File "SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 4/SL-paper1html
File size: 1.37 MB
MIME-type: text/x-tex
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="specification">
<p>In the Canadian city of Ottawa:</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\begin{array}{*{20}{l}} {{\text{97%&nbsp; of the population speak English,}}} \\ {{\text{38%&nbsp; of the population speak French,}}} \\ {{\text{36%&nbsp; of the population speak both English and French.}}} \end{array}">
  <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>97%&nbsp; of the population speak English,</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>38%&nbsp; of the population speak French,</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
    <mtr>
      <mtd>
        <mrow>
          <mrow>
            <mtext>36%&nbsp; of the population speak both English and French.</mtext>
          </mrow>
        </mrow>
      </mtd>
    </mtr>
  </mtable>
</math></span></p>
</div>

<div class="specification">
<p>The total population of Ottawa is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="985\,000">
  <mn>985</mn>
  <mspace width="thinmathspace"></mspace>
  <mn>000</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of the population of Ottawa that speak English but not French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of people in Ottawa that speak both English and French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (b) in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \times {10^k}">
  <mi>a</mi>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mi>k</mi>
    </msup>
  </mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="1 \leqslant a &lt; 10">
  <mn>1</mn>
  <mo>⩽</mo>
  <mi>a</mi>
  <mo>&lt;</mo>
  <mn>10</mn>
</math></span> and <em>k </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Z}">
  <mo>∈</mo>
  <mrow>
    <mi mathvariant="double-struck">Z</mi>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, in terms of an angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
  <mi>θ<!-- θ --></mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_09.10.36.png" alt="M17/5/MATME/SP1/ENG/TZ1/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos \theta  = \frac{3}{4}"> <mi>cos</mi> <mo>⁡</mo> <mi>θ</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta  &gt; 0"> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> <mo>&gt;</mo> <mn>0</mn> </math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\tan \theta "> <mi>tan</mi> <mo>⁡</mo> <mi>θ</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{\cos x}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>cos</mi> <mo>⁡</mo> <mi>x</mi> </mrow> </mfrac> </math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 &lt; x &lt; \frac{\pi }{2}"> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \theta "> <mi>x</mi> <mo>=</mo> <mi>θ</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Anne-Marie planted four sunflowers in order of height, from shortest to tallest.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>32</mn><mo> </mo><mtext>cm</mtext></math> tall.</p>
<p>The median height of the flowers is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>24</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>The range of the heights is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mtext>cm</mtext></math>. The height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo> </mo><mtext>cm</mtext></math> and the height of&nbsp;Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo> </mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>The mean height of the flowers is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of Flower null.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using this information, write down an equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a second equation in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answers to <strong>parts (b)</strong> and <strong>(c)</strong>, find the height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answers to <strong>parts (b)</strong> and <strong>(c)</strong>, find the height of Flower <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> students, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>19</mn></math> play tennis, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> play both tennis and volleyball, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> do not play&nbsp;either sport.</p>
<p>The following Venn diagram shows the events “plays tennis” and “plays volleyball”.&nbsp;The values <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> represent numbers of students.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student from the class plays tennis or volleyball, but not both.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Each athlete on a running team recorded the distance (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> miles) they ran in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes.</p>
<p>The median distance is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> miles and the interquartile range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn></math> miles.</p>
<p>This information is shown in the following box-and-whisker plot.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The distance in miles, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>, can be converted to the distance in kilometres, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math>,&nbsp;using the formula <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo>=</mo><mfrac><mn>8</mn><mn>5</mn></mfrac><mi>M</mi></math>.</p>
</div>

<div class="specification">
<p>The variance of the distances run by the athletes is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>16</mn><mn>9</mn></mfrac><mo> </mo><msup><mtext>km</mtext><mn>2</mn></msup></math>.</p>
<p>The standard deviation of the distances is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> miles.</p>
</div>

<div class="specification">
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math> athletes from different teams compete in a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math>&nbsp;race. The times the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>600</mn></math> athletes&nbsp;took to run the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race are shown in the following cumulative frequency graph.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>There were <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn></math> athletes who took between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes to complete the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the median distance in kilometres (km).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math> athletes that completed the race won a prize.</p>
<p>Given that an athlete took between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes to complete the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mtext>km</mtext></math> race, calculate the probability that they won a prize.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, is rolled. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the score obtained when die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is rolled. The&nbsp;probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A second biased four-sided die, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, is rolled. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the score obtained when die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is rolled.<br>The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>&nbsp;</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the range of possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the range of possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Agnes and Barbara play a game using these dice. Agnes rolls die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> once and Barbara rolls&nbsp;die <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> once. The probability that Agnes’ score is less than Barbara’s score is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>.</p>
<p>Find the value of&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>Y</mi><mo>)</mo></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A school café sells three flavours of smoothies: mango (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
  <mi>M</mi>
</math></span>), kiwi fruit (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="K">
  <mi>K</mi>
</math></span>) and banana (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>).<br>85 students were surveyed about which of these three flavours they like.</p>
<p style="padding-left: 210px;">35 students liked mango, 37 liked banana, and 26 liked kiwi fruit<br>2 liked all three flavours<br>20 liked both mango and banana<br>14 liked mango and kiwi fruit<br>3 liked banana and kiwi fruit</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the given information, complete the following Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of surveyed students who did not like any of the three flavours.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student is chosen at random from the surveyed students.</p>
<p>Find the probability that this student likes kiwi fruit smoothies given that they like mango smoothies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The fastest recorded speeds of eight animals are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <strong>speed</strong> is a continuous or discrete variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median speed for these animals.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of the animal speeds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these eight animals find the mean speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these eight animals write down the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A health inspector analysed the amount of sugar in 500 different <strong>snacks</strong> prepared in various school cafeterias. The collected data are shown in the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""><br>Amount of sugar per snack in grams</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what 13 represents in the given diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the interquartile range for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the approximate number of snacks whose amount of sugar ranges from 18 to 20 grams.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The health inspector visits two school cafeterias. She inspects the same number of <strong>meals</strong> at each cafeteria. The data is shown in the following box-and-whisker diagrams.</p>
<p><img src=""></p>
<p>Meals prepared in the school cafeterias are required to have less than 10 grams of sugar.</p>
<p>State, giving a reason, which school cafeteria has more meals that <strong>do not</strong> meet the requirement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die with faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math> is rolled and the result recorded.&nbsp;Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the result obtained when the die is rolled. The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is given&nbsp;in the following table where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> are constants.</p>
<p><img src=""></p>
<p>For this probability distribution, it is known that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mn>2</mn></math>.</p>
</div>

<div class="specification">
<p>Nicky plays a game with this four-sided die. In this game she is allowed a maximum of five&nbsp;rolls. Her score is calculated by adding the results of each roll. Nicky wins the game if her&nbsp;score is at least ten.</p>
<p>After three rolls of the die, Nicky has a score of four.</p>
</div>

<div class="specification">
<p>David has two pairs of unbiased four-sided dice, a yellow pair and a red pair.</p>
<p>Both yellow dice have faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> represent the sum obtained by&nbsp;rolling the two yellow dice. The probability distribution for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math> is shown below.</p>
<p><img src=""></p>
<p>The first red die has faces labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn><mo>,</mo><mo>&#160;</mo><mn>2</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>. The second red die has faces&nbsp;labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>,</mo><mo>&#160;</mo><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>&#60;</mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo>&#160;</mo><mi>b</mi><mo>&#8712;</mo><msup><mi mathvariant="normal">&#8484;</mi><mo>+</mo></msup></math>. The probability distribution for the sum&nbsp;obtained by rolling the red pair is the same as the distribution for the sum obtained by rolling the yellow pair.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>X</mi><mo>&gt;</mo><mn>2</mn><mo>)</mo></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that rolls of the die are independent, find the probability that Nicky wins the game.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, providing evidence for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A data set has <em>n</em> items. The sum of the items is 800 and the mean is 20.</p>
</div>

<div class="specification">
<p>The standard deviation of this data set is 3. Each value in the set is multiplied by 10.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>n</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the new mean.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the new variance.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following scatter diagram shows the scores obtained by seven students in their mathematics test, <em>m</em>, and their physics test, <em>p</em>.</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;">The mean point, M, for these data is (40, 16).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\bar m,\,\,\bar p} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mover>
          <mi>m</mi>
          <mo stretchy="false">¯</mo>
        </mover>
      </mrow>
      <mo>,</mo>
      <mspace width="thinmathspace"></mspace>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mover>
          <mi>p</mi>
          <mo stretchy="false">¯</mo>
        </mover>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit, by eye, on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your line of best fit, estimate the physics test score for a student with a score of 20 in their mathematics test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The lengths of trout in a fisherman’s catch were recorded over one month, and are represented in the following histogram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.45.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following table.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_12.36.53.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <strong>length of trout </strong>is a continuous or discrete variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Any trout with length 40 cm or less is returned to the lake.</p>
<p>Calculate the percentage of the fisherman’s catch that is returned to the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosewood College has 120 students. The students can join the sports club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
  <mi>S</mi>
</math></span>) and the music club (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
  <mi>M</mi>
</math></span>).</p>
<p>For a student chosen at random from these 120, the probability that they joined both clubs is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span> and the probability that they joined the music club is<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{3}">
  <mfrac>
    <mn>1</mn>
    <mn>3</mn>
  </mfrac>
</math></span>.</p>
<p>There are 20 students that did not join either club.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram for these students.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_08.15.35.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the students who joined the sports club is chosen at random. Find the probability that this student joined both clubs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
  <mi>S</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="M">
  <mi>M</mi>
</math></span> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <em>Z</em> is normally distributed with mean 0 and standard deviation 1. It is known&nbsp;that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> &lt; −1.6) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> &gt; 2.4) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>. This is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A second random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> and standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
  <mi>s</mi>
</math></span>.</p>
<p>It is known that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &lt; 1) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(−1.6 &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> &lt; 2.4). Write your answer in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z">
  <mi>z</mi>
</math></span> &gt; −1.6, find the probability that z &lt; 2.4 . Write your answer in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the standardized value for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
  <mi>x</mi>
  <mo>=</mo>
  <mn>1</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is also known that P(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> &gt; 2) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="s">
  <mi>s</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Srinivasa places the nine labelled balls shown below into a box.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Srinivasa then chooses two balls at random, one at a time, from the box. The first ball is <strong>not&nbsp;replaced</strong> before he chooses the second.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the first ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the first ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> or labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the second ball chosen is labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>, given that the first ball chosen was labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both balls chosen are labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>N</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Jim heated a liquid until it boiled. He measured the temperature of the liquid as it cooled. The following table shows its temperature, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span> degrees Celsius, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> minutes after it boiled.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_08.45.05.png" alt="M17/5/MATME/SP1/ENG/TZ1/04"></p>
</div>

<div class="specification">
<p>Jim believes that the relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
  <mi>d</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> can be modelled by a linear regression equation.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the independent variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the boiling temperature of the liquid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jim describes the correlation as <strong>very strong</strong>. Circle the value below which best represents the correlation coefficient.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="0.992\quad \quad \quad 0.251\quad \quad \quad 0\quad \quad \quad  - 0.251\quad \quad \quad  - 0.992">
  <mn>0.992</mn>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mn>0.251</mn>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mn>0</mn>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mo>−</mo>
  <mn>0.251</mn>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mspace width="1em"></mspace>
  <mo>−</mo>
  <mn>0.992</mn>
</math></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jim’s model is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d =  - 2.24t + 105">
  <mi>d</mi>
  <mo>=</mo>
  <mo>−</mo>
  <mn>2.24</mn>
  <mi>t</mi>
  <mo>+</mo>
  <mn>105</mn>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant t \leqslant 20">
  <mn>0</mn>
  <mo>⩽</mo>
  <mi>t</mi>
  <mo>⩽</mo>
  <mn>20</mn>
</math></span>. Use his model to predict the decrease in temperature for any 2 minute interval.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Pablo drives to work. The probability that he leaves home before 07:00 is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{4}">
  <mfrac>
    <mn>3</mn>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
<p>If he leaves home before 07:00 the probability he will be late for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
  <mfrac>
    <mn>1</mn>
    <mn>8</mn>
  </mfrac>
</math></span>.</p>
<p>If he leaves home at 07:00 or later the probability he will be late for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{5}{8}">
  <mfrac>
    <mn>5</mn>
    <mn>8</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> and complete the following tree diagram.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Pablo leaves home before 07:00 and is late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Pablo is late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Pablo is late for work, find the probability that he left home before 07:00.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two days next week Pablo will drive to work. Find the probability that he will be late at least once.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The histogram shows the lengths of 25 metal rods, each measured correct to the nearest cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The upper quartile is 4 cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal length of the rods.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median length of the rods.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>University students were surveyed and asked how many hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> , they worked each month. The results are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Use the table to find the following values.</p>
</div>

<div class="specification">
<p>The first five class intervals, indicated in the table, have been used to draw part of a cumulative frequency curve as shown.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the same grid, complete the cumulative frequency curve for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find an estimate for the number of students who worked at most 35 hours per month.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A boy is chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Hafizah harvested&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>49</mn></math> mangoes from her farm. The weights of the mangoes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>w</mi></math>, in grams,&nbsp;are shown in the following grouped frequency table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal group for these data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find an estimate of the standard deviation of the weights of mangoes from this harvest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the grid below, draw a histogram for the data in the table.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>On a work day, the probability that Mr Van Winkel wakes up early is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{4}{5}">
  <mfrac>
    <mn>4</mn>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
<p>If he wakes up early, the probability that he is on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<p>If he wakes up late, the probability that he is on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{4}">
  <mfrac>
    <mn>1</mn>
    <mn>4</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="specification">
<p>The probability that Mr Van Winkel arrives on time for work is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{5}">
  <mfrac>
    <mn>3</mn>
    <mn>5</mn>
  </mfrac>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram below.</p>
<p><img src="images/Schermafbeelding_2017-03-07_om_06.20.32.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey at a swimming pool is given to one adult in each family. The age of the&nbsp;adult, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> years old, and of their eldest child, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> years old, are recorded.</p>
<p>The ages of the eldest child are summarized in the following box and whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>=</mo><mfrac><mn>7</mn><mn>4</mn></mfrac><mi>c</mi><mo>+</mo><mn>20</mn></math>.&nbsp;The regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> is&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>a</mi><mo>-</mo><mn>9</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> that would not be considered an outlier.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the adults surveyed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>42</mn></math> years old. Estimate the age of their eldest child.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean age of all the adults surveyed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass of a certain type of Chilean corncob follows a normal distribution with a mean of 400 grams and a standard deviation of 50 grams.</p>
</div>

<div class="specification">
<p>A farmer labels one of these corncobs as premium if its mass is greater than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> grams. 25% of these corncobs are labelled as premium.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the mass of one of these corncobs is greater than 400 grams.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the interquartile range of the distribution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The Home Shine factory produces light bulbs, 7% of which are found to be defective.</p>
</div>

<div class="specification">
<p>Francesco buys two light bulbs produced by Home Shine.</p>
</div>

<div class="specification">
<p>The Bright Light factory also produces light bulbs. The probability that a light bulb produced by Bright Light is not defective is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<p>Deborah buys three light bulbs produced by Bright Light.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a light bulb produced by Home Shine is not defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both light bulbs are not defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of Francesco’s light bulbs is defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>, for the probability that at least one of Deborah’s three light bulbs is defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large school has students from Year 6 to Year 12.</p>
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> students in Year 12 were randomly selected and surveyed to find out how&nbsp;many hours per week they each spend doing homework. Their results are represented by&nbsp;the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>This same information is represented by the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>320</mn></math> students in Year 12 at this school.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of hours per week these Year 12 students spend&nbsp;doing homework.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> of these Year 12 students spend more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> hours per week doing&nbsp;homework, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of Year 12 students that spend more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> hours each week&nbsp;doing homework.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this sampling method might not provide an accurate representation&nbsp;of the amount of time <strong>all</strong> of the students in the school spend doing homework.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a more appropriate sampling method.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> marbles, two of which are blue. Hayley plays a game in which she randomly draws marbles out of the bag, one after another, without replacement. The game ends when Hayley draws a blue marble.</p>
</div>

<div class="specification">
<p>&nbsp;Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> = 5. Find the probability that the game will end on her</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>, that the game will end on her first draw.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>, that the game will end on her second draw.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>third draw.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>fourth draw.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hayley plays the game when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span> = 5. She pays $20 to play and can earn money back depending on the number of draws it takes to obtain a blue marble. She earns no money back if she obtains a blue marble on her first draw. Let <em>M</em> be the amount of money that she earns back playing the game. This information is shown in the following table.</p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> so that this is a fair game.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Malthouse school opens at 08:00 every morning.</p>
<p>The daily arrival times of the 500 students at Malthouse school follow a normal distribution. The mean arrival time is 52 minutes after the school opens and the standard deviation is 5 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives at least 60 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives between 45 minutes and 55 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second school, Mulberry Park, also opens at 08:00 every morning. The arrival times of the students at this school follows exactly the same distribution as Malthouse school.</p>
<p>Given that, on one morning, 15 students arrive at least 60 minutes after the school opens, estimate the number of students at Mulberry Park school.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Colorado beetles are a pest, which can cause major damage to potato crops. For a certain Colorado beetle the amount of oxygen, in millilitres (ml), consumed each day increases with temperature as shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p>This information has been used to plot a scatter diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The mean point has coordinates (20, 230).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In order to estimate the amount of oxygen consumed, this regression line is considered to be reliable for a temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Dune Canyon High School organizes its <strong>school year </strong>into three trimesters: fall/autumn (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span>), winter (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
  <mi>W</mi>
</math></span>) and spring (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S">
  <mi>S</mi>
</math></span>). The school offers a variety of sporting activities during and outside the school year.</p>
<p>The activities offered by the school are summarized in the following Venn diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.56.10.png" alt="M17/5/MATSD/SP1/ENG/TZ1/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of sporting activities offered by the school during its <strong>school year</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether rock-climbing is offered by the school in the fall/autumn trimester.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements of the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F \cap W’"> <mi>F</mi> <mo>∩</mo> <msup> <mi>W</mi> <mo>′</mo> </msup> </math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(W \cap S)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>W</mi> <mo>∩</mo> <mi>S</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F"> <mi>F</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="S"> <mi>S</mi> </math></span>, an expression for the set which contains only archery, baseball, kayaking and surfing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the probability distribution of a discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right)">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>X</mi>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following graphs of normal distributions.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>At an airport, the weights of suitcases (in kg) were measured. The weights are normally distributed with a mean of 20 kg and standard deviation of 3.5 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the following table, write down the letter of the corresponding graph next to the given mean and standard deviation.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a suitcase weighs less than 15 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Any suitcase that weighs more than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> kg is identified as excess baggage.<br>19.6 % of the suitcases at this airport are identified as excess baggage.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The following box-and-whisker plot shows the number of text messages sent by students&nbsp;in a school on a particular day.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One student sent<em> k</em> text messages, where <em>k</em> &gt; 11 . Given that <em>k</em> is an outlier, find the least value of <em>k</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following Venn diagram shows the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = 0.3">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>A</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.3</mn>
</math></span>. The values shown are probabilities.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A' \cup B} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was carried out to investigate the relationship between a person’s age in years ( <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>) and the number of hours they watch television per week (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>). The scatter diagram represents the results of the survey.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.00.45.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05"></p>
<p>The mean age of the people surveyed was 50.</p>
<p>For these results, the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h = 0.22a + 15">
  <mi>h</mi>
  <mo>=</mo>
  <mn>0.22</mn>
  <mi>a</mi>
  <mo>+</mo>
  <mn>15</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that the people surveyed watch television per week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By placing a tick (✔) in the correct box, determine which of the following statements is true:</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_07.09.18.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Diogo is 18 years old. Give a reason why the regression line should not be used to estimate the number of hours Diogo watches television per week.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The price per kilogram of tomatoes, in euro, sold in various markets in a city is found to be normally distributed with a mean of 3.22 and a standard deviation of 0.84.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price that is two standard deviations above the mean price.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the price of a kilogram of tomatoes, chosen at random, will be between 2.00 and 3.00 euro.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To stimulate reasonable pricing, the city offers a free permit to the sellers whose price of a kilogram of tomatoes is in the lowest 20 %.</p>
<p>Find the highest price that a seller can charge and still receive a free permit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A research student weighed lizard eggs in grams and recorded the results. The following&nbsp;box and whisker diagram shows a summary of the results where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi></math> are the lower&nbsp;and upper quartiles respectively.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The interquartile range is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn></math> grams and there are no outliers in the results.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>U</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the minimum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Venn diagrams.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the shaded region represented by Diagram 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {H \cup I} \right)'"> <msup> <mrow> <mo>(</mo> <mrow> <mi>H</mi> <mo>∪</mo> <mi>I</mi> </mrow> <mo>)</mo> </mrow> <mo>′</mo> </msup> </math></span>.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="J \cap K"> <mi>J</mi> <mo>∩</mo> <mi>K</mi> </math></span>.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains 5 red and 3 blue discs, all identical except for the colour. First, Priyanka takes a disc at random from the bag and then Jorgé takes a disc at random from the bag.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Jorgé chooses a red disc.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The following table shows the probability distribution of a discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> where&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>2</mn><mo>,</mo><mo> </mo><mn>3</mn><mo>,</mo><mo> </mo><mn>4</mn></math>.</p>
<p style="text-align:center;"><img src=""></p>
<p style="text-align:left;">Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>, justifying your answer.</p>
</div>
<br><hr><br><div class="specification">
<p>Events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> are independent with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cap B) = 0.2">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>A</mi>
  <mo>∩<!-- ∩ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.2</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A' \cap B) = 0.6">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <msup>
    <mi>A</mi>
    <mo>′</mo>
  </msup>
  <mo>∩<!-- ∩ --></mo>
  <mi>B</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>0.6</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∪</mo> <mi>B</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist measures the concentration of dissolved oxygen, in milligrams per litre (<em>y</em>) , in a river. She takes 10 readings at different temperatures, measured in degrees Celsius (<em>x</em>).</p>
<p>The results are shown in the table.</p>
<p><img src=""></p>
<p>It is believed that the concentration of dissolved oxygen in the river varies linearly with the temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find Pearson’s product-moment correlation coefficient, <em>r.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find the equation of the regression line <em>y</em> on <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the equation of the regression line, estimate the concentration of dissolved oxygen in the river when the temperature is 18 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with a mean of 100. The following diagram shows the normal curve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_16.32.27.png" alt="M17/5/MATME/SP1/ENG/TZ2/03"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> be the shaded region under the curve, to the right of 107. The area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is 0.24.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &gt; 107)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>107</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(100 &lt; X &lt; 107)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>100</mn>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>107</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(93 &lt; X &lt; 107)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mn>93</mn>
  <mo>&lt;</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>107</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="30">
  <mn>30</mn>
</math></span> students, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="18">
  <mn>18</mn>
</math></span> are fluent in Spanish, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="10">
  <mn>10</mn>
</math></span> are fluent in French, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5">
  <mn>5</mn>
</math></span> are not fluent in either of these languages. The following Venn diagram shows the events “fluent in Spanish” and “fluent in French”.</p>
<p>The values <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
  <mi>n</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span> represent numbers of students.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n"> <mi>n</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 20 students travelled to a gymnastics tournament together. Their ages, in years, are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_17.17.22.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>The lower quartile of the ages is 16 and the upper quartile is 18.5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group find the mean age;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group write down the median age.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a box-and-whisker diagram, for these students’ ages, on the following grid.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_18.53.31.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In a high school, 160 students completed a questionnaire which asked for the number of&nbsp;people they are following on a social media website. The results were recorded in the&nbsp;following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The following incomplete table shows the distribution of the responses from these 160 students.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for the 100 &lt; <em>x</em> ≤ 150 group.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the table, calculate an estimate for the mean number of people being followed on the social media website by these 160 students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The histogram shows the time, <em>t</em>, in minutes, that it takes the customers of a restaurant to eat their lunch on one particular day. Each customer took less than 25 minutes.</p>
<p>The histogram is incomplete, and only shows data for 0 ≤ <em>t</em> &lt; 20.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The mean time it took <strong>all</strong> customers to eat their lunch was estimated to be 12 minutes.</p>
<p>It was found that <em>k</em> customers took between 20 and 25 minutes to eat their lunch.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for 10 ≤ <em>t</em> &lt; 15.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of customers in terms of<em> k</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, complete the histogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 10 girls recorded the number of hours they spent watching television during a particular week. Their results are summarized in the box-and-whisker plot below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The group of girls watched a total of 180 hours of television.</p>
</div>

<div class="specification">
<p>A group of 20 boys also recorded the number of hours they spent watching television that same week. Their results are summarized in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The following week, the group of boys had exams. During this exam week, the boys spent half as much time watching television compared to the previous week.</p>
<p>For this exam week, find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of the data is 16. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that the girls in this group spent watching television that week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total number of hours the group of boys spent watching television that week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that <strong>all 30</strong> girls and boys spent watching television that week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the mean number of hours that the group of boys spent watching television.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<br><hr><br><div class="specification">
<p>In a group of 20 girls, 13 take history and 8 take economics. Three girls take both history and economics, as shown in the following Venn diagram. The values <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span> represent numbers of girls.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-11_om_08.39.12.png" alt="M17/5/MATME/SP1/ENG/TZ1/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A girl is selected at random. Find the probability that she takes economics but not history.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A set of data comprises of five numbers&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x_{1\,}}{\text{,}}\,\,{x_2}{\text{,}}\,\,{x_3}{\text{,}}\,\,{x_4}{\text{,}}\,\,{x_5}">
  <mrow>
    <msub>
      <mi>x</mi>
      <mrow>
        <mn>1</mn>
        <mspace width="thinmathspace"></mspace>
      </mrow>
    </msub>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msub>
      <mi>x</mi>
      <mn>2</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msub>
      <mi>x</mi>
      <mn>3</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msub>
      <mi>x</mi>
      <mn>4</mn>
    </msub>
  </mrow>
  <mrow>
    <mtext>,</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <msub>
      <mi>x</mi>
      <mn>5</mn>
    </msub>
  </mrow>
</math></span>&nbsp;which have been placed in ascending order.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Recalling definitions, such as the Lower Quartile is the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n + 1}}{4}th">
  <mfrac>
    <mrow>
      <mi>n</mi>
      <mo>+</mo>
      <mn>1</mn>
    </mrow>
    <mn>4</mn>
  </mfrac>
  <mi>t</mi>
  <mi>h</mi>
</math></span> piece of data with the data placed in order, find an expression for the Interquartile Range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that a data set with only 5 numbers in it cannot have any outliers.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give an example of a set of data with 7 numbers in it that does have an outlier, justify this fact by stating the Interquartile Range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>For a study, a researcher collected 200 leaves from oak trees. After measuring the lengths of the leaves, in cm, she produced the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.29.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/06"></p>
</div>

<div class="specification">
<p>The researcher finds that 10% of the leaves have a length greater than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median length of these leaves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of leaves with a length less than or equal to 8 cm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Before measuring, the researcher estimated <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> to be approximately 9.5 cm. Find the percentage error in her estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Applicants for a job had to complete a mathematics test. The time they took to complete the test is normally distributed with a mean of 53 minutes and a standard deviation of 16.3. One of the applicants is chosen at random.</p>
</div>

<div class="specification">
<p>For 11% of the applicants it took longer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> minutes to complete the test.</p>
</div>

<div class="specification">
<p>There were 400 applicants for the job.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this applicant took at least 40 minutes to complete the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of applicants who completed the test in less than 25 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A large company surveyed 160 of its employees to find out how much time they spend&nbsp;traveling to work on a given day. The results of the survey are shown in the following&nbsp;cumulative frequency diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Only 10% of the employees spent more than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> minutes traveling to work.</p>
</div>

<div class="specification">
<p>The results of the survey can also be displayed on the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of minutes spent traveling to work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees whose travelling time is within 15 minutes of the median.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Travelling times of less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> minutes are considered outliers.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>All the children in a summer camp play at least one sport, from a choice of football (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="F">
  <mi>F</mi>
</math></span>) or basketball (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>). 15 children play both sports.</p>
<p>The number of children who play only football is double the number of children who play only basketball.</p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> be the number of children who play only football.</p>
</div>

<div class="specification">
<p>There are 120 children in the summer camp.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>, for the number of children who play only basketball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the above information.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of children who play only football.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(F)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Box 1 contains 5 red balls and 2 white balls.</p>
<p>Box 2 contains 4 red balls and 3 white balls.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A box is chosen at random and a ball is drawn. Find the probability that the ball is red.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> be the event that “box 1 is chosen” and let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the event that “a red ball is drawn”.</p>
<p>Determine whether events <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a circular horizontal board divided into six equal sectors. The sectors are labelled white (W), yellow (Y) and blue (B).</p>
<p style="text-align: center;"><img src=""></p>
<p>A pointer is pinned to the centre of the board. The pointer is to be spun and when it stops the colour of the sector on which the pointer stops is recorded. The pointer is equally likely to stop on any of the six sectors.</p>
<p>Eva will spin the pointer twice. The following tree diagram shows all the possible outcomes.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both spins are yellow.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the spins is yellow.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the second spin is yellow, given that the first spin is blue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Sara regularly flies from Geneva to London. She takes either a direct flight or a non-directflight that goes via Amsterdam.</p>
<p>If she takes a direct flight, the probability that her baggage does not arrive in London is 0.01.<br>If she takes a non-direct flight the probability that her baggage arrives in London is 0.95.</p>
<p>The probability that she takes a non-direct flight is 0.2.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.08.43.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Sara’s baggage arrives in London.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A florist sells bouquets of roses. The florist recorded, in<strong> Table 1</strong>, the number of roses in each bouquet sold to customers.</p>
<p style="text-align: center;"><strong>Table 1</strong></p>
<p style="text-align: center;"><img src=""></p>
<p>The roses can be arranged into bouquets of size small, medium or large. The data from <strong>Table 1</strong> has been organized into a cumulative frequency table,<strong> Table 2</strong>.</p>
<p style="text-align: center;"><strong>Table 2</strong></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the cumulative frequency table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a bouquet of roses sold is <strong>not</strong> small.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A customer buys a large bouquet.</p>
<p>Find the probability that there are 12 roses in this bouquet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of 120 oranges was tested for Vitamin C content. The cumulative frequency curve below represents the Vitamin C content, in milligrams, of these oranges.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.11.24.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02"></p>
</div>

<div class="specification">
<p>The minimum level of Vitamin C content of an orange in the sample was 30.1 milligrams. The maximum level of Vitamin C content of an orange in the sample was 35.0 milligrams.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giving your answer to one decimal place, write down the value of</p>
<p>(i)     the median level of Vitamin C content of the oranges in the sample;</p>
<p>(ii)     the lower quartile;</p>
<p>(iii)     the upper quartile.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a box-and-whisker diagram on the grid below to represent the Vitamin C content, in milligrams, for this sample.</p>
<p><img src="images/Schermafbeelding_2017-03-06_om_12.47.06.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following Venn diagram shows the sets <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
  <mi>U</mi>
</math></span>.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is an element of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
  <mi>U</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.16.47.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the table indicate whether the given statements are True or False.</p>
<p><img src="images/Schermafbeelding_2017-03-06_om_12.54.23.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a"></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the Venn diagram, shade the region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap (B \cup C)'"> <mi>A</mi> <mo>∩</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∪</mo> <mi>C</mi> <msup> <mo stretchy="false">)</mo> <mo>′</mo> </msup> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A tetrahedral (four-sided) die has written on it the numbers 1, 2, 3 and 4. The die is rolled many times and the scores are noted. The table below shows the resulting frequency distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_05.55.47.png" alt="M17/5/MATSD/SP1/ENG/TZ2/07"></p>
<p>The die was rolled a total of 100 times.</p>
</div>

<div class="specification">
<p>The mean score is 2.71.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, for the total number of times the die was rolled.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the mean score, write down a second equation in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Each month the number of days of rain in Cardiff is recorded.<br>The following data was collected over a period of 10 months.</p>
<p style="text-align: center;">11&nbsp; &nbsp; 13&nbsp; &nbsp; 8&nbsp; &nbsp; 11&nbsp; &nbsp; 8&nbsp; &nbsp; 7&nbsp; &nbsp; 8&nbsp; &nbsp; 14&nbsp; &nbsp;&nbsp;<em>x&nbsp;&nbsp;</em>&nbsp; 15</p>
<p style="text-align: left;">For these data the <strong>median</strong> number of days of rain per month is 10.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A city hired 160 employees to work at a festival. The following cumulative frequency curve shows the number of hours employees worked during the festival.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_07.01.49.png" alt="M17/5/MATME/SP1/ENG/TZ2/08.a.ii"></p>
</div>

<div class="specification">
<p>The city paid each of the employees £8 per hour for the first 40 hours worked, and £10 per hour for each hour they worked after the first 40 hours.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median number of hours worked by the employees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of employees who worked 50 hours or less.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of money an employee earned for working 40 hours;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of money an employee earned for working 43 hours.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who earned £200 or less.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Only 10 employees earned more than £<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Andre will play in the semi-final of a tennis tournament.</p>
<p>If Andre wins the semi-final he will progress to the final. If Andre loses the semi-final,&nbsp;he will <strong>not</strong> progress to the final.</p>
<p>If Andre wins the final, he will be the champion.</p>
<p>The probability that Andre will win the semi-final is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>. If Andre wins the semi-final, then the probability he will be the champion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>6</mn></math>.</p>
</div>

<div class="specification">
<p>The probability that Andre will not be the champion is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>58</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the values in the tree diagram.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Andre did not become the champion, find the probability that he lost in the semi-final.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> be normally distributed with&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X \sim {\text{N}}\left( {14{\text{, }}{a^2}} \right)">
  <mi>X</mi>
  <mo>∼<!-- ∼ --></mo>
  <mrow>
    <mtext>N</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>14</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mrow>
        <msup>
          <mi>a</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> and&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y \sim {\text{N}}\left( {22{\text{, }}{a^2}} \right)">
  <mi>Y</mi>
  <mo>∼<!-- ∼ --></mo>
  <mrow>
    <mtext>N</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>22</mn>
      <mrow>
        <mtext>,&nbsp;</mtext>
      </mrow>
      <mrow>
        <msup>
          <mi>a</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>,&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a > 0">
  <mi>a</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> so that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &gt; b} \right) = {\text{P}}\left( {Y &lt; b} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&gt;</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>&lt;</mo> <mi>b</mi> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X &gt; 20} \right) = 0.112"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>&gt;</mo> <mn>20</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.112</mn> </math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {16 &lt; Y &lt; 28} \right)"> <mrow> <mtext>P</mtext> </mrow> <mrow> <mo>(</mo> <mrow> <mn>16</mn> <mo>&lt;</mo> <mi>Y</mi> <mo>&lt;</mo> <mn>28</mn> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following sets:</p>
<p style="padding-left: 210px;">The universal set <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
  <mi>U</mi>
</math></span> consists of all positive integers less than 15;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
  <mi>A</mi>
</math></span> is the set of all numbers which are multiples of 3;<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span> is the set of all even numbers.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B"> <mi>A</mi> <mo>∩</mo> <mi>B</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements that belong to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A \cap B'"> <mi>A</mi> <mo>∩</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {A \cap B'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>∩</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A bag contains 5 green balls and 3 white balls. Two balls are selected at random without replacement.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following tree diagram.</p>
<p><img src="images/Schermafbeelding_2018-02-11_om_09.35.12.png" alt="N17/5/MATME/SP1/ENG/TZ0/01.a"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly one of the selected balls is green.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Place the numbers <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2\pi {\text{,}}\,\, - 5{\text{,}}\,\,{3^{ - 1}}"> <mn>2</mn> <mi>π</mi> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mo>−</mo> <mn>5</mn> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msup> <mn>3</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{2^{\frac{3}{2}}}"> <mrow> <msup> <mn>2</mn> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </math></span> in the correct position on the Venn diagram.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the table indicate which <strong>two</strong> of the given statements are true by placing a tick (✔) in the right hand column.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 60 sports enthusiasts visited the PyeongChang 2018 Winter Olympic games to watch a variety of sporting events.</p>
<p>The most popular sports were snowboarding (<em>S</em>), figure skating (<em>F</em>) and ice hockey (<em>H</em>).</p>
<p>For this group of 60 people:</p>
<p style="padding-left: 120px;">4 did not watch any of the most popular sports,<br><em>x</em> watched all three of the most popular sports,<br>9 watched snowboarding only,<br>11 watched figure skating only,<br>15 watched ice hockey only,<br>7 watched snowboarding and figure skating,<br>13 watched figure skating and ice hockey,<br>11 watched snowboarding and ice hockey.</p>
</div>

<div class="question">
<p>Find the value of <em>x</em>.</p>
</div>
<br><hr><br><div class="question">
<p>Let <em>A</em> and <em>B</em> be events such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = 0.5">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>A</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.5</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( B \right) = 0.4">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mi>B</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right) = 0.6">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∪</mo>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.6</mn>
</math></span>.</p>
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {\left. {A\,} \right|B} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mrow>
        <mo fence="true" stretchy="true" symmetric="true"></mo>
        <mrow>
          <mi>A</mi>
          <mspace width="thinmathspace"></mspace>
        </mrow>
        <mo>|</mo>
      </mrow>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>
<br><hr><br>