File "HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 2/HL-paper1html
File size: 259.42 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }">
<mrow>
<msub>
<mi>f</mi>
<mi>n</mi>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mn>4</mn>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>…<!-- … --></mo>
<mo stretchy="false">(</mo>
<mi>cos</mi>
<mo><!-- --></mo>
<mrow>
<msup>
<mn>2</mn>
<mi>n</mi>
</msup>
</mrow>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>n</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </math></span> is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mrow> <mi>sin</mi> <mo></mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mi>x</mi> </mrow> <mrow> <mrow> <msup> <mn>2</mn> <mi>n</mi> </msup> </mrow> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> </mrow> </mfrac> <mo>,</mo> <mrow> <mtext> </mtext> </mrow> <mi>x</mi> <mo>≠</mo> <mfrac> <mrow> <mi>m</mi> <mi>π</mi> </mrow> <mn>2</mn> </mfrac> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m \in \mathbb{Z}"> <mi>m</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f_n}(x)"> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> with respect to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n > 1"> <mi>n</mi> <mo>></mo> <mn>1</mn> </math></span>, the equation of the tangent to the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {f_n}(x)"> <mi>y</mi> <mo>=</mo> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = \frac{\pi }{4}"> <mi>x</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </math></span> is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="4x - 2y - \pi = 0"> <mn>4</mn> <mi>x</mi> <mo>−</mo> <mn>2</mn> <mi>y</mi> <mo>−</mo> <mi>π</mi> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^4} + a{z^3} + b{z^2} + cz + d = 0"> <mrow> <msup> <mi>z</mi> <mn>4</mn> </msup> </mrow> <mo>+</mo> <mi>a</mi> <mrow> <msup> <mi>z</mi> <mn>3</mn> </msup> </mrow> <mo>+</mo> <mi>b</mi> <mrow> <msup> <mi>z</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>c</mi> <mi>z</mi> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mn>0</mn> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{R}"> <mi>d</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="z \in \mathbb{C}"> <mi>z</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">C</mi> </mrow> </math></span>.</p>
<p>Two of the roots of the equation are log<sub>2</sub>6 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\sqrt 3 "> <mi>i</mi> <msqrt> <mn>3</mn> </msqrt> </math></span> and the sum of all the roots is 3 + log<sub>2</sub>3.</p>
<p>Show that 6<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d"> <mi>d</mi> </math></span> + 12 = 0.</p>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a vertical asymptote and a horizontal asymptote.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the horizontal asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the set of axes below, sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mrow><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo><</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mfrac><mrow><mn>2</mn><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>-</mo><mn>1</mn></mrow><mrow><mfenced open="|" close="|"><mi>x</mi></mfenced><mo>+</mo><mn>1</mn></mrow></mfrac><mo><</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In the following Argand diagram, the points <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>2</mtext></msub></math> are the vertices of triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>1</mtext></msub><msub><mtext>OZ</mtext><mtext>2</mtext></msub></math> described anticlockwise.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub></math> represents the complex number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>α</mi></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>1</mn></msub><mo>></mo><mn>0</mn></math>. The point <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>2</mn></msub></math> represents the complex number <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub><mo>=</mo><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mi>θ</mi></mrow></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mn>2</mn></msub><mo>></mo><mn>0</mn></math>.</p>
<p>Angles <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>θ</mi></math> are measured anticlockwise from the positive direction of the real axis such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>α</mi><mo>,</mo><mo> </mo><mi>θ</mi><mo><</mo><mn>2</mn><mi>π</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo><</mo><mi>π</mi></math>.</p>
</div>
<div class="specification">
<p>In parts (c), (d) and (e), consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mtext>1</mtext></msub><msub><mtext>OZ</mtext><mtext>2</mtext></msub></math> is an equilateral triangle.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math> be the distinct roots of the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup><mo>=</mo><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub><msup><mtext>e</mtext><mrow><mtext>i</mtext><mfenced><mrow><mi>α</mi><mo>-</mo><mi>θ</mi></mrow></mfenced></mrow></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup></math> is the complex conjugate of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Re</mtext><mfenced><mrow><msub><mi>z</mi><mn>1</mn></msub><msup><msub><mi>z</mi><mn>2</mn></msub><mo>∗</mo></msup></mrow></mfenced><mo>=</mo><mn>0</mn></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub><msub><mtext>OZ</mtext><mn>2</mn></msub></math> is a right-angled triangle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>1</mn></msub></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><msub><mi>z</mi><mn>1</mn></msub><mn>2</mn></msup><mo>+</mo><msup><msub><mi>z</mi><mn>2</mn></msub><mn>2</mn></msup><mo>=</mo><msub><mi>z</mi><mn>1</mn></msub><msub><mi>z</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the result from part (c)(ii) to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>a</mi><mn>2</mn></msup><mo>-</mo><mn>3</mn><mi>b</mi><mo>=</mo><mn>0</mn></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mi>a</mi><mi>z</mi><mo>+</mo><mn>12</mn><mo>=</mo><mn>0</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>z</mi><mo>∈</mo><mi mathvariant="normal">ℂ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>α</mi><mo>-</mo><mi>θ</mi><mo><</mo><mi>π</mi></math>, deduce that only one equilateral triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Z</mtext><mn>1</mn></msub><msub><mtext>OZ</mtext><mn>2</mn></msub></math> can be formed from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the roots of this equation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Let the roots of the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{z^3} = - 3 + \sqrt 3 {\text{i}}">
<mrow>
<msup>
<mi>z</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>=</mo>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mo>+</mo>
<msqrt>
<mn>3</mn>
</msqrt>
<mrow>
<mtext>i</mtext>
</mrow>
</math></span> be <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>On an Argand diagram, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u">
<mi>u</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
<mi>w</mi>
</math></span> are represented by the points U, V and W respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 3 + \sqrt 3 {\text{i}}"> <mo>−</mo> <mn>3</mn> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mtext>i</mtext> </mrow> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{{\text{e}}^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r > 0"> <mi>r</mi> <mo>></mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi < \theta \leqslant \pi "> <mo>−</mo> <mi>π</mi> <mo><</mo> <mi>θ</mi> <mo>⩽</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span> expressing your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r{{\text{e}}^{{\text{i}}\theta }}"> <mi>r</mi> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mrow> <mtext>i</mtext> </mrow> <mi>θ</mi> </mrow> </msup> </mrow> </math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r > 0"> <mi>r</mi> <mo>></mo> <mn>0</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \pi < \theta \leqslant \pi "> <mo>−</mo> <mi>π</mi> <mo><</mo> <mi>θ</mi> <mo>⩽</mo> <mi>π</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of triangle UVW.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the sum of the roots <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w"> <mi>w</mi> </math></span>, show that</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cos}}\frac{{5\pi }}{{18}} + {\text{cos}}\frac{{7\pi }}{{18}} + {\text{cos}}\frac{{17\pi }}{{18}} = 0"> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>5</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>7</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>+</mo> <mrow> <mtext>cos</mtext> </mrow> <mfrac> <mrow> <mn>17</mn> <mi>π</mi> </mrow> <mrow> <mn>18</mn> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>k</mi><mi>x</mi><mo>-</mo><mn>5</mn></mrow><mrow><mi>x</mi><mo>-</mo><mi>k</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi><mo> </mo><mo>\</mo><mo> </mo><mfenced open="{" close="}"><mi>k</mi></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>k</mi><mn>2</mn></msup><mo>≠</mo><mn>5</mn></math>. </p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation of the vertical asymptote on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation of the horizontal asymptote on the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an algebraic method to determine whether <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is a self-inverse function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region bounded by the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>7</mn></math> is rotated through <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi mathvariant="normal">π</mi></math> about the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis. Find the volume of the solid generated, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo> </mo><mi>ln</mi><mo> </mo><mn>2</mn><mo>)</mo><mo> </mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>a</mi><msup><mi>x</mi><mn>3</mn></msup><mo>+</mo><mi>b</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>c</mi><mi>x</mi><mo>+</mo><mi>d</mi></math> , where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>. </p>
</div>
<div class="specification">
<p>Consider the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>6</mn><mi>x</mi><mo>-</mo><mn>8</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> may be obtained by transforming the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup></math> using a sequence of three transformations.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>f</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> does not exist, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>b</mi><mn>2</mn></msup><mo>−</mo><mn>3</mn><mi>a</mi><mi>c</mi><mo>></mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> exists.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> can be written in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>(</mo><mi>x</mi><mo>−</mo><mn>2</mn><msup><mo>)</mo><mn>3</mn></msup><mo>+</mo><mi>q</mi></math> , where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State each of the transformations in the order in which they are applied.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math> on the same set of axes, indicating the points where each graph crosses the coordinate axes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the series <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mi>p</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mfrac><mn>1</mn><mn>3</mn></mfrac><mi>ln</mi><mo> </mo><mi>x</mi><mo>+</mo><mo>…</mo></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>></mo><mn>1</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>p</mi><mo>≠</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the case where the series is geometric.</p>
</div>
<div class="specification">
<p>Now consider the case where the series is arithmetic with common difference <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mo>±</mo><mfrac><mn>1</mn><msqrt><mn>3</mn></msqrt></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, show that the series is convergent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mo>∞</mo></msub><mo>=</mo><mn>3</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mfrac><mn>2</mn><mn>3</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo> </mo><mi>ln</mi><mo> </mo><mi>x</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℚ</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sum of the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> terms of the series is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mfenced><mfrac><mn>1</mn><msup><mi>x</mi><mn>3</mn></msup></mfrac></mfenced></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question">
<p>The cubic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>3</mn></msup><mo>-</mo><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><mi>k</mi><mo>=</mo><mn>0</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>></mo><mn>0</mn></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>,</mo><mo> </mo><mi>β</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>+</mo><mi>β</mi></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>β</mi><mo>=</mo><mo>-</mo><mfrac><msup><mi>k</mi><mn>2</mn></msup><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>5</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{2^a},\,b \times {2^{ - 3a}}} \right)"> <mrow> <mo>(</mo> <mrow> <mrow> <msup> <mn>2</mn> <mi>a</mi> </msup> </mrow> <mo>,</mo> <mspace width="thinmathspace"></mspace> <mi>b</mi> <mo>×</mo> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>3</mn> <mi>a</mi> </mrow> </msup> </mrow> </mrow> <mo>)</mo> </mrow> </math></span> where <em>a</em>, <em>b</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \in \mathbb{Q}"> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Q</mi> </mrow> </math></span>. Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> is a positive constant.</p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x) = x\sqrt {f(x)} ">
<mi>g</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>x</mi>
<msqrt>
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</msqrt>
</math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| x \right| > a">
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
<mo>></mo>
<mi>a</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{1}{{f(x)}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </math></span>;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span> intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {\frac{1}{{f(x)}}} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int {f(x)\cos x{\text{d}}x} "> <mo>∫</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo></mo> <mi>x</mi> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> </mrow> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'(x)"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{1 - 3x}}{{x - 2}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>−</mo> <mn>3</mn> <mi>x</mi> </mrow> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span>, showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
</div>
<br><hr><br><div class="specification">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>Write down the equation of</p>
</div>
<div class="specification">
<p>Find the coordinates where the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> crosses</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the vertical asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the horizontal asymptote of the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> on the axes below.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mi>a</mi><mi>x</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn><mo>-</mo><mi>x</mi></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>3</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{{x^2} - 10x + 5}}{{x + 1}}{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \ne - 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>10</mn>
<mi>x</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the co-ordinates of all stationary points.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With justification, state if each stationary point is a minimum, maximum or horizontal point of inflection.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{ln}}\left| x \right|">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mi>x</mi>
<mo>|</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ 0 \right\}">
<mrow>
<mo>{</mo>
<mn>0</mn>
<mo>}</mo>
</mrow>
</math></span>, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = {\text{ln}}\left| {x + k} \right|">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>|</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>k</mi>
</mrow>
<mo>|</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span> \ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left\{ { - k} \right\}">
<mrow>
<mo>{</mo>
<mrow>
<mo>−<!-- − --></mo>
<mi>k</mi>
</mrow>
<mo>}</mo>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{R}">
<mi>k</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k > 2">
<mi>k</mi>
<mo>></mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> intersect at the point P .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation by which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)"> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is transformed to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> on the same axes, clearly stating the points of intersection with any axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>3</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The region <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> is bounded by the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis and the lines <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><msqrt><mn>6</mn></msqrt></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> be the area of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math>.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>k</mi></math> divides <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> into two regions of equal area.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> be the gradient of a tangent to the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math>, clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mi mathvariant="normal">π</mi></mrow><mn>2</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mo>-</mo><mfrac><mrow><mn>6</mn><mi>x</mi></mrow><msup><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn></mrow></mfenced><mn>2</mn></msup></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>27</mn><mn>32</mn></mfrac><msqrt><mfrac><mn>2</mn><mn>3</mn></mfrac></msqrt></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Sketch the graphs of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{x}{2} + 1"> <mi>y</mi> <mo>=</mo> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> <mo>+</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \left| {x - 2} \right|"> <mi>y</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> <mo>|</mo> </mrow> </math></span> on the following axes.</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mn>1</mn><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>3</mn></mrow></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>></mo><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>The inverse of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arctan</mtext><mfrac><mi>x</mi><mn>2</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mfenced><mi>x</mi></mfenced><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><msqrt><mn>4</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mi>x</mi></msqrt><mi>x</mi></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mi>h</mi><mo>∘</mo><mi>g</mi></mrow></mfenced><mfenced><mi>a</mi></mfenced><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>, find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<p>Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>+</mo><mfrac><mi>q</mi><mn>2</mn></mfrac><msqrt><mi>r</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {{\text{e}}^{2x}} - 6{{\text{e}}^x} + 5{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \leqslant a">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mn>2</mn>
<mi>x</mi>
</mrow>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>6</mn>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mi>x</mi>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>a</mi>
</math></span>. The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> has an inverse function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>, stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <em>f</em>(<em>x</em>) = <em>x</em><sup>4</sup> + <em>px</em><sup>3</sup> + <em>qx</em> + 5 where <em>p</em>, <em>q</em> are constants.</p>
<p>The remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> + 1) is 7, and the remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> − 2) is 1. Find the value of <em>p</em> and the value of <em>q</em>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x) = 3{x^3} - 11{x^2} + kx + 8">
<mi>q</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>11</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>k</mi>
<mi>x</mi>
<mo>+</mo>
<mn>8</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x)"> <mi>q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> has a factor <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(x - 4)"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−</mo> <mn>4</mn> <mo stretchy="false">)</mo> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q(x)">
<mi>q</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> as a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mi>x</mi><msqrt><mn>1</mn><mo>-</mo><msup><mi>x</mi><mn>2</mn></msup></msqrt></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>1</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>1</mn></math>.</p>
<p>The graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> is shown below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The range of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≤</mo><mi>y</mi><mo>≤</mo><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2x + 6}}{{{x^2} + 6x + 10}}{\text{,}}\,\,x \in \mathbb{R}.">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>6</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>6</mn>
<mi>x</mi>
<mo>+</mo>
<mn>10</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>.</mo>
</math></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> has no vertical asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the horizontal asymptote. </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int\limits_0^1 {f\left( x \right)} \,dx">
<munderover>
<mo>∫</mo>
<mn>0</mn>
<mn>1</mn>
</munderover>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>d</mi>
<mi>x</mi>
</math></span>, giving the answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,q{\text{,}}\,\,q \in \mathbb{Q}">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Q</mi>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>p</mi><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>p</mi><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mi>p</mi></math> has two real, distinct roots.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the case when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>=</mo><mn>4</mn></math>. The roots of the equation can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mfrac><mrow><mi>a</mi><mo>±</mo><msqrt><mn>13</mn></msqrt></mrow><mn>6</mn></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>. Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2x - 4}}{{{x^2} - 1}}{\text{, }} - 1 < x < 1">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>4</mn>
</mrow>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</mfrac>
<mrow>
<mtext>, </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>For the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right) = 0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </math></span>, then <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2 - \sqrt 3 "> <mi>x</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <msqrt> <mn>3</mn> </msqrt> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that there are no <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-intercepts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the graph, showing clearly any asymptotic behaviour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{x + 1}} - \frac{1}{{x - 1}} = \frac{{2x - 4}}{{{x^2} - 1}}"> <mfrac> <mn>3</mn> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>−</mo> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mn>1</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The area enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 4"> <mi>y</mi> <mo>=</mo> <mn>4</mn> </math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,v"> <mrow> <mtext>ln</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mi>v</mi> </math></span>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v"> <mi>v</mi> </math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>. The graph has a horizontal asymptote at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = - 1">
<mi>y</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span>. The graph crosses the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mn>1</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1">
<mi>x</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>, and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 2">
<mi>y</mi>
<mo>=</mo>
<mn>2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p>On the following set of axes, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = {\left[ {f\left( x \right)} \right]^2} + 1">
<mi>y</mi>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>[</mo>
<mrow>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>1</mn>
</math></span>, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.</p>
<p><img src=""></p>
<p> </p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = 4\,{\text{cos}}\,x + 1">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cos</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>+</mo>
<mn>1</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a \leqslant x \leqslant \frac{\pi }{2}">
<mi>a</mi>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a < \frac{\pi }{2}">
<mi>a</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = - \frac{\pi }{2}"> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>, sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = g\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>. Indicate clearly the maximum and minimum values of the function.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g"> <mi>g</mi> </math></span> has an inverse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), write down the domain of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> found in part (b), find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{g^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>g</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^4} - 6{x^2} - 2x + 4">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>6</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mn>4</mn>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
<mi>x</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is translated two units to the left to form the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{x^4} + b{x^3} + c{x^2} + dx + e">
<mi>a</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>4</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>b</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>c</mi>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mi>d</mi>
<mi>x</mi>
<mo>+</mo>
<mi>e</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e \in \mathbb{Z}">
<mi>e</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{ax + b}}{{cx + d}}">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
</mrow>
<mrow>
<mi>c</mi>
<mi>x</mi>
<mo>+</mo>
<mi>d</mi>
</mrow>
</mfrac>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R},\,\,x \ne - \frac{d}{c}">
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mfrac>
<mi>d</mi>
<mi>c</mi>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
<mi>g</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2">
<mi>g</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mn>2</mn>
</math></span></p>
</div>
<div class="question">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( x \right)"> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A + \frac{B}{{x - 2}}"> <mi>A</mi> <mo>+</mo> <mfrac> <mi>B</mi> <mrow> <mi>x</mi> <mo>−</mo> <mn>2</mn> </mrow> </mfrac> </math></span> where A, B are constants.</p>
</div>
<br><hr><br><div class="question">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = \frac{{x - 4}}{{2x - 5}}"> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>−</mo> <mn>4</mn> </mrow> <mrow> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mn>5</mn> </mrow> </mfrac> </math></span>, stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the probability density function</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>c</mi><mo>-</mo><mi>a</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>x</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>c</mi></mtd></mtr><mtr><mtd><mfrac><mn>2</mn><mrow><mfenced><mrow><mi>b</mi><mo>-</mo><mi>a</mi></mrow></mfenced><mfenced><mrow><mi>b</mi><mo>-</mo><mi>c</mi></mrow></mfenced></mrow></mfrac><mfenced><mrow><mi>b</mi><mo>-</mo><mi>x</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>c</mi><mo><</mo><mi>x</mi><mo>≤</mo><mi>b</mi></mtd></mtr><mtr><mtd><mn>0</mn><mo>,</mo></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math>.</p>
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mfenced><mi>x</mi></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>b</mi></math>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>≥</mo><mfrac><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow><mn>2</mn></mfrac></math>, find an expression for the median of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{(x + h)^2} + k"> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <msup> <mo stretchy="false">)</mo> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>k</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + 3x + 2"> <mrow> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x)"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, indicating on it the equations of the asymptotes, the coordinates of the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y"> <mi>y</mi> </math></span>-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> if <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\int_0^1 {f(x){\text{d}}x = \ln (p)} "> <msubsup> <mo>∫</mo> <mn>0</mn> <mn>1</mn> </msubsup> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow> <mtext>d</mtext> </mrow> <mi>x</mi> <mo>=</mo> <mi>ln</mi> <mo></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( {\left| x \right|} \right)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-axis and the lines with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - 1"> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 1"> <mi>x</mi> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{2{x^2} - 5x - 12}}{{x + 2}}{\text{,}}\,\,x \in \mathbb{R}{\text{,}}\,\,x \ne - 2">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−<!-- − --></mo>
<mn>5</mn>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>12</mn>
</mrow>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</mrow>
</mfrac>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
<mo>≠<!-- ≠ --></mo>
<mo>−<!-- − --></mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find all the intercepts of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> with both the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span> axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the vertical asymptote.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \to \pm \infty ">
<mi>x</mi>
<mo stretchy="false">→</mo>
<mo>±</mo>
<mi mathvariant="normal">∞</mi>
</math></span> the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> approaches an oblique straight line asymptote.</p>
<p>Divide <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2{x^2} - 5x - 12">
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>5</mn>
<mi>x</mi>
<mo>−</mo>
<mn>12</mn>
</math></span> by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 2">
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
</math></span> to find the equation of this asymptote.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>x</mi>
<mn>3</mn>
</msup>
</mrow>
<mo>+</mo>
<mn>5</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−<!-- − --></mo>
<mn>2</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>2</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}(x)">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}">
<mrow>
<msup>
<mi>f</mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Solve the equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>3</mn></msub><mo> </mo><msqrt><mi>x</mi></msqrt><mo>=</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mo> </mo><msub><mi>log</mi><mn>2</mn></msub><mo> </mo><mn>3</mn></mrow></mfrac><mo>+</mo><msub><mi>log</mi><mn>3</mn></msub><mfenced><mrow><mn>4</mn><msup><mi>x</mi><mn>3</mn></msup></mrow></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
</div>
<br><hr><br><div class="question">
<p>The quadratic equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} - 2kx + (k - 1) = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mi>k</mi>
<mi>x</mi>
<mo>+</mo>
<mo stretchy="false">(</mo>
<mi>k</mi>
<mo>−</mo>
<mn>1</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0</mn>
</math></span> has roots <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta ">
<mi>β</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\alpha ^2} + {\beta ^2} = 4">
<mrow>
<msup>
<mi>α</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<msup>
<mi>β</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>4</mn>
</math></span>. Without solving the equation, find the possible values of the real number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>Solve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) < 2{\left( {{\text{ln}}\,2} \right)^2}">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>x</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo><</mo>
<mn>2</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>, with asymptotes at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>4</mn></mfrac></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a sequence of transformations that transforms the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan </mtext><mi>x</mi></math> to the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mtext>arctan</mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan</mtext><mo> </mo><mi>p</mi><mo>+</mo><mtext>arctan</mtext><mo> </mo><mi>q</mi><mo>≡</mo><mtext>arctan</mtext><mfenced><mfrac><mrow><mi>p</mi><mo>+</mo><mi>q</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>p</mi><mi>q</mi></mrow></mfrac></mfenced></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>q</mi><mo><</mo><mn>1</mn></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>arctan </mtext><mfenced><mrow><mn>2</mn><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>=</mo><mtext>arctan </mtext><mfenced><mfrac><mi>x</mi><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mi mathvariant="normal">+</mi><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>></mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using mathematical induction and the result from part (b), prove that <math xmlns="http://www.w3.org/1998/Math/MathML"><munderover><mtext>Σ</mtext><mrow><mi>r</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mtext>arctan</mtext><mfenced><mfrac><mn>1</mn><mrow><mn>2</mn><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac></mfenced><mo>=</mo><mtext>arctan</mtext><mfenced><mfrac><mi>n</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the binomial theorem to expand <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mfenced><mrow><mi>cos</mi><mo> </mo><mi>θ</mi><mo>+</mo><mi mathvariant="normal">i</mi><mo> </mo><mi>sin</mi><mo> </mo><mi>θ</mi></mrow></mfenced><mn>4</mn></msup></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>+</mo><mi>b</mi><mi mathvariant="normal">i</mi></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> are expressed in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>sin</mi><mo> </mo><mi>θ</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cos</mi><mo> </mo><mi>θ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use de Moivre’s theorem and the result from part (a) to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>cot</mi><mo> </mo><mn>4</mn><mi>θ</mi><mo>=</mo><mfrac><mrow><msup><mi>cot</mi><mn>4</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>6</mn><mo> </mo><msup><mi>cot</mi><mn>2</mn></msup><mo> </mo><mi>θ</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>4</mn><mo> </mo><msup><mi>cot</mi><mn>3</mn></msup><mo> </mo><mi>θ</mi><mo>-</mo><mn>4</mn><mo> </mo><mi>cot</mi><mo> </mo><mi>θ</mi></mrow></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the identity from part (b) to show that the quadratic equation <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>6</mn><mi>x</mi><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></math> has roots <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the exact value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>cot</mtext><mn>2</mn></msup><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a quadratic equation with integer coefficients, having roots <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mi mathvariant="normal">π</mi><mn>8</mn></mfrac></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>cosec</mi><mn>2</mn></msup><mo> </mo><mfrac><mrow><mn>3</mn><mi mathvariant="normal">π</mi></mrow><mn>8</mn></mfrac></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br>