File "HL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 3/HL-paper2html
File size: 265.99 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p>A function is defined by \(f(x) = A\sin (Bx) + C,{\text{ }} - \pi \le x \le \pi \), where \(A,{\text{ }}B,{\text{ }}C \in \mathbb{Z}\). The following diagram represents the graph of \(y = f(x)\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-29_om_10.14.17.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(A\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(B\);</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>\(C\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve \(f(x) = 3\) for \(0 \le x \le \pi \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f\) defined by \(f(x) = 3x\arccos (x)\) where \( - 1 \leqslant x \leqslant 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Sketch the graph of \(f\) </span>indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the range of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(\left| {3x\arccos (x)} \right| > 1\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Given \(\Delta \)</span><span style="font-family: times new roman,times; font-size: medium;">ABC, with lengths shown in the diagram below, find the length of the line segment [CD].</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider triangle ABC with \({\rm{B}}\hat {\rm{A}}{\rm{C}} = 37.8^\circ \) , AB = 8.75 and BC = 6 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find AC.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a semi-circle of diameter 20 cm, centre O and two points A and B such that \({\rm{A\hat OB}} = \theta \), where \(\theta \) is in radians.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-17_om_06.17.13.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the shaded area can be expressed as \(50\theta - 50\sin \theta \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\theta \) for which the shaded area is equal to half that of the unshaded area, giving your answer correct to four significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In triangle \({\text{PQR, PR}} = 12{\text{ cm, QR}} = p{\text{ cm, PQ}} = r{\text{ cm}}\) and \({\rm{Q\hat PR}} = 30^\circ \).</p>
</div>
<div class="specification">
<p>Consider the possible triangles with \({\text{QR}} = 8{\text{ cm}}\).</p>
</div>
<div class="specification">
<p>Consider the case where \(p\), the length of QR is not fixed at 8 cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cosine rule to show that \({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the two corresponding values of PQ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the area of the smaller triangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the range of values of \(p\) for which it is possible to form two triangles.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find AM.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \({\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}\) in radians.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following diagram shows two intersecting circles of radii 4 cm and 3 cm. The centre C of the smaller circle lies on the circumference of the bigger circle. O is the centre of the bigger circle and the two circles intersect at points A and B.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-15_om_11.00.51.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \({\rm{B\hat OC}}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) the area of the shaded region.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Triangle ABC has AB = 5 cm, BC = 6 cm and area 10 \({\text{c}}{{\text{m}}^2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find \(\sin \hat B\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>Hence</strong>, find the two possible values of AC, giving your answers correct to two decimal places.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In a triangle ABC, \(\hat A = 35^\circ \), BC = 4 cm and AC = 6.5 cm. Find the possible values of \(\hat B\) and the corresponding values of AB.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\arctan \frac{1}{2} - \arctan \frac{1}{3} = \arctan a,{\text{ }}a \in {\mathbb{Q}^ + }\), find the value of <em>a</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, solve the equation \(\arcsin x = \arctan a\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the triangle \({\text{PQR}}\) where \({\rm{Q\hat PR = 30^\circ }}\), \({\text{PQ}} = (x + 2){\text{ cm}}\) and \({\text{PR}} = {(5 - x)^2}{\text{ cm}}\), where \( - 2 < x < 5\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the area, \(A\;{\text{c}}{{\text{m}}^2}\), of the triangle is given by \(A = \frac{1}{4}({x^3} - 8{x^2} + 5x + 50)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State \(\frac{{{\text{d}}A}}{{{\text{d}}x}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Verify that \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find \(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{x^2}}}\) and hence justify that \(x = \frac{1}{3}\) gives the maximum area of triangle \(PQR\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the maximum area of triangle \(PQR\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Find \(QR\) when the area of triangle \(PQR\) is a maximum.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f(x) = 3\sin x + 4\cos x\) is defined for \(0 < x < 2\pi \) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the coordinates of the minimum point on the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The points \({\text{P}}(p,{\text{ }}3)\) and \({\text{Q}}(q,{\text{ }}3){\text{, }}q > p\), lie on the graph of \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find <em>p </em>and <em>q </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point, on \(y = f(x)\) , where the gradient of the graph is 3.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point of intersection of the normals to the graph at the points P and Q.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A circle of radius 4 cm , centre O , is cut by a chord [AB] of length 6 cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \({\rm{A\hat OB}}\), expressing your answer in radians correct to four significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the area of the shaded region.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the triangle ABC where \({\rm{B\hat AC}} = 70^\circ \), AB = 8 cm and AC = 7 cm. The point D on the side BC is such that \(\frac{{{\text{BD}}}}{{{\text{DC}}}} = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the length of AD.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The depth, <em>h</em>(<em>t</em>) metres, of water at the entrance to a harbour at <em>t</em> hours after midnight on a particular day is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[h(t) = 8 + 4\sin \left( {\frac{{\pi t}}{6}} \right),{\text{ }}0 \leqslant t \leqslant 24.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the maximum depth and the minimum depth of the water.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the values of <em>t</em> for which \(h(t) \geqslant 8\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Farmer Bill owns a rectangular field, 10 m by 4 m. Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the rope is 5 m long, calculate the percentage of Bill’s field that Gruff is able to graze. Give your answer correct to the nearest integer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bill replaces Gruff’s rope with another, this time of length \(a,{\text{ }}4 < a < 10\), so that Gruff can now graze exactly one half of Bill’s field.</p>
<p>Show that \(a\) satisfies the equation</p>
<p>\[{a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16} = 40.\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In triangle \({\text{ABC}}\), \({\text{AB}} = 5{\text{ cm}}\), \({\text{BC}} = 12{\text{ cm}}\) and \({\rm{A\hat BC}} = 100^\circ \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the triangle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(AC\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Barry is at the top of a cliff, standing 80 m above sea level, and observes two yachts in the sea.<br>“<em>Seaview</em>” \((S)\) is at an angle of depression of 25°.<br>“<em>Nauti Buoy</em>” \((N)\) is at an angle of depression of 35°.<br>The following three dimensional diagram shows Barry and the two yachts at S and N.<br>X lies at the foot of the cliff and angle \({\text{SXN}} = \) 70°.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-08_om_11.45.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/05"></p>
<p>Find, to 3 significant figures, the distance between the two yachts.</p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">An electricity station is on the edge of a straight coastline. A lighthouse is located in the sea 200 m from the electricity station. The angle between the coastline and the line joining the lighthouse with the electricity station is 60°. A cable needs to be laid connecting the lighthouse to the electricity station. It is decided to lay the cable in a straight line to the coast and then along the coast to the electricity station. The length of cable laid along the coastline is <em>x</em> metres. This information is illustrated in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 24px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The cost of laying the cable along the sea bed is US$80 per metre, and the cost of laying it on land is US$20 per metre.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find, in terms of <em>x</em>, an expression for the cost of laying the cable.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>x</em>, to the nearest metre, such that this cost is minimized.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The vertices of an equilateral triangle, with perimeter <em>P</em> and area <em>A</em> , lie on a circle with radius <em>r</em> . Find an expression for \(\frac{P}{A}\) in the form \(\frac{k}{r}\), where \(k \in {\mathbb{Z}^ + }\).</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}\).</p>
</div>
<div class="specification">
<p>Let \(u = \tan x\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for \(f’(x)\) in terms of \(x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of \(y = f’(x)\) for \(0 \leqslant x < \frac{\pi }{2}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(x\)-coordinate(s) of the point(s) of inflexion of the graph of \(y = f(x)\), labelling these clearly on the graph of \(y = f’(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(\sin x\) in terms of \(\mu \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(\sin 2x\) in terms of \(u\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(f(x) = 0\) can be expressed as \({u^3} - 7{u^2} + 15u - 9 = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation \(f(x) = 0\), giving your answers in the form \(\arctan k\) where \(k \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The diagram shows two circles with centres at the points <span class="s1">A </span>and <span class="s1">B </span>and radii \(2r\) and \(r\), respectively. The point <span class="s1">B </span>lies on the circle with centre <span class="s1">A</span>. The circles intersect at the points <span class="s1">C </span>and <span class="s1">D</span>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_17.29.37.png" alt="N16/5/MATHL/HP2/ENG/TZ0/09"></p>
<p class="p1">Let \(\alpha \) be the measure of the angle <span class="s1">CAD </span>and \(\theta \) be the measure of the angle <span class="s1">CBD </span>in radians.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for the shaded area in terms of \(\alpha \), \(\theta \) and \(r\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\alpha = 4\arcsin \frac{1}{4}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find the value of \(r\) given that the shaded area is equal to 4.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The shaded region <em>S </em>is enclosed between the curve \(y = x + 2\cos x\), for \(0 \leqslant x \leqslant 2\pi \), and the line \(y = x\), as shown in the diagram below.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-12_om_06.15.17.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points where the line meets the curve.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The region \(S\) is rotated by \(2\pi \) about the \(x\)-axis to generate a solid.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Write down an integral that represents the volume \(V\) of the solid.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the volume \(V\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In a triangle \({\text{ABC, AB}} = 4{\text{ cm, BC}} = 3{\text{ cm}}\) and \({\rm{B\hat AC}} = \frac{\pi }{9}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the cosine rule to find the two possible values for <span class="s1">AC</span><span class="s2">.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the difference between the areas of the two possible triangles <span class="s1">ABC</span><span class="s2">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(z = r(\cos \alpha + {\text{i}}\sin \alpha )\), where \(\alpha \) is measured in degrees, be the solution of \({z^5} - 1 = 0\) which has the smallest positive argument.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Use the binomial theorem to expand \({(\cos \theta + {\text{i}}\sin \theta )^5}\).</p>
<p>(ii) Hence use De Moivre’s theorem to prove</p>
<p>\[\sin 5\theta = 5{\cos ^4}\theta \sin \theta - 10{\cos ^2}\theta {\sin ^3}\theta + {\sin ^5}\theta .\]</p>
<p>(iii) State a similar expression for \(\cos 5\theta \) in terms of \(\cos \theta \) and \(\sin \theta \).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(r\) and the value of \(\alpha \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using (a) (ii) and your answer from (b) show that \(16{\sin ^4}\alpha - 20{\sin ^2}\alpha + 5 = 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Hence express \(\sin 72^\circ \) </span>in the form \(\frac{{\sqrt {a + b\sqrt c } }}{d}\) where \(a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="text-align: center;"><img src="images/12b.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In triangle ABC, BC = <em>a</em> , AC = <em>b</em> , AB = <em>c</em> and [BD] is perpendicular to [AC].</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 26px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \({\text{CD}} = b - c\cos A\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>Hence</strong>, by using Pythagoras’ Theorem in the triangle BCD, prove the cosine rule for the triangle ABC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) If \({\rm{A\hat BC}} = 60^\circ \) , use the cosine rule to show that \(c = \frac{1}{2}a \pm \sqrt {{b^2} - \frac{3}{4}{a^2}} \) .</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">Part A.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The above three dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively 25° and 40° , and PQ = 20 m .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the height of the flagpole.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">Part B.</div>
</div>
<br><hr><br><div class="question">
<p>Let \(f\left( x \right) = {\text{tan}}\left( {x + \pi } \right){\text{cos}}\left( {x - \frac{\pi }{2}} \right)\) where \(0 < x < \frac{\pi }{2}\).</p>
<p>Express \(f\left( x \right)\) in terms of sin \(x\) and cos \(x\).</p>
</div>
<br><hr><br><div class="question">
<p class="p1">ABCD is a quadrilateral where \({\text{AB}} = 6.5,{\text{ BC}} = 9.1,{\text{ CD}} = 10.4,{\text{ DA}} = 7.8\) and \({\rm{C\hat DA}} = 90^\circ \). Find \({\rm{A\hat BC}}\)<span class="s1">, giving your answer correct to the nearest degree.</span></p>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is \(\theta \) radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of \(0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water \(V{\text{ }}({{\text{m}}^3})\) in the trough in terms of \(\theta \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\) when \(\theta = \frac{\pi }{3}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Triangle \(ABC\) has area \({\text{21 c}}{{\text{m}}^{\text{2}}}\). The sides \(AB\) and \(AC\) have lengths \(6\) cm and \(11\) cm respectively. Find the two possible lengths of the side \(BC\).</p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the planes \({\pi _1}:x - 2y - 3z = 2{\text{ and }}{\pi _2}:2x - y - z = k\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the angle between the planes \({\pi _1}\)and \({\pi _2}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The planes \({\pi _1}\) and \({\pi _2}\) intersect in the line \({L_1}\) . Show that the vector equation of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({L_1}\) is \(r = \left( {\begin{array}{*{20}{c}}<br>0\\<br>{2 - 3k}\\<br>{2k - 2}<br>\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}<br>1\\<br>5\\<br>{ - 3}<br>\end{array}} \right)\)</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The line \({L_2}\) has Cartesian equation \(5 - x = y + 3 = 2 - 2z\) . The lines \({L_1}\) and \({L_2}\) intersect at a point X. Find the coordinates of X.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine a Cartesian equation of the plane \({\pi _3}\) containing both lines \({L_1}\) and \({L_2}\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let Y be a point on \({L_1}\) and Z be a point on \({L_2}\) such that XY is perpendicular to YZ and the area of the triangle XYZ is 3. Find the perimeter of the triangle XYZ.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In triangle \(ABC\),</p>
<p class="p1"><span class="Apple-converted-space"> </span>\(3\sin B + 4\cos C = 6\) and</p>
<p class="p1"><span class="Apple-converted-space"> </span>\(4\sin C + 3\cos B = 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\sin (B + C) = \frac{1}{2}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Robert conjectures that \({\rm{C\hat AB}}\) can have two possible values.</p>
<p class="p1">Show that Robert’s conjecture is incorrect by proving that \({\rm{C\hat AB}}\) has only one possible value.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of \(k\) that satisfy the inequality \({k^2} - k - 12 < 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that \(\cos B < \frac{1}{4}\), find the range of possible values for AB.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A triangle <span class="s1">\(ABC\) </span>has \(\hat A = 50^\circ \), <span class="s1">\({\text{AB}} = 7{\text{ cm}}\) </span>and <span class="s1">\({\text{BC}} = 6{\text{ cm}}\)</span>. Find the area of the triangle given that it is smaller than \(10{\text{ c}}{{\text{m}}^2}\).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A rectangle is drawn around a sector of a circle as shown. If the angle of the sector is 1 radian and the area of the sector is \(7{\text{ c}}{{\text{m}}^2}\), find the dimensions of the rectangle, giving your answers to the nearest millimetre.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 22px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows two concentric circles with centre O and radii 2 cm and 4 cm.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The points P and Q lie on the larger circle and \({\rm{P}}\hat {\text{O}}{\text{Q}} = x\) , where \(0 < x < \frac{\pi }{2}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) Show that the area of the shaded region is \(8\sin x - 2x\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) Find the maximum area of the shaded region.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">In the right circular cone below, O is the centre of the base which has radius 6 cm. The points B and C are on the circumference of the base of the cone. The height AO of the cone is 8 cm and the angle \({\rm{B\hat OC}}\) is 60°.</span> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the size of the angle \({\rm{B\hat AC}}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Points A , B and T lie on a line on an indoor soccer field. The goal, [AB] , is 2 metres wide. A player situated at point P kicks a ball at the goal. [PT] is perpendicular to (AB) and is 6 metres from a parallel line through the centre of [AB] . Let PT <span class="s1">be \(x\) metros and let \(\alpha = {\rm{A\hat PB}}\) measured in degrees. Assume that the ball travels along the floor.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2017-02-03_om_11.38.31.png" alt="M16/5/MATHL/HP2/ENG/TZ2/11"></span></p>
</div>
<div class="specification">
<p class="p1"><span class="s1">The maximum for \(\tan \alpha \) </span>gives the maximum for \(\alpha \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(\alpha \) when \(x = 10\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\tan \alpha = \frac{{2x}}{{{x^2} + 35}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha )\).</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Hence or otherwise find the value of \(\alpha \) <span class="s1">such that \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha ) = 0\).</span></p>
<p class="p2"><span class="s1">(iii) <span class="Apple-converted-space"> </span>Find \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha )\) </span>and hence show that the value of \(\alpha \) <span class="s1">never exceeds 10°.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the set of values of \(x\) for which \(\alpha \geqslant 7^\circ \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the equation \(3{\cos ^2}x - 8\cos x + 4 = 0\), where \(0 \leqslant x \leqslant 180^\circ \), expressing your answer(s) to the nearest degree.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact values of \(\sec x\) satisfying the equation \(3{\sec ^4}x - 8{\sec ^2}x + 4 = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The points P and Q lie on a circle, with centre O and radius 8 cm, such that \({\rm{P\hat OQ}} = 59^\circ \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 20px/normal Times; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of the shaded segment of the circle contained between the arc PQ and the chord [PQ].</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph below shows \(y = a\cos (bx) + c\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>a</em>, the value of <em>b</em> and the value of <em>c</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A system of equations is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\cos x + \cos y = 1.2\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\sin x + \sin y = 1.4{\text{ .}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) For each equation express <em>y</em> in terms of <em>x</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>Hence</strong> solve the system for \(0 < x < \pi ,{\text{ }}0 < y < \pi \) .</span></p>
</div>
<br><hr><br><div class="question">
<p>This diagram shows a metallic pendant made out of four equal sectors of a larger circle of radius \({\text{OB}} = 9{\text{ cm}}\) and four equal sectors of a smaller circle of radius \({\text{OA}} = 3{\text{ cm}}\).<br>The angle \({\text{BOC}} = \) 20°.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-08_om_11.16.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/03"></p>
<p>Find the area of the pendant.</p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A ship, S, is 10 km north of a motorboat, M, at 12.00pm. The ship is travelling northeast with a constant velocity of \(20{\text{ km}}\,{\text{h}}{{\text{r}}^{ - 1}}\). The motorboat wishes to intercept the ship and it moves with a constant velocity of \(30{\text{ km}}\,{\text{h}}{{\text{r}}^{ - 1}}\) in a direction \(\theta \) degrees east of north. In order for the interception to take place, determine</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the value of \(\theta \).<br></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the time at which the interception occurs, correct to the nearest minute.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A straight street of width 20 metres is bounded on its parallel sides by two vertical walls, one of height 13 metres, the other of height 8 metres. The intensity of light at point P at ground level on the street is proportional to the angle \(\theta \) where \(\theta = {\rm{A\hat PB}}\), as shown in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(\theta \) in terms of <em>x</em>, where <em>x</em> is the distance of P from the base of the wall of height 8 m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Calculate the value of \(\theta \) when <em>x</em> = 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Calculate the value of \(\theta \) when <em>x</em> = 20.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(\theta \), for \(0 \leqslant x \leqslant 20\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{{5(744 - 64x - {x^2})}}{{({x^2} + 64)({x^2} - 40x + 569)}}\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result in part (d), or otherwise, determine the value of <em>x</em> corresponding to the maximum light intensity at P. Give your answer to four significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point P moves across the street with speed \(0.5{\text{ m}}{{\text{s}}^{ - 1}}\). Determine the rate of change of \(\theta \) with respect to time when P is at the midpoint of the street.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The interior of a circle of radius 2 cm is divided into an infinite number of sectors. The areas of these sectors form a geometric sequence with common ratio <em>k</em>. The angle of the first sector is \(\theta \) radians.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(\theta = 2\pi (1 - k)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) The perimeter of the third sector is half the perimeter of the first sector.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> and of \(\theta \).</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">The diagram below shows a fenced triangular enclosure in the middle of a large grassy field. The points A and C are 3 m <span class="s1">apart. A goat \(G\) </span>is tied by a 5 m length of rope at point A on the outside edge of the enclosure.</p>
<p class="p1">Given that the corner of the enclosure at C <span class="s1">forms an angle of \(\theta \) </span>radians and the area of field that can be reached by the goat is \({\text{44 }}{{\text{m}}^{\text{2}}}\)<span class="s1">, find the value of \(\theta \).</span></p>
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2017-01-26_om_08.36.38.png" alt="M16/5/MATHL/HP2/ENG/TZ1/04"></span></p>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">The radius of the circle with centre C is 7 cm and the radius of the circle with centre D is 5 cm. If the length of the chord [AB] is 9 cm, find the area of the shaded region enclosed by the two arcs AB.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> </span></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Compactness is a measure of how compact an enclosed region is.</p>
<p class="p1">The compactness, <em>\(C\) </em>, of an enclosed region can be defined by \(C = \frac{{4A}}{{\pi {d^2}}}\), where <em>\(A\) </em>is the area of the region and <em>\(d\) </em>is the maximum distance between any two points in the region.</p>
<p class="p1">For a circular region, \(C = 1\).</p>
<p class="p1">Consider a regular polygon of <em>\(n\) </em>sides constructed such that its vertices lie on the circumference of a circle of diameter <em>\(x\) </em>units.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n > 2\) and even, show that \(C = \frac{n}{{2\pi }}\sin \frac{{2\pi }}{n}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n > 1\) and odd, it can be shown that \(C = \frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}}\).</p>
<p class="p1">Find the regular polygon with the least number of sides for which the compactness is more than \(0.99\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n > 1\) and odd, it can be shown that \(C = \frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}}\).</p>
<p class="p1">Comment briefly on whether <em>C </em>is a good measure of compactness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Two non-intersecting circles C<sub>1</sub> , containing points M and S , and C<sub>2</sub> , containing points N and R, have centres P and Q where PQ \( = 50\) . The line segments [MN] and [SR] are common tangents to the circles. The size of the reflex angle MPS is \( \alpha\), the size of the obtuse angle NQR is \( \beta\) , and the size of the angle MPQ is \( \theta\) . The arc length MS is \({l_1}\) and the arc length NR is \({l_2}\) . This information is represented in the diagram below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The radius of C<sub>1</sub> is \(x\) , where \(x \geqslant 10\) and the radius of C<sub>2</sub> is \(10\).</span></p>
</div>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) Explain why \(x < 40\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) Show that cosθ = x −10 </span><span style="font-family: times new roman,times; font-size: medium;">50</span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c) (i) Find an expression for MN in terms of \(x\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (ii) Find the value of \(x\) that maximises MN.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d) Find an expression in terms of \(x\) for</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (i) \( \alpha\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (ii) \( \beta\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) The length of the perimeter is given by \({l_1} + {l_2} + {\text{MN}} + {\text{SR}}\).</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (i) Find an expression, \(b (x)\) , for the length of the perimeter in terms of \(x\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (ii) Find the maximum value of the length of the perimeter.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (iii) Find the value of \(x\) that gives a perimeter of length \(200\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider a triangle ABC with \({\rm{B\hat AC}} = 45.7^\circ \) , AB = 9.63 cm and BC = 7.5 cm .<br></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By drawing a diagram, show why there are two triangles consistent with this information.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the possible values of AC .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: times new roman,times; font-size: medium;">Points A, B and C are on the circumference of a circle, centre O and radius \(r\) . </span><span style="font-family: times new roman,times; font-size: medium;">A trapezium OABC is formed such that AB is parallel to OC, and the angle \({\rm{A}}\hat {\text{O}}{\text{C}}\) </span><span style="font-family: times new roman,times; font-size: medium;">is \(\theta\) , \(\frac{\pi }{2} \leqslant \theta \leqslant \pi \)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: times new roman,times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that angle \({\rm{B\hat OC}}\) is \(\pi - \theta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that the area, <em>T</em>, of the trapezium can be expressed as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[T = \frac{1}{2}{r^2}\sin \theta - \frac{1}{2}{r^2}\sin 2\theta .\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) Show that when the area is maximum, the value of \(\theta \) satisfies</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\cos \theta = 2\cos 2\theta .\]</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) <strong>Hence</strong> determine the maximum area of the trapezium when <em>r</em> = 1.</span></p>
<p style="margin: 0px 0px 0px 60px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (Note: It is not required to prove that it is a maximum.)</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the plan of an art gallery <em>a </em>metres wide. [AB] represents a doorway, leading to an exit corridor <em>b </em>metres wide. In order to remove a painting from the art gallery, CD (denoted by <em>L </em>) is measured for various values of \(\alpha \) , as represented in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">If </span><span style="font: 12.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha \)</span> </span><span style="font-family: 'times new roman', times; font-size: medium;">is the angle between [CD] and the wall, show that \(L = \frac{a }{{\sin \alpha }} + \frac{b}{{\cos \alpha }}{\text{, }}0 < \alpha < \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: arial, helvetica, sans-serif;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>a </em>= 5 and <em>b </em>= 1, find the maximum length of a painting that can be removed through this doorway.</span><br></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find, in terms of <em>k </em>, the maximum length of a painting that can be removed from the gallery through this doorway.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the minimum value of <em>k </em>if a painting 8 metres long is to be removed through this doorway.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Two discs, one of radius 8 cm and one of radius 5 cm, are placed such that they touch each other. A piece of string is wrapped around the discs. This is shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the length of string needed to go around the discs.</span></p>
</div>
<br><hr><br>