File "HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Prior learning/HL-paper1html
File size: 24.75 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 5 is shown in the following diagram. The curve intercepts the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at (1, 0) and (4, 0) and has a local minimum at (3, −1).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The shaded area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis is 0.5. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 0 \right) = 3">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mn>0</mn>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span>,</p>
</div>
<div class="specification">
<p>The area enclosed by the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f'\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<msup>
<mi>f</mi>
<mo>′</mo>
</msup>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4">
<mi>x</mi>
<mo>=</mo>
<mn>4</mn>
</math></span> is 2.5 .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate of the point of inflexion on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 1 \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( 4 \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>, 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> ≤ 5 indicating clearly the coordinates of the maximum and minimum points and any intercepts with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>