File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/SL-paper2html
File size: 394.52 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>An arithmetic sequence has first term <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> and common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>th term of the sequence is zero, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math> denote the sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the sequence.</p>
<p>Find the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>n</mi></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The temperature <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></math> of water <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes after being poured into a cup can be modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mi mathvariant="normal">e</mi><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></math>&nbsp;where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><mi>k</mi></math>&nbsp;are positive constants.</p>
<p>The water is initially boiling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>. When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>10</mn></math>, the temperature of the water is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>T</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mn>1</mn><mn>10</mn></mfrac><mi>ln</mi><mfrac><mn>10</mn><mn>7</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature of the water when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>15</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> versus <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, clearly indicating any asymptotes with their&nbsp;equations and stating the coordinates of any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time taken for the water to have a temperature of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mo>°</mo><mtext>C</mtext></math>. Give your answer&nbsp;correct to the nearest second.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The model for the temperature of the water can also be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><msub><mi>T</mi><mn>0</mn></msub><msup><mi>a</mi><mfrac><mi>t</mi><mn>10</mn></mfrac></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>≥</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is a positive constant.</p>
<p>Find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curves&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo> </mo><mi>sin</mi><mo> </mo><mi>x</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>-</mo><msqrt><mn>1</mn><mo>+</mo><mn>4</mn><msup><mfenced><mrow><mi>x</mi><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></msqrt></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi mathvariant="normal">π</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinates of the points of intersection of the two curves.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, of the region enclosed by the two curves.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = (2x + 2)(5 - {x^2})">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
  <mo stretchy="false">(</mo>
  <mn>5</mn>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {5^x} + 6x - 6">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mn>5</mn>
      <mi>x</mi>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 \leqslant x \leqslant 3">
  <mo>−</mo>
  <mn>3</mn>
  <mo>⩽</mo>
  <mi>x</mi>
  <mo>⩽</mo>
  <mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 40 \leqslant y \leqslant 20">
  <mo>−</mo>
  <mn>40</mn>
  <mo>⩽</mo>
  <mi>y</mi>
  <mo>⩽</mo>
  <mn>20</mn>
</math></span>. Use a scale of 2 cm to represent 1 unit on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 1 cm to represent 5 units on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{1}{3}{x^3} + \frac{3}{4}{x^2} - x - 1">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>The function has one local maximum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span> and one local minimum at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = q">
  <mi>x</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> for −3 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ 3 and −4 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> ≤ 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a circle with centre <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> lie on the circumference of the circle.</p>
<p style="text-align: left;">Chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>&nbsp;has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mi>θ</mi></math>&nbsp;radians.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> has length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mi mathvariant="normal">π</mi><mo>-</mo><mn>3</mn><mi>θ</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi><mo>=</mo><msqrt><mn>18</mn><mo>-</mo><mn>18</mn><mo> </mo><mi>cos</mi><mo> </mo><mi>θ</mi></msqrt></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Arc <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>APB</mtext></math> is twice the length of chord <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>AB</mtext></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> lie on opposite banks of a river, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext></math> is the shortest distance&nbsp;across the river. Point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> represents the centre of a city which is located on the riverbank.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PB</mtext><mo>=</mo><mn>215</mn><mo>&#8202;</mo><mtext>km</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AP</mtext><mo>=</mo><mn>65</mn><mo>&#8202;</mo><mtext>km</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>P</mtext><mo>^</mo></mover><mtext>B</mtext><mo>=</mo><mn>90</mn><mo>&#176;</mo></math>.</p>
<p>The following diagram shows this information.</p>
<p><img src=""></p>
<p>A boat travels at an average speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn><mo>&#8202;</mo><msup><mtext>km&#8202;h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>. A bus travels along the straight road&nbsp;between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at an average speed of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>84</mn><mo>&#8202;</mo><msup><mtext>km&#8202;h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>

<div class="specification">
<p>Find the travel time, in hours, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> given that</p>
</div>

<div class="specification">
<p>There is a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, which lies on the road from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>BD</mtext><mo>=</mo><mi>x</mi><mo>&#8202;</mo><mtext>km</mtext></math>. The boat travels&nbsp;from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, and the bus travels from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
</div>

<div class="specification">
<p>An excursion involves renting the boat and the bus. The cost to rent the boat is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo>&#8202;</mo><mn>200</mn></math>&nbsp;per hour, and the cost to rent the bus is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mo>&#8202;</mo><mn>150</mn></math> per hour.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the boat is taken from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, and the bus from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the boat travels directly to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for the travel time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, passing through <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> so that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> is a minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the new value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> so that the total cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> via <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> is a minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum total cost for this journey.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>4</mn><mo>-</mo><msup><mi>x</mi><mn>3</mn></msup></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&gt;</mo><mn>0</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>f</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced><mo>=</mo><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mrow><mn>2</mn><mi>a</mi></mrow></mfenced></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup>&nbsp;− 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for&nbsp;−1 &lt; <em>x</em> &lt; 3</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 &lt; <em>x</em> &lt; 3 and −2 &lt; <em>y</em> &lt; 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x &lt; 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{dy}}}}{{{\text{dx}}}}"> <mfrac> <mrow> <mrow> <mtext>dy</mtext> </mrow> </mrow> <mrow> <mrow> <mtext>dx</mtext> </mrow> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the stationary points of the curve are at <em>x</em> = 1 and <em>x</em> = 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Tommaso plans to compete in a regional bicycle race after he graduates, however he needs to buy a racing bicycle. He finds a bicycle that costs 1100 euro (EUR). Tommaso has 950 EUR and invests this money in an account that pays 5 % interest per year, <strong>compounded monthly</strong>.</p>
</div>

<div class="specification">
<p>The cost of the bicycle, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>, can be modelled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C = 20x + 1100">
  <mi>C</mi>
  <mo>=</mo>
  <mn>20</mn>
  <mi>x</mi>
  <mo>+</mo>
  <mn>1100</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is the number of years since Tommaso invested his money.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount that he will have in his account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the cost of the bicycle and the amount of money in Tommaso’s account after 3 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> complete <strong>months</strong> Tommaso will, for the first time, have enough money in his account to buy the bicycle.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \geqslant 0">
  <mi>a</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \geqslant 0">
  <mi>b</mi>
  <mo>⩾<!-- ⩾ --></mo>
  <mn>0</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = 0.3 - a"> <mi>b</mi> <mo>=</mo> <mn>0.3</mn> <mo>−</mo> <mi>a</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the greatest possible expected value and the least possible expected value.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 6 - \ln ({x^2} + 2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>6</mn>
  <mo>−<!-- − --></mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> passes through the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(p,{\text{ }}4)">
  <mo stretchy="false">(</mo>
  <mi>p</mi>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>4</mn>
  <mo stretchy="false">)</mo>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p > 0">
  <mi>p</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_13.30.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/05.b"></p>
<p>The region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x =  - p"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mi>p</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p"> <mi>x</mi> <mo>=</mo> <mi>p</mi> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{27}}{{{x^2}}} - 16x,\,\,\,x \ne 0">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>27</mn>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mi>x</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>−<!-- − --></mo>
  <mn>16</mn>
  <mi>x</mi>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f </em>(<em>x</em>), for −4 ≤ <em>x</em> ≤ 3 and −50 ≤ <em>y</em> ≤ 100.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the tangent to the graph of <em>y</em> = <em>f </em>(<em>x</em>) at the point (–2, 38.75).</p>
<p>Give your answer in the form <em>y</em> = <em>mx</em> + <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of the function <em>g </em>(<em>x</em>) = 10<em>x</em> + 40 on the same axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>, such that&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5, 8\,{\text{sin}}\left( {\frac{\pi }{6}\left( {x + 1} \right)} \right) + b"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>5</mn><mo>.</mo><mn>8</mn><mspace width="thinmathspace"></mspace><mtext>sin</mtext><mrow><mo>(</mo><mfrac><mi>π</mi><mn>6</mn></mfrac><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>b</mi></math></span>, 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>&nbsp;≤ 10,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{R}"> <mi>b</mi> <mo>∈<!-- &#8712; --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>

<div class="specification">
<p>The function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>&nbsp;has a local maximum at the point (2, 21.8) , and a local minimum at (8, 10.2).</p>
</div>

<div class="specification">
<p>A second function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = p\,{\text{sin}}\left( {\frac{{2\pi }}{9}\left( {x - 3.75} \right)} \right) + q">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>p</mi>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>2</mn>
          <mi>π<!-- π --></mi>
        </mrow>
        <mn>9</mn>
      </mfrac>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mi>x</mi>
          <mo>−<!-- − --></mo>
          <mn>3.75</mn>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>q</mi>
</math></span>,&nbsp; 0&nbsp;≤&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 10;&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q \in \mathbb{R}">
  <mi>q</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> passes through the points (3, 2.5) and (6, 15.1).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>(6).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for which the functions have the greatest difference.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>4</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>4</mn></mrow></mfrac></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi><mo>,</mo><mo>&#160;</mo><mi>x</mi><mo>&#8800;</mo><mo>-</mo><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>For the graph of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math></p>
</div>

<div class="specification">
<p>The graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> intersect at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>q</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#60;</mo><mi>q</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the equation of the horizontal asymptote.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using an algebraic approach, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> is obtained by a reflection of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis followed by a reflection in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows a semicircle with centre&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>&nbsp;and radius&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>. Points&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P,&#160;Q</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext></math>&nbsp;lie on the circumference of the circle, such that&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>PQ</mtext><mo>=</mo><mn>2</mn><mi>r</mi></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>R</mtext><mover><mtext>O</mtext><mo>^</mo></mover><mtext>Q</mtext><mo>=</mo><mi>&#952;</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>&#952;</mi><mo>&#60;</mo><mi mathvariant="normal">&#960;</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the areas of the two shaded regions are equal, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>2</mn><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>&#8202;</mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight,&nbsp;and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>,</mo><mo>&#160;</mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#62;</mo><mn>0</mn><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#62;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&#62;</mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout&nbsp;the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo>&#8202;</mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo>&#8202;</mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - {x^4} + a{x^2} + 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mi>a</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>5</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is a constant. Part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>

<div class="specification">
<p>It is known that at the point where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2">
  <mi>x</mi>
  <mo>=</mo>
  <mn>2</mn>
</math></span> the tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is horizontal.</p>
</div>

<div class="specification">
<p>There are two other points on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> at which the tangent is horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'(x)">
  <msup>
    <mi>f</mi>
    <mo>′</mo>
  </msup>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = 8">
  <mi>a</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(2)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span> is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 5">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>5</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = m">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>m</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{R}">
  <mi>m</mi>
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>, has four solutions. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>All living plants contain an isotope of carbon called carbon-14. When a plant dies, the isotope&nbsp;decays so that the amount of carbon-14 present in the remains of the plant decreases. The&nbsp;time since the death of a plant can be determined by measuring the amount of carbon-14 still&nbsp;present in the remains.</p>
<p>The amount, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>, of carbon-14 present in a plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> years after its death can be modelled by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><msub><mi>A</mi><mn>0</mn></msub><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub><mo>,</mo><mo>&#160;</mo><mi>k</mi></math> are positive constants.</p>
<p>At the time of death, a plant is defined to have <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> units of carbon-14.</p>
</div>

<div class="specification">
<p>The time taken for half the original amount of carbon-14 to decay is known to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5730</mn></math> years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>A</mi><mn>0</mn></msub><mo>=</mo><mn>100</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>5730</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, correct to the nearest <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> years, the time taken after the plant’s death for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo>%</mo></math> of&nbsp;the carbon-14 to decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi><mo>+</mo><mfrac><mn>50</mn><mi>x</mi></mfrac><mo>,</mo><mo>&nbsp;</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn><mo>.</mo></math></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mn>1</mn></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> has a local minimum at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>48</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
  <mo>+</mo>
  <mi>k</mi>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>58</mn>
</math></span>, where <em>x</em> &gt; 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>

<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>

<div class="question">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 &lt; <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the lines <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
</math></span> with respective equations</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}\,{\text{:}}\,y =&nbsp; - \frac{2}{3}x + 9">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>1</mn>
    </msub>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mn>9</mn>
</math></span>&nbsp; and&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}{\text{:}}\,y = \frac{2}{5}x - \frac{{19}}{5}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>:</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mi>y</mi>
  <mo>=</mo>
  <mfrac>
    <mn>2</mn>
    <mn>5</mn>
  </mfrac>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mn>19</mn>
    </mrow>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>A third line, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}">
  <mrow>
    <msub>
      <mi>L</mi>
      <mn>3</mn>
    </msub>
  </mrow>
</math></span>, has gradient&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{3}{4}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point of intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a direction vector for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span> passes through the intersection of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_1}"> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_2}"> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </math></span>.</p>
<p>Write down a vector equation for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{L_3}"> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>3</mn><mi>x</mi><mo>-</mo><msup><mn>4</mn><mrow><mn>0</mn><mo>.</mo><mn>15</mn><msup><mi>x</mi><mn>2</mn></msup></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the grid below.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>′</mo><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The quadratic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>k</mi><mo>-</mo><mn>1</mn></mrow></mfenced><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mfenced><mrow><mn>2</mn><mi>k</mi><mo>-</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, has real distinct roots.</p>
<p>Find the range of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species.&nbsp;He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer&nbsp;regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>A</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the&nbsp;function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo>&#160;</mo><msub><mi>h</mi><mi>B</mi></msub><mo>&#160;</mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>9</mn></math>.</p>
</div>

<div class="specification">
<p>Use the scientist&rsquo;s models to find the initial height of</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The functions <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> are defined for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>&nbsp;by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>6</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>12</mn><mi>x</mi><mo>+</mo><mn>1</mn></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mi>c</mi></math>, where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>&#8712;</mo><mi mathvariant="normal">&#8477;</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>g</mi><mo>∘</mo><mi>f</mi></mrow></mfenced><mfenced><mi>x</mi></mfenced><mo>≤</mo><mn>0</mn></math>&nbsp;for all <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, determine the set of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi mathvariant="normal">e</mi><mrow><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msup><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn></math>, for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>2</mn><mo>&#8804;</mo><mi>x</mi><mo>&#8804;</mo><mn>2</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the following grid.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>SpeedWay airline flies from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The flight time is normally distributed with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="260">
  <mn>260</mn>
</math></span> minutes and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="15">
  <mn>15</mn>
</math></span> minutes.</p>
<p>A flight is considered late if it takes longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes.</p>
</div>

<div class="specification">
<p>The flight is considered to be <strong>on time</strong> if it takes between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="275">
  <mn>275</mn>
</math></span> minutes. The probability that a flight is on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.830">
  <mn>0.830</mn>
</math></span>.</p>
</div>

<div class="specification">
<p>During a week, SpeedWay has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="12">
  <mn>12</mn>
</math></span> flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}">
  <mrow>
    <mtext>A</mtext>
  </mrow>
</math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}">
  <mrow>
    <mtext>B</mtext>
  </mrow>
</math></span>. The time taken for any flight is independent of the time taken by any other flight.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability a flight is <strong>not</strong> late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are <strong>on time</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="7"> <mn>7</mn> </math></span> of these flights are on time, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10"> <mn>10</mn> </math></span> flights are on time.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>SpeedWay increases the number of flights from city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}"> <mrow> <mtext>A</mtext> </mrow> </math></span> to city <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}"> <mrow> <mtext>B</mtext> </mrow> </math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="20"> <mn>20</mn> </math></span> flights each week, and improves their efficiency so that more flights are on time. The probability that at least <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="19"> <mn>19</mn> </math></span> flights are on time is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.788"> <mn>0.788</mn> </math></span>.</p>
<p>A flight is chosen at random. Calculate the probability that it is on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves in a straight line such that its velocity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>&#8202;</mo><mtext>m&#8202;s</mtext><msup><mrow></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds is given by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mrow><mfenced><mrow><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mi>cos</mi><mo>&#8202;</mo><mi>t</mi></mrow><mn>4</mn></mfrac><mo>,</mo><mo>&#160;</mo><mn>0</mn><mo>&#8804;</mo><mi>t</mi><mo>&#8804;</mo><mn>3</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine when the particle changes its direction of motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when the particle’s acceleration is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>.</mo><mn>9</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>2</mn></mrow></msup></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the particle’s acceleration when its speed is at its greatest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span></p>
</div>

<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^3} - 5{x^2} + 6x - 3 + \frac{1}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>3</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>6</mn>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mo>+</mo>
  <mfrac>
    <mn>1</mn>
    <mi>x</mi>
  </mfrac>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>, models the path of a river, as shown on the&nbsp;following map, where both axes represent distance and are measured in kilometres. On the&nbsp;same map, the location of a highway is defined by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 0.5{\left( 3 \right)^{ - x}} + 1">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mrow>
        <mo>(</mo>
        <mn>3</mn>
        <mo>)</mo>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>1</mn>
</math></span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The origin, O(0, 0) , is the location of the centre of a town called Orangeton.</p>
<p>A straight footpath, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>, is built to connect the centre of Orangeton to the river at the point&nbsp;where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>Bridges are located where the highway crosses the river.</p>
</div>

<div class="specification">
<p>A straight road is built from the centre of Orangeton, due north, to connect the town to&nbsp;the highway.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{1}{2}">
  <mi>x</mi>
  <mo>=</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( x \right)">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
</math></span> , that would define this footpath on the map.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P">
  <mi>P</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the bridges relative to the centre of Orangeton.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance from the centre of Orangeton to the point at which the road meets the highway.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This straight road crosses the highway and then carries on due north.</p>
<p>State whether the straight road will ever cross the river. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{2\,{\text{sin}}\left( {\frac{{\pi x}}{2}} \right)}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>2</mn>
        <mspace width="thinmathspace"></mspace>
        <mrow>
          <mtext>sin</mtext>
        </mrow>
        <mrow>
          <mo>(</mo>
          <mrow>
            <mfrac>
              <mrow>
                <mi>π<!-- π --></mi>
                <mi>x</mi>
              </mrow>
              <mn>2</mn>
            </mfrac>
          </mrow>
          <mo>)</mo>
        </mrow>
      </mrow>
    </msup>
  </mrow>
</math></span>, for <em>x</em>&nbsp;&gt; 0.</p>
<p>The <em>k </em>th&nbsp;maximum point on the graph of <em>f</em> has <em>x</em>-coordinate <em>x<sub>k</sub></em> where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in {\mathbb{Z}^ + }">
  <mi>k</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <msup>
      <mrow>
        <mi mathvariant="double-struck">Z</mi>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>x<sub>k</sub></em><sub> + 1</sub> = <em>x<sub>k</sub></em> + <em>a</em>, find <em>a</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <em>n</em> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum\limits_{k = 1}^n {{x_k} = 861} "> <munderover> <mo movablelimits="false">∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mrow> <msub> <mi>x</mi> <mi>k</mi> </msub> </mrow> <mo>=</mo> <mn>861</mn> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>OAB is a sector of the circle with centre O and radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The angle AOB is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span> radians, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < \theta&nbsp; < \frac{\pi }{2}">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>θ<!-- θ --></mi>
  <mo>&lt;</mo>
  <mfrac>
    <mi>π<!-- π --></mi>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
<p>The point C lies on OA and OA is perpendicular to BC.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OC}} = r\,{\text{cos}}\,\theta "> <mrow> <mtext>OC</mtext> </mrow> <mo>=</mo> <mi>r</mi> <mspace width="thinmathspace"></mspace> <mrow> <mtext>cos</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>θ</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle OBC in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <em>θ</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the area of triangle OBC is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}"> <mfrac> <mn>3</mn> <mn>5</mn> </mfrac> </math></span> of the area of sector OAB, find <em>θ</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = x{{\text{e}}^{ - x}}">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>x</mi>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mo>−<!-- − --></mo>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = &nbsp;- 3f(x) + 1">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>+</mo>
  <mn>1</mn>
</math></span>.</p>
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> intersect at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = q">
  <mi>x</mi>
  <mo>=</mo>
  <mi>q</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p < q">
  <mi>p</mi>
  <mo>&lt;</mo>
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the region enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = x - 8">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>8</mn>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {x^4} - 3">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>3</mn>
</math></span>&nbsp; and&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right) = f\left( {g\left( x \right)} \right)">
  <mi>h</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>g</mi>
      <mrow>
        <mo>(</mo>
        <mi>x</mi>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h\left( x \right)"> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span> be a point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>. The tangent to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span> is parallel to the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}}"> <mrow> <mtext>C</mtext> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> defined by&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>90</mn><msup><mtext>e</mtext><mrow><mo>-</mo><mn>0</mn><mo>.</mo><mn>5</mn><mi>x</mi></mrow></msup></math>&nbsp;for&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> intersect at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>

<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> has a gradient of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn></math> and is a tangent to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
</div>

<div class="specification">
<p>The shaded region <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> is enclosed by the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Q</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>&nbsp;is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mi>x</mi><mo>+</mo><mn>2</mn><mo> </mo><mi>ln</mi><mo> </mo><mn>45</mn><mo>+</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate of the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> intersects the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is tangent to the graphs of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and the inverse function <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p>Find the shaded area enclosed by the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \ln x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = 3 + \ln \left( {\frac{x}{2}} \right)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>3</mn>
  <mo>+</mo>
  <mi>ln</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mi>x</mi>
        <mn>2</mn>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x > 0">
  <mi>x</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> can be obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by two transformations:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{a horizontal stretch of scale factor }}q{\text{ followed by}}} \\ {{\text{a translation of }}\left( {\begin{array}{*{20}{c}} h \\ k \end{array}} \right).} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>a horizontal stretch of scale factor&nbsp;</mtext>
          </mrow>
          <mi>q</mi>
          <mrow>
            <mtext>&nbsp;followed by</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>a translation of&nbsp;</mtext>
          </mrow>
          <mrow>
            <mo>(</mo>
            <mrow>
              <mtable rowspacing="4pt" columnspacing="1em">
                <mtr>
                  <mtd>
                    <mi>h</mi>
                  </mtd>
                </mtr>
                <mtr>
                  <mtd>
                    <mi>k</mi>
                  </mtd>
                </mtr>
              </mtable>
            </mrow>
            <mo>)</mo>
          </mrow>
          <mo>.</mo>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
</div>

<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h(x) = g(x) \times \cos (0.1x)">
  <mi>h</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>×<!-- × --></mo>
  <mi>cos</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mo stretchy="false">(</mo>
  <mn>0.1</mn>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < 4">
  <mn>0</mn>
  <mo>&lt;</mo>
  <mi>x</mi>
  <mo>&lt;</mo>
  <mn>4</mn>
</math></span>. The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.34.27.png" alt="M17/5/MATME/SP2/ENG/TZ1/10.b.c"></p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> intersects the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}">
  <mrow>
    <msup>
      <mi>h</mi>
      <mrow>
        <mo>−<!-- − --></mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> at two points. These points have <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> coordinates 0.111 and 3.31 correct to three significant figures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_{0.111}^{3.31} {\left( {h(x) - x} \right){\text{d}}x} "> <msubsup> <mo>∫</mo> <mrow> <mn>0.111</mn> </mrow> <mrow> <mn>3.31</mn> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−</mo> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the region enclosed by the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{h^{ - 1}}"> <mrow> <msup> <mi>h</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> be the vertical distance from a point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span>. There is a point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(a,{\text{ }}b)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mrow> <mtext>&nbsp;</mtext> </mrow> <mi>b</mi> <mo stretchy="false">)</mo> </math></span> on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> is a maximum.</p>
<p>Find the coordinates of P, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.111 < a < 3.31"> <mn>0.111</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&lt;</mo> <mn>3.31</mn> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Gemma and Kaia started working for different companies on January 1st 2011.</p>
<p>Gemma&rsquo;s starting annual salary was <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>45</mn><mo>&#8202;</mo><mn>000</mn></math>, and her annual salary increases <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> on&nbsp;January 1st each year after 2011.</p>
</div>

<div class="specification">
<p>Kaia&rsquo;s annual salary is based on a yearly performance review. Her salary for the years 2011,&nbsp;2013, 2014, 2018, and 2022 is shown in the following table.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find Gemma’s annual salary for the year 2021, to the nearest dollar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming Kaia’s annual salary can be approximately modelled by the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mo>=</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi></math>, show that Kaia had a higher salary than Gemma in the year 2021, according to the model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket is travelling in a straight line, with an initial velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="140">
  <mn>140</mn>
</math></span> m s<sup>−1</sup>. It accelerates to a new velocity of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="500">
  <mn>500</mn>
</math></span> m s<sup>−1</sup> in two stages.</p>
<p>During the first stage its acceleration, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> m s<sup>−2</sup>, after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> seconds is given by&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a\left( t \right) = 240\,{\text{sin}}\left( {2t} \right)">
  <mi>a</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>240</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>sin</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>2</mn>
      <mi>t</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>, where&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant k">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>t</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>k</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>The first stage continues for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> seconds until the velocity of the rocket reaches <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="375">
  <mn>375</mn>
</math></span> m s<sup>−1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the velocity, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> m s<sup>−1</sup>, of the rocket during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance that the rocket travels during the first stage.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the second stage, the rocket accelerates at a constant rate. The distance which the rocket travels during the second stage is the same as the distance it travels during the first stage.</p>
<p>Find the total time taken for the two stages.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - 1">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = {x^2} - 2">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = {x^4} - 4{x^2} + 3"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <msup> <mi>x</mi> <mn>4</mn> </msup> </mrow> <mo>−</mo> <mn>4</mn> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the following grid, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x)"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2.25</mn> </math></span>.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_08.00.33.png" alt="M17/5/MATME/SP2/ENG/TZ2/06.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(f \circ g)(x) = k"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>∘</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </math></span> has exactly two solutions, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 2.25"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo>⩽</mo> <mn>2.25</mn> </math></span>. Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{6x - 1}}{{2x + 3}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>6</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mi>x</mi>
      <mo>+</mo>
      <mn>3</mn>
    </mrow>
  </mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne&nbsp; - \frac{3}{2}">
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>3</mn>
    <mn>2</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>, find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-intercept.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mathop {{\text{lim}}}\limits_{x \to \infty } \left( {\frac{{6x - 1}}{{2x + 3}}} \right)">
  <munder>
    <mrow>
      <mrow>
        <mtext>lim</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>x</mi>
      <mo stretchy="false">→</mo>
      <mi mathvariant="normal">∞</mi>
    </mrow>
  </munder>
  <mo>⁡</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>6</mn>
          <mi>x</mi>
          <mo>−</mo>
          <mn>1</mn>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mi>x</mi>
          <mo>+</mo>
          <mn>3</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of a function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)">
  <mi>y</mi>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 6 \leqslant x \leqslant&nbsp; - 2">
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
</math></span>.</p>
<p>The points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 6,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>6</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 2,{\text{ }}6)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>2</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>6</mn>
  <mo stretchy="false">)</mo>
</math></span> lie on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>. There is a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="( - 4,{\text{ }}0)">
  <mo stretchy="false">(</mo>
  <mo>−<!-- − --></mo>
  <mn>4</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = f(x - 5)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo>−<!-- − --></mo>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, has the following probability distribution:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><msup><mi>k</mi><mn>2</mn></msup><mo>-</mo><mi>k</mi><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, giving a reason for your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{8x - 5}}{{cx + 6}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>8</mn>
      <mi>x</mi>
      <mo>−<!-- − --></mo>
      <mn>5</mn>
    </mrow>
    <mrow>
      <mi>c</mi>
      <mi>x</mi>
      <mo>+</mo>
      <mn>6</mn>
    </mrow>
  </mfrac>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \ne&nbsp; - \frac{6}{c},\,\,c \ne 0">
  <mi>x</mi>
  <mo>≠<!-- ≠ --></mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>6</mn>
    <mi>c</mi>
  </mfrac>
  <mo>,</mo>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mi>c</mi>
  <mo>≠<!-- ≠ --></mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question">
<p>Write down the equation of the horizontal asymptote to the graph of <em>f</em>.</p>
</div>
<br><hr><br><div class="specification">
<p>Let <em>f</em>(<em>x</em>) = ln <em>x</em> − 5<em>x</em> , for <em>x</em> &gt; 0 .</p>
</div>

<div class="question">
<p>Solve<em> f '</em>(<em>x</em>)<em> = f "</em>(<em>x</em>).</p>
</div>
<br><hr><br>