File "HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 1/HL-paper3html
File size: 211.44 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>This question will investigate power series, as an extension to the Binomial Theorem for negative and fractional indices.</p>
<p>A power series in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> is defined as a function of the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + ...">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span> where the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_i} \in \mathbb{R}">
<mrow>
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
</mrow>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>It can be considered as an infinite polynomial.</p>
</div>
<div class="specification">
<p>This is an example of a power series, but is only a finite power series, since only a finite number of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_i}">
<mrow>
<msub>
<mi>a</mi>
<mi>i</mi>
</msub>
</mrow>
</math></span> are non-zero.</p>
</div>
<div class="specification">
<p>We will now attempt to generalise further.</p>
<p>Suppose <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^q}{\text{,}}\,\,q \in \mathbb{Q}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>q</mi>
</msup>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span> can be written as the power series <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + ...">
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^5}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>5</mn>
</msup>
</mrow>
</math></span> using the Binomial Theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the power series <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 - x + {x^2} - {x^3} + {x^4} - ...">
<mn>1</mn>
<mo>−</mo>
<mi>x</mi>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mo>.</mo>
<mo>.</mo>
<mo>.</mo>
</math></span></p>
<p>By considering the ratio of consecutive terms, explain why this series is equal to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 1}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span> and state the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> for which this equality is true.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Differentiate the equation obtained part (b) and hence, find the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 2}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeat this process to find the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - 3}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, by recognising the pattern, deduce the first four terms in a power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^{ - n}}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>−</mo>
<mi>n</mi>
</mrow>
</msup>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }">
<mi>n</mi>
<mo>∈</mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_0}">
<mrow>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating both sides of the expression and then substituting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
<mi>x</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_1}">
<mrow>
<msub>
<mi>a</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeat this procedure to find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_2}">
<mrow>
<msub>
<mi>a</mi>
<mn>2</mn>
</msub>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_3}">
<mrow>
<msub>
<mi>a</mi>
<mn>3</mn>
</msub>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the first four terms in what is called the Extended Binomial Theorem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1 + x} \right)^q}{\text{,}}\,\,q \in \mathbb{Q}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>q</mi>
</msup>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{1 + {x^2}}}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, using integration, find the power series for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{arctan}}\,x">
<mrow>
<mtext>arctan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</math></span>, giving the first four non-zero terms.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate conditions for the existence of complex roots of polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">3</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="bold">4</mtext></math>.</strong></p>
<p> <br>The cubic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mi>r</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Noah believes that if <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>≥</mo><mn>3</mn><mi>q</mi></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> are all real.</p>
</div>
<div class="specification">
<p>Now consider polynomial equations of degree <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>,</mo><mo> </mo><mi>s</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi><mo>,</mo><mo> </mo><mi>γ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math>.</p>
<p>In a similar way to the cubic equation, it can be shown that:</p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>β</mi><mi>δ</mi><mo>+</mo><mi>γ</mi><mi>δ</mi></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mo>(</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mo>+</mo><mi>α</mi><mi>β</mi><mi>δ</mi><mo>+</mo><mi>α</mi><mi>γ</mi><mi>δ</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mi>δ</mi><mo>)</mo></math></p>
<p style="padding-left: 30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>=</mo><mi>α</mi><mi>β</mi><mi>γ</mi><mi>δ</mi></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, has one integer root.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expanding <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>γ</mi></mrow></mfenced></math> show that:</p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>-</mo><mfenced><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>+</mo><mi>γ</mi></mrow></mfenced></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mi>α</mi><mi>β</mi><mo>+</mo><mi>β</mi><mi>γ</mi><mo>+</mo><mi>γ</mi><mi>α</mi></math></p>
<p style="padding-left:30px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mo>-</mo><mi>α</mi><mi>β</mi><mi>γ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>q</mi><mo>=</mo><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>α</mi><mo>-</mo><mi>β</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>β</mi><mo>-</mo><mi>γ</mi></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>γ</mi><mo>-</mo><mi>α</mi></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mn>2</mn><msup><mi>p</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>p</mi><mn>2</mn></msup><mo><</mo><mn>3</mn><mi>q</mi></math>, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> cannot all be real.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the result from part (c), show that when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>17</mn></math>, this equation has at least one complex root.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By varying the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>7</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>, determine the smallest positive integer value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> required to show that Noah is incorrect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the equation will have at least one real root for all values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>α</mi><mn>2</mn></msup><mo>+</mo><msup><mi>β</mi><mn>2</mn></msup><mo>+</mo><msup><mi>γ</mi><mn>2</mn></msup><mo>+</mo><msup><mi>δ</mi><mn>2</mn></msup></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state a condition in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> that would imply <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>+</mo><mi>p</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>q</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>r</mi><mi>x</mi><mo>+</mo><mi>s</mi><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your result from part (f)(ii) to show that the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>2</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>4</mn><mi>x</mi><mo>+</mo><mn>5</mn><mo>=</mo><mn>0</mn></math> has at least one complex root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what the result in part (f)(ii) tells us when considering this equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the integer root of this equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup><mo>-</mo><mn>9</mn><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mn>24</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>22</mn><mi>x</mi><mo>-</mo><mn>12</mn></math> as a product of one linear and one cubic factor, prove that the equation has at least one complex root.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question will explore connections between complex numbers and regular polygons.</p>
<p>The diagram below shows a sector of a circle of radius 1, with the angle subtended at the centre <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="O">
<mi>O</mi>
</math></span> being <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha {\text{,}}\,\,0 < \alpha < \frac{\pi }{2}">
<mi>α<!-- α --></mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo><</mo>
<mi>α<!-- α --></mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>. A perpendicular is drawn from point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> to intersect the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q">
<mi>Q</mi>
</math></span>. The tangent to the circle at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> intersects the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the area of two triangles and the area of the sector show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\,\alpha \,{\text{sin}}\,\alpha < \alpha < \frac{{{\text{sin}}\,\alpha }}{{{\text{cos}}\,\alpha }}"> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> <mo><</mo> <mi>α</mi> <mo><</mo> <mfrac> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> <mrow> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{\alpha \to 0} \frac{\alpha }{{{\text{sin}}\,\alpha }} = 1"> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>α</mi> <mo stretchy="false">→</mo> <mn>0</mn> </mrow> </munder> <mo></mo> <mfrac> <mi>α</mi> <mrow> <mrow> <mtext>sin</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>α</mi> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^n} = 1{\text{,}}\,\,z \in \mathbb{C}{\text{,}}\,\,n \in \mathbb{N}{\text{,}}\,\,n \geqslant 5"> <mrow> <msup> <mi>z</mi> <mi>n</mi> </msup> </mrow> <mo>=</mo> <mn>1</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>z</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>n</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">N</mi> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mi>n</mi> <mo>⩾</mo> <mn>5</mn> </math></span>. Working in modulus/argument form find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> solutions to this equation.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Represent these <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> solutions on an Argand diagram. Let their positions be denoted by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{\text{,}}\,\,{P_1}{\text{,}}\,\,{P_2}{\text{,}}\, \ldots {P_{n - 1}}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mo>…</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span> placed in order in an anticlockwise direction round the circle, starting on the positive <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Show the positions of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{\text{,}}\,\,{P_1}{\text{,}}\,\,{P_2}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_{n - 1}}"> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the length of the line segment <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{P_1}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\,{\text{sin}}\frac{\pi }{n}"> <mn>2</mn> <mspace width="thinmathspace"></mspace> <mrow> <mtext>sin</mtext> </mrow> <mfrac> <mi>π</mi> <mi>n</mi> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down the total length of the perimeter of the regular <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> sided polygon <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{P_0}{P_1}{P_2} \ldots {P_{n - 1}}{P_0}"> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>1</mn> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> </mrow> <mo>…</mo> <mrow> <msub> <mi>P</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>P</mi> <mn>0</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using part (b) find the limit of this perimeter as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total area of this <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> sided polygon.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using part (b) find the limit of this area as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \to \infty "> <mi>n</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will be exploring the strategies required to solve a system of linear differential equations.</strong></p>
<p> </p>
<p>Consider the system of linear differential equations of the form:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>x</mi><mo>-</mo><mi>y</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>y</mi></math>,</p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>,</mo><mo> </mo><mi>t</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is a parameter.</p>
<p>First consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>Now consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>
<div class="specification">
<p>From previous cases, we might conjecture that a solution to this differential equation is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><mi>λ</mi><mi>t</mi></mrow></msup></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math> is a constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mi>y</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>x</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mi>x</mi><mo>=</mo><mo>-</mo><mi>A</mi><msup><mtext>e</mtext><mi>t</mi></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation in part (a)(ii) to find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi></math> with respect to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><mfrac><mstyle displaystyle="true"><mo>d</mo><mi>y</mi></mstyle><mstyle displaystyle="true"><mo>d</mo><mi>t</mi></mstyle></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By substituting <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>B</mi><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> as a function of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mo>-</mo><mfrac><mi>B</mi><mn>2</mn></mfrac><msup><mtext>e</mtext><mrow><mn>2</mn><mi>t</mi></mrow></msup><mo>+</mo><mi>C</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the two values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi></math> that satisfy <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>y</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>-</mo><mn>2</mn><mfrac><mrow><mo>d</mo><mi>y</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>-</mo><mn>3</mn><mi>y</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let the two values found in part (c)(ii) be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math>.</p>
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>F</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>1</mn></msub><mi>t</mi></mrow></msup><mo>+</mo><mi>G</mi><msup><mtext>e</mtext><mrow><msub><mi>λ</mi><mn>2</mn></msub><mi>t</mi></mrow></msup></math> is a solution to the differential equation in (c)(i),where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a constant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A <strong>Gaussian integer</strong> is a complex number, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.</p>
</div>
<div class="specification">
<p>Consider two Gaussian integers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mn>1</mn><mo>-</mo><mn>2</mn><mtext>i</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mi>α</mi><mi>β</mi></math> for some Gaussian integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
</div>
<div class="specification">
<p>Now consider two Gaussian integers, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>3</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>=</mo><mn>11</mn><mo>+</mo><mn>2</mn><mtext>i</mtext></math>.</p>
</div>
<div class="specification">
<p>The norm of a complex number <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, denoted by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>z</mi></mfenced></math>, is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><msup><mfenced open="|" close="|"><mi>z</mi></mfenced><mn>2</mn></msup></math>. For example, if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext></math> then <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext></mrow></mfenced><mo>=</mo><msup><mn>2</mn><mn>2</mn></msup><mo>+</mo><msup><mn>3</mn><mn>2</mn></msup><mo>=</mo><mn>13</mn></math>.</p>
</div>
<div class="specification">
<p>A <strong>Gaussian prime</strong> is a Gaussian integer, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi></math>, that <strong>cannot</strong> be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>=</mo><mi>α</mi><mi>β</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> are Gaussian integers with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>,</mo><mo> </mo><mi>N</mi><mfenced><mi>β</mi></mfenced><mo>></mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>The positive integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> is a prime number, however it is not a Gaussian prime.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> be Gaussian integers.</p>
</div>
<div class="specification">
<p>The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>γ</mi><mi>α</mi></mfrac></math> is a Gaussian integer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On an Argand diagram, plot and label all Gaussian integers that have a norm less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>α</mi></mfenced><mo>=</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expressing the positive integer <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> as a product of two Gaussian integers each of norm <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> is not a Gaussian prime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> is not a Gaussian prime.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down another prime number of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><msup><mi>d</mi><mn>2</mn></msup></math> that is not a Gaussian prime and express it as a product of two Gaussian integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mrow><mi>α</mi><mi>β</mi></mrow></mfenced><mo>=</mo><mi>N</mi><mfenced><mi>α</mi></mfenced><mi>N</mi><mfenced><mi>β</mi></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>+</mo><mn>4</mn><mtext>i</mtext></math> is a Gaussian prime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use proof by contradiction to prove that a prime number, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>, that is not of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math> is a Gaussian prime.</p>
<div class="marks">[6]</div>
<div class="question_part_label">j.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question you will explore some of the properties of special functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">g</mi></math> and their relationship with the trigonometric functions, sine and cosine.</strong></p>
<p><br>Functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>+</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>z</mi></mfenced><mo>=</mo><mfrac><mrow><msup><mtext>e</mtext><mi>z</mi></msup><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mi>z</mi></mrow></msup></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>,</mo><mo> </mo><mi>u</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Using <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>u</mi></mrow></msup><mo>=</mo><mi>cos</mi><mo> </mo><mi>u</mi><mo>+</mo><mtext>i</mtext><mo> </mo><mi>sin</mi><mo> </mo><mi>u</mi></math>, find expressions, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>u</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>u</mi></math>, for</p>
</div>
<div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>x</mi></math> are known as circular functions as the general point (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi><mo>,</mo><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>) defines points on the unit circle with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>.</p>
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> are known as hyperbolic functions, as the general point ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>θ</mi><mo>)</mo></math> ) defines points on a curve known as a hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>. This hyperbola has two asymptotes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>=</mo><mi>f</mi><mfenced><mi>t</mi></mfenced></math> satisfies the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><msup><mo>d</mo><mn>2</mn></msup><mi>u</mi></mrow><mrow><mo>d</mo><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mi>u</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><mi>f</mi><mfenced><mrow><mn>2</mn><mi>t</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find, and simplify, an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>+</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>f</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mi>t</mi></mfenced></mrow></mfenced><mn>2</mn></msup><mo>=</mo><msup><mfenced><mrow><mi>f</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup><mo>-</mo><msup><mfenced><mrow><mi>g</mi><mfenced><mrow><mtext>i</mtext><mi>u</mi></mrow></mfenced></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math>, stating the coordinates of any axis intercepts and the equation of each asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hyperbola with equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math> can be rotated to coincide with the curve defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mi>y</mi><mo>=</mo><mi>k</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to investigate and prove a geometric property involving the roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> for integers <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</strong></p>
<p><br>The roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msup><mtext>e</mtext><mfrac><mrow><mn>2</mn><mi>πi</mi></mrow><mi>n</mi></mfrac></msup></math>. Each root can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math>, respectively, on an Argand diagram.</p>
<p>For example, the roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>. On an Argand diagram, the root <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub></math> and the root <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> can be represented by a point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>1</mn></msub></math>.</p>
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>3</mn></math>.</p>
<p>The roots of the equation <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>3</mn></msup><mo>=</mo><mn>1</mn></math></strong> where <strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math></strong> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup></math>. On the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>2</mn></msub></math> lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Line segments <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math> are added to the Argand diagram in part (a) and are shown on the following Argand diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math>is the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> is the length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>.</p>
<p>The roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup></math>.</p>
</div>
<div class="specification">
<p>On the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>3</mn></msub></math> lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>. <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>]</mo></math> are line segments.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>For the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>5</mn></math>, the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>5</mn></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>3</mn></msup></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>4</mn></msup></math>.</p>
<p>It can be shown that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>4</mn></msub><mo>=</mo><mn>5</mn></math>.</p>
<p>Now consider the general case for integer values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>≥</mo><mn>2</mn></math>.</p>
<p>The roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>=</mo><mn>1</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mi>ω</mi><mo>,</mo><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msup><mi>ω</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>. On an Argand diagram, these roots can be represented by the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math> respectively where <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>]</mo><mo>,</mo><mo> </mo><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>]</mo><mo>,</mo><mo> </mo><mo>…</mo><mo>,</mo><mo> </mo><mo>[</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>]</mo></math> are line segments. The roots lie on a circle of radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> unit with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>|</mo><mn>1</mn><mo>-</mo><mi>ω</mi><mo>|</mo></math>.</p>
</div>
<div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mi>n</mi></msup><mo>-</mo><mn>1</mn><mo>=</mo><mo>(</mo><mi>z</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo> </mo></math>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>ω</mi><mo>-</mo><mn>1</mn><mo>)</mo><mo>(</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mi>ω</mi><mn>3</mn></msup><mo>-</mo><mn>1</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>=</mo><mn>3</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By factorizing <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>4</mn></msup><mo>-</mo><mn>1</mn></math>, or otherwise, deduce that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>ω</mi><mn>3</mn></msup><mo>+</mo><msup><mi>ω</mi><mn>2</mn></msup><mo>+</mo><mi>ω</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub><mo>=</mo><mn>4</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a value for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>1</mn></msub><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub><mo>×</mo><mo> </mo><mo>…</mo><mo> </mo><mo>×</mo><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down expressions for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mn>3</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>P</mtext><mn>0</mn></msub><msub><mtext>P</mtext><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup><mo>+</mo><mo> </mo><msup><mi>z</mi><mrow><mi>n</mi><mo>-</mo><mn>2</mn></mrow></msup><mo>+</mo><mo> </mo><mo>…</mo><mo> </mo><mo>+</mo><mi>z</mi><mo>+</mo><mn>1</mn></math> as a product of linear factors over the set <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e).</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore some properties of polygonal numbers and to determine and prove interesting results involving these numbers.</strong></p>
<p><br>A polygonal number is an integer which can be represented as a series of dots arranged in the shape of a regular polygon. Triangular numbers, square numbers and pentagonal numbers are examples of polygonal numbers.</p>
<p>For example, a triangular number is a number that can be arranged in the shape of an equilateral triangle. The first five triangular numbers are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>6</mn><mo>,</mo><mo> </mo><mn>10</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math>.</p>
<p>The following table illustrates the first five triangular, square and pentagonal numbers respectively. In each case the first polygonal number is one represented by a single dot.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>For an <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>-sided regular polygon, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th polygonal number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math> is given by</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: left;">Hence, for square numbers, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>4</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mn>4</mn><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mn>4</mn><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac><mo>=</mo><msup><mi>n</mi><mn>2</mn></msup></math>.</p>
</div>
<div class="specification">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th pentagonal number can be represented by the arithmetic series</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mn>4</mn><mo>+</mo><mn>7</mn><mo>+</mo><mo>…</mo><mo>+</mo><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>2</mn></mrow></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For triangular numbers, verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>351</mn></math> is a triangular number. Determine which one it is.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><msub><mi>P</mi><mn>3</mn></msub><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>≡</mo><msup><mfenced><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in words, what the identity given in part (b)(i) shows for two consecutive triangular numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mn>4</mn></math>, sketch a diagram clearly showing your answer to part (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><msub><mi>P</mi><mn>3</mn></msub><mfenced><mi>n</mi></mfenced><mo>+</mo><mn>1</mn></math> is the square of an odd number for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mn>5</mn></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mi>n</mi><mfenced><mrow><mn>3</mn><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfenced></mrow><mn>2</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using a suitable table of values or otherwise, determine the smallest positive integer, greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>, that is both a triangular number and a pentagonal number.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A polygonal number, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced></math>, can be represented by the series</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfenced><mrow><mn>1</mn><mo>+</mo><mfenced><mrow><mi>m</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced></mrow></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>,</mo><mo> </mo><mi>r</mi><mo>≥</mo><mn>3</mn></math>.</p>
<p>Use mathematical induction to prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>r</mi></msub><mfenced><mi>n</mi></mfenced><mo>=</mo><mfrac><mrow><mfenced><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></mfenced><msup><mi>n</mi><mn>2</mn></msup><mo>-</mo><mfenced><mrow><mi>r</mi><mo>-</mo><mn>4</mn></mrow></mfenced><mi>n</mi></mrow><mn>2</mn></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question asks you to explore cubic polynomials of the form</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> <strong>and corresponding cubic equations with one real root and two complex roots of the form </strong><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>z</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo><mo>=</mo><mn>0</mn></math> <strong>for</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<p> </p>
</div>
<div class="specification">
<p>In parts (a), (b) and (c), let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>a</mi><mo>=</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>1</mn></math>.</p>
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>z</mi><mo>+</mo><mn>17</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mn>1</mn></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>+</mo><mn>17</mn></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mi>b</mi><mtext>i</mtext></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>,</mo><mo> </mo><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>On the Cartesian plane, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mo>-</mo><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></mrow></mfenced></math> represent the real and imaginary parts of the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<p><br>The following diagram shows a particular curve of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced></math> and the tangent to the curve at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mn>80</mn></mrow></mfenced></math>. The curve and the tangent both intersect the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math> are also shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Consider the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>(</mo><mi>x</mi><mo>-</mo><mi>r</mi><mo>)</mo><mo>(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≠</mo><mi>r</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math>. The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mo>(</mo><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mo>(</mo><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> are as defined in part (d)(ii). The curve has a point of inflexion at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="specification">
<p>Consider the special case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>+</mo><mtext>i</mtext></math> are roots of the equation, write down the third root.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the mean of the two complex roots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>-</mo><mn>1</mn></math> is tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>4</mn><mo>,</mo><mo> </mo><mn>3</mn></mrow></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and the tangent to the curve at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, clearly showing where the tangent crosses the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>2</mn><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, prove that the tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mfenced><mi>x</mi></mfenced></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mi>a</mi><mo>,</mo><mo> </mo><mi>g</mi><mfenced><mi>a</mi></mfenced></mrow></mfenced></math> intersects the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mfenced><mrow><mi>r</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce from part (d)(i) that the complex roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math> can be expressed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>±</mo><mtext>i</mtext><msqrt><mi>g</mi><mo>'</mo><mfenced><mi>a</mi></mfenced></msqrt></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this diagram to determine the roots of the corresponding equation of the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>z</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>z</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>z</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>C</mtext><mn>2</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>3</mn></mfrac><mfenced><mrow><mn>2</mn><mi>a</mi><mo>+</mo><mi>r</mi></mrow></mfenced></math>.</p>
<p>You are <strong>not</strong> required to demonstrate a change in concavity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe numerically the horizontal position of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> relative to the horizontal positions of the points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfenced><mrow><mi>x</mi><mo>-</mo><mi>r</mi></mrow></mfenced><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>x</mi><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi><mo>=</mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mi>r</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>></mo><mn>0</mn></math>, state in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, the coordinates of points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question investigates some applications of differential equations to modeling population growth.</p>
<p>One model for population growth is to assume that the rate of change of the population is proportional to the population, i.e. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = kP">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>P</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
<mo>=</mo>
<mi>k</mi>
<mi>P</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is the time (in years) and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
<mi>P</mi>
</math></span> is the population</p>
</div>
<div class="specification">
<p>The initial population is 1000.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.003">
<mi>k</mi>
<mo>=</mo>
<mn>0.003</mn>
</math></span>, use your answer from part (a) to find</p>
</div>
<div class="specification">
<p>Consider now the situation when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> is not a constant, but a function of time.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 0.003 + 0.002t">
<mi>k</mi>
<mo>=</mo>
<mn>0.003</mn>
<mo>+</mo>
<mn>0.002</mn>
<mi>t</mi>
</math></span>, find</p>
</div>
<div class="specification">
<p>Another model for population growth assumes</p>
<ul>
<li>there is a maximum value for the population, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</li>
<li>that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> is not a constant, but is proportional to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {1 - \frac{P}{L}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>1</mn>
<mo>−<!-- − --></mo>
<mfrac>
<mi>P</mi>
<mi>L</mi>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</li>
</ul>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the general solution of this differential equation is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = A{{\text{e}}^{kt}}"> <mi>P</mi> <mo>=</mo> <mi>A</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mi>k</mi> <mi>t</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \in \mathbb{R}"> <mi>A</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the population after 10 years</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of years it will take for the population to triple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{t \to \infty } P"> <munder> <mrow> <mrow> <mtext>lim</mtext> </mrow> </mrow> <mrow> <mi>t</mi> <mo stretchy="false">→</mo> <mi mathvariant="normal">∞</mi> </mrow> </munder> <mo></mo> <mi>P</mi> </math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the solution of the differential equation, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = f\left( t \right)"> <mi>P</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of years it will take for the population to triple.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = \frac{m}{L}P\left( {L - P} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}"> <mi>m</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}P}}{{{\text{d}}t}} = \frac{m}{L}P\left( {L - P} \right)"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>P</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mi>m</mi> <mi>L</mi> </mfrac> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>−</mo> <mi>P</mi> </mrow> <mo>)</mo> </mrow> </math></span>, giving your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = g\left( t \right)"> <mi>P</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[10]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the initial population is 1000, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L = 10000"> <mi>L</mi> <mo>=</mo> <mn>10000</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m = 0.003"> <mi>m</mi> <mo>=</mo> <mn>0.003</mn> </math></span>, find the number of years it will take for the population to triple.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>In parts (b) and (c), <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {abc \ldots } \right)_n}">
<mrow>
<msub>
<mrow>
<mo>(</mo>
<mrow>
<mi>a</mi>
<mi>b</mi>
<mi>c</mi>
<mo>…<!-- … --></mo>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span> denotes the number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{abc \ldots }">
<mrow>
<mi>a</mi>
<mi>b</mi>
<mi>c</mi>
<mo>…<!-- … --></mo>
</mrow>
</math></span> written in base <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n \in {\mathbb{Z}^ + }">
<mi>n</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>. For example, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {359} \right)_n} = 3{n^2} + 5n + 9">
<mrow>
<msub>
<mrow>
<mo>(</mo>
<mrow>
<mn>359</mn>
</mrow>
<mo>)</mo>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>n</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mi>n</mi>
<mo>+</mo>
<mn>9</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Fermat’s little theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{15^{1207}}"> <mrow> <msup> <mn>15</mn> <mrow> <mn>1207</mn> </mrow> </msup> </mrow> </math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="13"> <mn>13</mn> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Convert <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {7A2} \right)_{16}}"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>7</mn> <mi>A</mi> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> </math></span> to base <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5"> <mn>5</mn> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( A \right)_{16}} = {\left( {10} \right)_{10}}"> <mrow> <msub> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> <mrow> <mn>16</mn> </mrow> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mrow> <mn>10</mn> </mrow> </msub> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {1251} \right)_n} + {\left( {30} \right)_n} = {\left( {504} \right)_n} + {\left( {504} \right)_n}"> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>1251</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>30</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>=</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>504</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> <mo>+</mo> <mrow> <msub> <mrow> <mo>(</mo> <mrow> <mn>504</mn> </mrow> <mo>)</mo> </mrow> <mi>n</mi> </msub> </mrow> </math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the remainder when <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup></math> is divided by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Fermat’s little theorem to find the remainder when <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mn>14</mn><mn>2022</mn></msup></math> is divided by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that a number in base <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> if, and only if, the sum of its digits is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The base <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> number <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mi>y</mi><mn>93</mn><mi>y</mi><mn>25</mn></math> is divisible by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math>. Find the possible values of the digit <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br>