File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 1/SL-paper2html
File size: 123.66 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>John purchases a new bicycle for 880 US dollars (USD) and pays for it with a Canadian credit card. There is a transaction fee of 4.2 % charged to John by the credit card company to convert this purchase into Canadian dollars (CAD).</p>
<p>The exchange rate is 1 USD = 1.25 CAD.</p>
</div>

<div class="specification">
<p>John insures his bicycle with a US company. The insurance company produces the following table for the bicycle’s value during each year.</p>
<p style="text-align: center;"><img src=""></p>
<p>The values of the bicycle form a geometric sequence.</p>
</div>

<div class="specification">
<p>During the 1st year John pays 120 USD to insure his bicycle. Each year the amount he pays to insure his bicycle is reduced by 3.50 USD.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in CAD, the total amount John pays for the bicycle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the bicycle during the 5th year. <strong>Give your answer to two decimal places</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in years, when the bicycle value will be less than 50 USD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total amount John has paid to insure his bicycle for the first 5 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>John purchased the bicycle in 2008.</p>
<p>Justify why John should not insure his bicycle in 2019.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the expansion of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>3</mn><mo>+</mo><msup><mi>x</mi><mn>2</mn></msup><msup><mo>)</mo><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup><mo>&nbsp;</mo></math>.</p>
<p>Given that the coefficient of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>4</mn></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mn>412</mn></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>A large underground tank is constructed at Mills Airport to store fuel. The tank is in the shape of an isosceles trapezoidal prism, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCDEFGH</mtext></math>.</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext><mo>=</mo><mn>70</mn><mo> </mo><mtext>m</mtext></math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext><mo>=</mo><mn>200</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BC</mtext><mo>=</mo><mn>40</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>CD</mtext><mo>=</mo><mn>110</mn><mo> </mo><mtext>m</mtext></math>. Angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ADC</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>&nbsp;and angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BCD</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>. The tank is illustrated below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Once construction was complete, a fuel pump was used to pump fuel <strong>into</strong> the empty tank. The amount of fuel pumped into the tank by this pump <strong>each hour</strong> decreases as an arithmetic sequence with terms <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mn>2</mn></msub><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mn>3</mn></msub><mo>,</mo><mo>&nbsp;</mo><mo>…</mo><mo>,</mo><mo>&nbsp;</mo><msub><mi>u</mi><mi>n</mi></msub></math>.</p>
<p>Part of this sequence is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>At the end of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mtext>nd</mtext></math> hour, the total volume of fuel in the tank was <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>88</mn><mo> </mo><mn>200</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, the height of the tank.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of the tank is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>624</mn><mo> </mo><mn>000</mn><mo> </mo><msup><mtext>m</mtext><mn>3</mn></msup></math>, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the common difference, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of fuel pumped into the tank in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>13th</mtext></math> hour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mi>n</mi></msub><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of hours that the pump was pumping fuel into the tank.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total amount of fuel pumped into the tank in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the tank will never be completely filled using this pump.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Two friends Amelia and Bill, each set themselves a target of saving <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>20</mn><mo> </mo><mn>000</mn></math>. They each have&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>9000</mn></math> to invest.</p>
</div>

<div class="specification">
<p>Amelia invests her <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>9000</mn></math> in an account that offers an interest rate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>%</mo></math> per annum&nbsp;compounded <strong>annually</strong>.</p>
</div>

<div class="specification">
<p>A third friend Chris also wants to reach the <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>20</mn><mo> </mo><mn>000</mn></math> target. He puts his money in a safe&nbsp;where he does not earn any interest. His system is to add more money to this safe&nbsp;each year. Each year he will add half the amount added in the previous year.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of Amelia’s investment after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> years to the nearest hundred dollars.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of years required for Amelia’s investment to reach the target.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bill invests his&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>9000</mn></math>&nbsp;in an account that offers an interest rate of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>%</mo></math>&nbsp;per annum&nbsp;compounded <strong>monthly</strong>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>&nbsp;is set to two decimal places.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> needed for Bill to reach the target after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Chris will never reach the target if his initial deposit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>9000</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount Chris needs to deposit initially in order to reach the target after&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> years. Give your answer to the nearest dollar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Tommaso plans to compete in a regional bicycle race after he graduates, however he needs to buy a racing bicycle. He finds a bicycle that costs 1100 euro (EUR). Tommaso has 950 EUR and invests this money in an account that pays 5 % interest per year, <strong>compounded monthly</strong>.</p>
</div>

<div class="specification">
<p>The cost of the bicycle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>, can be modelled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20x + 1100">
  <mi>C</mi>
  <mo>=</mo>
  <mn>20</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1100</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is the number of years since Tommaso invested his money.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount that he will have in his account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the cost of the bicycle and the amount of money in Tommaso’s account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> complete <strong>months</strong> Tommaso will, for the first time, have enough money in his account to buy the bicycle.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An arithmetic sequence has first term <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> and common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>th term of the sequence is zero, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> denote the sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the sequence.</p>
<p>Find the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A new café opened and during the first week their profit was $60.</p>
<p>The café’s profit increases by $10 every week.</p>
</div>

<div class="specification">
<p>A new tea-shop opened at the same time as the café. During the first week their profit was also $60.</p>
<p>The tea-shop’s profit increases by 10 % every week.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the café’s <strong>total</strong> profit for the first 12 weeks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the tea-shop’s <strong>total</strong> profit for the first 12 weeks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers correct to two decimal places.</strong></p>
<p>Sam invests <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1700</mn></math> in a savings account that pays a nominal annual rate of interest of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>74</mn><mo>%</mo></math>, compounded half-yearly. Sam makes no further payments to, or withdrawals from,&nbsp;this account.</p>
</div>

<div class="specification">
<p>David also invests <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1700</mn></math> in a savings account that pays an annual rate of interest of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>%</mo></math>,&nbsp;compounded yearly. David makes no further payments or withdrawals from this account.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount that Sam will have in his account after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> required so that the amount in David’s account after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years will be equal to the amount in Sam’s account.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interest David will earn over the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of ln <em>x</em> and ln <em>y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between ln <em>x</em> and ln <em>y</em> can be modelled by the regression equation ln <em>y</em> = <em>a</em> ln <em>x</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the value of <em>y</em> when<em> x</em> = 3.57.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between <em>x</em> and <em>y</em> can be modelled using the formula <em>y</em> = <em>kx<sup>n</sup></em>, where <em>k</em> ≠ 0 , <em>n</em> ≠ 0 , <em>n</em> ≠ 1.</p>
<p>By expressing ln <em>y</em> in terms of ln <em>x</em>, find the value of <em>n</em> and of <em>k</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of a geometric sequence is given by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub><mo>=</mo><munderover><mtext>&#931;</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mfrac><mn>2</mn><mn>3</mn></mfrac><msup><mfenced><mfrac><mn>7</mn><mn>8</mn></mfrac></mfenced><mi>r</mi></msup></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the first term of the sequence, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>-</mo><msub><mi>S</mi><mi>n</mi></msub><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>001</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosa joins a club to prepare to run a marathon. During the first training session Rosa runs a distance of 3000 metres. Each training session she increases the distance she runs by 400 metres.</p>
</div>

<div class="specification">
<p>A marathon is 42.195 kilometres.</p>
<p>In the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>th training session Rosa will run further than a marathon for the first time.</p>
</div>

<div class="specification">
<p>Carlos joins the club to lose weight. He runs 7500 metres during the first month. The distance he runs increases by 20% each <strong>month</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the distance Rosa runs in the third training session;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the distance Rosa runs in the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>th training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total distance, in <strong>kilometres</strong>, Rosa runs in the first 50 training sessions.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance Carlos runs in the fifth month of training.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total distance Carlos runs in the first year.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Helen and Jane both commence new jobs each starting on an annual salary of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>70</mn><mo>,</mo><mn>000</mn></math>. At&nbsp;the start of each new year, Helen receives an annual salary increase of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2400</mn></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><msub><mi>H</mi><mi>n</mi></msub></math> represent Helen’s annual salary at the start of her <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th year of employment.</p>
</div>

<div class="specification">
<p>At the start of each new year, Jane receives an annual salary increase of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>%</mo></math> of her previous&nbsp;year’s annual salary.</p>
<p>Jane’s annual salary, <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><msub><mi>J</mi><mi>n</mi></msub></math>, at the start of her <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>th year of employment is given by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>J</mi><mi>n</mi></msub><mo>=</mo><mn>70</mn><mo> </mo><mn>000</mn><msup><mfenced><mrow><mn>1</mn><mo>.</mo><mn>03</mn></mrow></mfenced><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>At the start of year <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>, Jane’s annual salary exceeds Helen’s annual salary for the&nbsp;first time.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mi>n</mi></msub><mo>=</mo><mn>2400</mn><mi>n</mi><mo>+</mo><mn>67</mn><mo> </mo><mn>600</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>J</mi><mi>n</mi></msub></math> follows a geometric sequence, state the value of the common ratio, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> found in part (c) (i), state Helen’s annual salary and Jane’s&nbsp;annual salary, correct to the nearest dollar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Jane’s total earnings at the start of her <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math>th year of employment. Give your&nbsp;answer correct to the nearest dollar.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An infinite geometric series has first term&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><mi>a</mi></math>&nbsp;and second term&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>u</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>4</mn></mfrac><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>a</mi></math>,&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the common ratio in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> for which the sum to infinity of the series exists.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>=</mo><mn>76</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {({x^2} + 3)^7}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <mo stretchy="false">(</mo>
    <mrow>
      <msup>
        <mi>x</mi>
        <mn>2</mn>
      </msup>
    </mrow>
    <mo>+</mo>
    <mn>3</mn>
    <msup>
      <mo stretchy="false">)</mo>
      <mn>7</mn>
    </msup>
  </mrow>
</math></span>. Find the term in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^5}">
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>5</mn>
    </msup>
  </mrow>
</math></span> in the expansion of the derivative, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{2\,{\text{sin}}\left( {\frac{{\pi x}}{2}} \right)}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>sin</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mfrac>
              <mrow>
                <mi>π<!-- π --></mi>
                <mi>x</mi>
              </mrow>
              <mn>2</mn>
            </mfrac>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span>, for <em>x</em>&nbsp;&gt; 0.</p>
<p>The <em>k </em>th&nbsp;maximum point on the graph of <em>f</em> has <em>x</em>-coordinate <em>x<sub>k</sub></em> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>x<sub>k</sub></em><sub> + 1</sub> = <em>x<sub>k</sub></em> + <em>a</em>, find <em>a</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <em>n</em> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{k = 1}^n {{x_k} = 861} "> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> </mrow> <mo>=</mo> <mn>861</mn> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The first terms of an infinite geometric sequence,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_n}">
  <mrow>
    <msub>
      <mi>u</mi>
      <mi>n</mi>
    </msub>
  </mrow>
</math></span>, are 2, 6, 18, 54, …</p>
<p>The first terms of a second infinite geometric sequence, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{v_n}">
  <mrow>
    <msub>
      <mi>v</mi>
      <mi>n</mi>
    </msub>
  </mrow>
</math></span>, are&nbsp;2, −6, 18, −54, …</p>
<p>The terms of a third sequence, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{w_n}">
  <mrow>
    <msub>
      <mi>w</mi>
      <mi>n</mi>
    </msub>
  </mrow>
</math></span>, are defined as&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{w_n} = {u_n} + {v_n}">
  <mrow>
    <msub>
      <mi>w</mi>
      <mi>n</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msub>
      <mi>u</mi>
      <mi>n</mi>
    </msub>
  </mrow>
  <mo>+</mo>
  <mrow>
    <msub>
      <mi>v</mi>
      <mi>n</mi>
    </msub>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The finite series,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{k = 1}^{225} {{w_k}} ">
  <munderover>
    <mo movablelimits="false">∑<!-- ∑ --></mo>
    <mrow>
      <mi>k</mi>
      <mo>=</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>225</mn>
    </mrow>
  </munderover>
  <mrow>
    <mrow>
      <msub>
        <mi>w</mi>
        <mi>k</mi>
      </msub>
    </mrow>
  </mrow>
</math></span> ,&nbsp;can also be written in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{k = 0}^m {4{r^k}} ">
  <munderover>
    <mo movablelimits="false">∑<!-- ∑ --></mo>
    <mrow>
      <mi>k</mi>
      <mo>=</mo>
      <mn>0</mn>
    </mrow>
    <mi>m</mi>
  </munderover>
  <mrow>
    <mn>4</mn>
    <mrow>
      <msup>
        <mi>r</mi>
        <mi>k</mi>
      </msup>
    </mrow>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the first three <strong>non-zero</strong> terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{w_n}"> <mrow> <msub> <mi>w</mi> <mi>n</mi> </msub> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the expansion of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mfrac><mi>k</mi><mi>x</mi></mfrac></mrow></mfenced><mn>9</mn></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
<p>The coefficient of the term in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>6</mn></msup></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6048</mn></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>The first term of an infinite geometric sequence is 4. The sum of the infinite sequence is 200.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the common ratio.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the sum of the first 8 terms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <em>n</em> for which <em>S</em><sub><em>n</em></sub> &gt; 163.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The first two terms of a geometric sequence are&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1} = 2.1">
  <mrow>
    <msub>
      <mi>u</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>2.1</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_2} = 2.226">
  <mrow>
    <msub>
      <mi>u</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>2.226</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_{10}}"> <mrow> <msub> <mi>u</mi> <mrow> <mn>10</mn> </mrow> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{S_n} &gt; 5543"> <mrow> <msub> <mi>S</mi> <mi>n</mi> </msub> </mrow> <mo>&gt;</mo> <mn>5543</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Consider a geometric sequence where the first term is 768 and the second term is 576.</p>
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span> such that the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>th term of the sequence is less than 7.</p>
</div>
<br><hr><br><div class="specification">
<p>On 1st January 2020, Laurie invests $<em>P</em> in an account that pays a nominal annual interest&nbsp;rate of 5.5 %, compounded <strong>quarterly</strong>.</p>
<p>The amount of money in Laurie’s account&nbsp;<strong>at the end of each year</strong> follows a geometric&nbsp;sequence with common ratio, <em>r</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>r</em>, giving your answer to four significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Laurie makes no further deposits to or withdrawals from the account.</p>
<p>Find the year in which the amount of money in Laurie’s account will become double the amount she invested.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In an arithmetic sequence,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_1} = 1.3">
  <mrow>
    <msub>
      <mi>u</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>1.3</mn>
</math></span> ,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_2} = 1.4">
  <mrow>
    <msub>
      <mi>u</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>1.4</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_k} = 31.2">
  <mrow>
    <msub>
      <mi>u</mi>
      <mi>k</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mn>31.2</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>Consider the terms, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u_n}">
  <mrow>
    <msub>
      <mi>u</mi>
      <mi>n</mi>
    </msub>
  </mrow>
</math></span>, of this sequence such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span> be the sum of the terms for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> is not a multiple of 3.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{S_k}">
  <mrow>
    <msub>
      <mi>S</mi>
      <mi>k</mi>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F = 3240">
  <mi>F</mi>
  <mo>=</mo>
  <mn>3240</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An infinite geometric series is given as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{S_\infty } = a + \frac{a}{{\sqrt 2 }} + \frac{a}{2} +  \ldots ">
  <mrow>
    <msub>
      <mi>S</mi>
      <mi mathvariant="normal">∞</mi>
    </msub>
  </mrow>
  <mo>=</mo>
  <mi>a</mi>
  <mo>+</mo>
  <mfrac>
    <mi>a</mi>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>+</mo>
  <mfrac>
    <mi>a</mi>
    <mn>2</mn>
  </mfrac>
  <mo>+</mo>
  <mo>…</mo>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \in {\mathbb{Z}^ + }">
  <mi>a</mi>
  <mo>∈</mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
<p>Find the largest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{S_\infty } &lt; F">
  <mrow>
    <msub>
      <mi>S</mi>
      <mi mathvariant="normal">∞</mi>
    </msub>
  </mrow>
  <mo>&lt;</mo>
  <mi>F</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All answers in this question should be given to four significant figures.</strong></p>
<p><br>In a local weekly lottery, tickets cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2</mn></math> each.</p>
<p>In the first week of the lottery, a player will receive <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>D</mi></math> for each ticket, with the probability&nbsp;distribution shown in the following table. For example, the probability of a player&nbsp;receiving <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>10</mn></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>03</mn></math>. The grand prize in the first week of the lottery is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>1000</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>If nobody wins the grand prize in the first week, the probabilities will remain the same, but the&nbsp;value of the grand prize will be <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>2000</mn></math> in the second week, and the value of the grand prize&nbsp;will continue to double each week until it is won. All other prize amounts will remain the same.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether this lottery is a fair game in the first week. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the grand prize is not won and the grand prize continues to double, write an&nbsp;expression in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> for the value of the grand prize in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mtext>th</mtext></math>&nbsp;week of the lottery.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week is the first week in which the player is expected to make a profit. Ryan knows&nbsp;that if he buys a lottery ticket in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi><mtext>th</mtext></math> week, his expected profit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mi>p</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Gemma and Kaia started working for different companies on January 1st 2011.</p>
<p>Gemma&rsquo;s starting annual salary was <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>45</mn><mo>&#8202;</mo><mn>000</mn></math>, and her annual salary increases <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> on&nbsp;January 1st each year after 2011.</p>
</div>

<div class="specification">
<p>Kaia&rsquo;s annual salary is based on a yearly performance review. Her salary for the years 2011,&nbsp;2013, 2014, 2018, and 2022 is shown in the following table.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Gemma’s annual salary for the year 2021, to the nearest dollar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming Kaia’s annual salary can be approximately modelled by the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, show that Kaia had a higher salary than Gemma in the year 2021, according to the model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>