction at 761 K using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate [H<sub>3</sub>O<sup>+</sup>] in the solution and the dissociation constant, <em>K</em><sub>a</sub> , of the acid at 25 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <em>K</em><sub>b</sub> for HCO<sub>3</sub><sup>–</sup> acting as a base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Limescale, CaCO<sub>3</sub>(s), can be removed from water kettles by using vinegar, a dilute solution of ethanoic acid, CH<sub>3</sub>COOH(aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, a difference between the reactions of the same concentrations of hydrochloric acid and ethanoic acid with samples of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dissolved carbon dioxide causes unpolluted rain to have a pH of approximately 5, but other dissolved gases can result in a much lower pH. State one environmental effect of acid rain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write an equation to show ammonia, NH<sub>3</sub>, acting as a Brønsted–Lowry base and a different equation to show it acting as a Lewis base.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the pH of 0.010 mol dm<sup>−3</sup> 2,2-dimethylpropanoic acid solution.</p>
<p><em>K</em><sub>a</sub> (2,2-dimethylpropanoic acid) = 9.333 × 10<sup>−6</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate equations, how a suitably concentrated solution formed by the partial neutralization of 2,2-dimethylpropanoic acid with sodium hydroxide acts as a buffer solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Halogenoalkanes undergo nucleophilic substitution reactions with sodium hydroxide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why most halogenoalkanes are more reactive than alkanes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify 1-bromopropane as a primary, secondary or tertiary halogenoalkane, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between 1-bromopropane with aqueous sodium hydroxide using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving your reason, whether the hydroxide ion acts as a Lewis acid, a Lewis base, or neither in the nucleophilic substitution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> advantages of understanding organic reaction mechanisms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosphoric acid, H<sub>3</sub>PO<sub>4</sub> can form three different salts depending on the extent of neutralisation by sodium hydroxide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction of one mole of phosphoric acid with one mole of sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate <strong>two</strong> equations to show the amphiprotic nature of H<sub>2</sub>PO<sub>4</sub><sup>−</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of H<sub>3</sub>PO<sub>4</sub> if 25.00 cm<sup>3</sup> is completely neutralised by the addition of 28.40 cm<sup>3</sup> of 0.5000 mol dm<sup>−3</sup> NaOH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the reasons that sodium hydroxide is considered a Brønsted–Lowry and Lewis base.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hybridization of hydrocarbons affects their reactivity.</p>
</div>
<div class="specification">
<p>Experiments were carried out to investigate the mechanism of reaction between 2-chloropentane and aqueous sodium hydroxide.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a sigma and pi bond.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the hybridization of carbon in ethane, ethene and ethyne.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if but-1-ene exhibits cis-trans isomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction which occurs between but-1-ene and hydrogen iodide at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction between but-1-ene with hydrogen iodide, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, giving a reason, if the product of this reaction exhibits stereoisomerism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the units of the rate constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the initial rate of reaction in experiment 4.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, with a reason, the mechanism of the reaction between 2-chloropentane and sodium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the reason benzene is more reactive with an electrophile than a nucleophile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br>