File "HL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AA/Topic 3/HL-paper2html
File size: 207.3 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>A function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi></math> is defined by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mtext>arcsin</mtext><mfenced><mfrac><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>1</mn></mrow><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfrac></mfenced><mo>,</mo><mo> </mo><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≥</mo><mn>0</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering limits, show that the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math> has a horizontal asymptote and state its equation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced><mo>=</mo><mfrac><mrow><mn>2</mn><mi>x</mi></mrow><mrow><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mfenced><mrow><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfrac></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi><mo>,</mo><mo> </mo><mi>x</mi><mo>≠</mo><mn>0</mn></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using the expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>'</mo><mfenced><mi>x</mi></mfenced></math> and the result <math xmlns="http://www.w3.org/1998/Math/MathML"><msqrt><msup><mi>x</mi><mn>2</mn></msup></msqrt><mo>=</mo><mfenced open="|" close="|"><mi>x</mi></mfenced></math>, show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> is decreasing for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>0</mn></math>.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, justifying your answer.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the domain of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msup><mi>g</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math>, clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{cot}}\,2\theta = \frac{{1 - {\text{ta}}{{\text{n}}^2}\,\theta }}{{2\,{\text{tan}}\,\theta }}">
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>1</mn>
<mo>−</mo>
<mrow>
<mtext>ta</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>n</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</mrow>
</mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = {\text{tan}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = - \,{\text{cot}}\,\theta ">
<mi>x</mi>
<mo>=</mo>
<mo>−</mo>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>θ</mi>
</math></span> satisfy the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{x^2} + \left( {2\,{\text{cot}}\,2\theta } \right)x - 1 = 0">
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>+</mo>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>cot</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
<mi>θ</mi>
</mrow>
<mo>)</mo>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, show that the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{12}} = 2 - \sqrt 3 ">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>12</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
<mo>−</mo>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the results from parts (b) and (c) find the exact value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{tan}}\frac{\pi }{{24}} - {\text{cot}}\frac{\pi }{{24}}">
<mrow>
<mtext>tan</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
<mo>−</mo>
<mrow>
<mtext>cot</mtext>
</mrow>
<mfrac>
<mi>π</mi>
<mrow>
<mn>24</mn>
</mrow>
</mfrac>
</math></span>.</p>
<p>Give your answer in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + b\sqrt 3 ">
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<msqrt>
<mn>3</mn>
</msqrt>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b \in \mathbb{Z}">
<mi>b</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">Z</mi>
</mrow>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A continuous random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has a probability density function given by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mfenced><mi>x</mi></mfenced><mo>=</mo><mfenced open="{" close><mtable><mtr><mtd><mtext>arccos</mtext><mo> </mo><mi>x</mi><mo> </mo></mtd><mtd><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mtext>otherwise</mtext></mtd></mtr></mtable></mfenced></math></p>
<p>The median of this distribution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi><mfenced><mrow><mfenced open="|" close="|"><mrow><mi>X</mi><mo>-</mo><mi>m</mi></mrow></mfenced><mo>≤</mo><mi>a</mi></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn></math>, determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The height of water, in metres, in Dungeness harbour is modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo> </mo><mi>sin</mi><mo>(</mo><mi>b</mi><mo>(</mo><mi>t</mi><mo>-</mo><mi>c</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of hours after midnight, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> are constants, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>></mo><mn>0</mn><mo>,</mo><mo> </mo><mi>b</mi><mo>></mo><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>></mo><mn>0</mn></math>.</p>
<p>The following graph shows the height of the water for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn></math> hours, starting at midnight.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first high tide occurs at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>04</mn><mo>:</mo><mn>30</mn></math> and the next high tide occurs <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> hours later. Throughout the day, the height of the water fluctuates between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>m</mtext></math>.</p>
<p>All heights are given correct to one decimal place.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>6</mn></mfrac></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the smallest possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the water at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>:</mo><mn>00</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of hours, over a 24-hour period, for which the tide is higher than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> metres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fisherman notes that the water height at nearby Folkestone harbour follows the same sinusoidal pattern as that of Dungeness harbour, with the exception that high tides (and low tides) occur <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> minutes earlier than at Dungeness.</p>
<p>Find a suitable equation that may be used to model the tidal height of water at Folkestone harbour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The voltage <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> in a circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v\left( t \right) = 3\,{\text{sin}}\left( {100\pi t} \right)">
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mi>t</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t \geqslant 0">
<mi>t</mi>
<mo>⩾<!-- ⩾ --></mo>
<mn>0</mn>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> is measured in seconds.</p>
</div>
<div class="specification">
<p>The current <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i">
<mi>i</mi>
</math></span> in this circuit is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i\left( t \right) = 2\,{\text{sin}}\left( {100\pi \left( {t + 0.003} \right)} \right)">
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>100</mn>
<mi>π<!-- π --></mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>+</mo>
<mn>0.003</mn>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> in this circuit is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = v\left( t \right) \times i\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>×<!-- × --></mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The average power <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span> in this circuit from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = 0">
<mi>t</mi>
<mo>=</mo>
<mn>0</mn>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = T">
<mi>t</mi>
<mo>=</mo>
<mi>T</mi>
</math></span> is given by the equation</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right) = \frac{1}{T}\int_0^T {p\left( t \right){\text{d}}t} ">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mi>T</mi>
</mfrac>
<msubsup>
<mo>∫<!-- ∫ --></mo>
<mn>0</mn>
<mi>T</mi>
</msubsup>
<mrow>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T > 0">
<mi>T</mi>
<mo>></mo>
<mn>0</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the maximum and minimum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down two transformations that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = v\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>v</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = i\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>i</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 , showing clearly the coordinates of the first maximum and the first minimum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total time in the interval 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span> ≤ 0.02 for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> ≥ 3.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
</math></span>(0.007).</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( t \right)">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{p_{av}}\left( T \right)">
<mrow>
<msub>
<mi>p</mi>
<mrow>
<mi>a</mi>
<mi>v</mi>
</mrow>
</msub>
</mrow>
<mrow>
<mo>(</mo>
<mi>T</mi>
<mo>)</mo>
</mrow>
</math></span> > 0 for all <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> > 0.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</math></span> can be written as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( t \right) = a\,{\text{sin}}\left( {b\left( {t - c} \right)} \right) + d">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>sin</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>b</mi>
<mrow>
<mo>(</mo>
<mrow>
<mi>t</mi>
<mo>−</mo>
<mi>c</mi>
</mrow>
<mo>)</mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>d</mi>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> > 0, use your graph to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>.</p>
<p> </p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the rectangle OABC such that AB = OC = 10 and BC = OA = 1 , with the points P , Q and R placed on the line OC such that OP = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>, OQ = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> and OR = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, such that 0 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
<mi>q</mi>
</math></span> < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> < 10.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
</math></span> be the angle APO, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _q}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
</math></span> be the angle AQO and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> be the angle ARO.</p>
</div>
<div class="specification">
<p>Consider the case when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p} = {\theta _q} + {\theta _r}">
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>p</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>q</mi>
</msub>
</mrow>
<mo>+</mo>
<mrow>
<msub>
<mi>θ<!-- θ --></mi>
<mi>r</mi>
</msub>
</mrow>
</math></span> and QR = 1.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\theta _p}"> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = \frac{{{q^2} + q - 1}}{{2q + 1}}"> <mi>p</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <msup> <mi>q</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mi>q</mi> <mo>−</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By sketching the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> as a function of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>, determine the range of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p"> <mi>p</mi> </math></span> for which there are possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q"> <mi>q</mi> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>−</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>−</mo><mn>13</mn></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> has vector equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>3</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced><mo> </mo><mo>,</mo><mo> </mo><mi>λ</mi><mo> </mo><mo>∈</mo><mo> </mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> contains the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> meets <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>, find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the shortest distance from the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>, giving your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo mathvariant="bold">.</mo><mi mathvariant="bold-italic">n</mi><mo>=</mo><mi>d</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the acute angle between <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> moves in a straight line such that after time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, its velocity, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mtext>m s</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><msup><mtext>e</mtext><mrow><mo>−</mo><mn>3</mn><mi>t</mi></mrow></msup><mo> </mo><mi>sin</mi><mo> </mo><mn>6</mn><mo> </mo><mi>t</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> has displacement <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>; at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math>.</p>
</div>
<div class="specification">
<p>At successive times when the acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is<math xmlns="http://www.w3.org/1998/Math/MathML"><mo> </mo><mn>0</mn><mo> </mo><msup><mtext>m s</mtext><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo> </mo></math>, the velocities of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> form a geometric sequence. The acceleration of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is zero at times <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>t</mi><mn>3</mn></msub></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>t</mi><mn>1</mn></msub><mo><</mo><msub><mi>t</mi><mn>2</mn></msub><mo><</mo><msub><mi>t</mi><mn>3</mn></msub></math> and the respective velocities are <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><msub><mi>v</mi><mn>3</mn></msub></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the times when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> comes to instantaneous rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum displacement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math>, in metres, from its initial position.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total distance travelled by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in the first <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> seconds of its motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, at these times, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>tan</mi><mo> </mo><mn>6</mn><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><msub><mi>v</mi><mn>2</mn></msub><msub><mi>v</mi><mn>1</mn></msub></mfrac><mo>=</mo><mfrac><msub><mi>v</mi><mn>3</mn></msub><msub><mi>v</mi><mn>2</mn></msub></mfrac><mo>=</mo><mo>-</mo><msup><mtext>e</mtext><mrow><mo>-</mo><mfrac><mi mathvariant="normal">π</mi><mn>2</mn></mfrac></mrow></msup></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span> that satisfy the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{k^2} - k - 12 < 0"> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> </mrow> <mo>−</mo> <mi>k</mi> <mo>−</mo> <mn>12</mn> <mo><</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\cos B < \frac{1}{4}"> <mi>cos</mi> <mo></mo> <mi>B</mi> <mo><</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math></span>, find the range of possible values for AB.</p>
<p><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two airplanes, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, have position vectors with respect to an origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> given respectively by</p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mtext mathvariant="bold-italic">A</mtext></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>19</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mo>-</mo><mn>6</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></math></p>
<p style="padding-left: 180px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">r</mi><mi mathvariant="bold-italic">B</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>12</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>t</mi><mfenced><mtable><mtr><mtd><mn>4</mn></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> represents the time in minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Entries in each column vector give the displacement east of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, the displacement north of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math> and the distance above sea level, all measured in kilometres.</p>
</div>
<div class="specification">
<p>The two airplanes’ lines of flight cross at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the three-figure bearing on which airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> is travelling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> travels at a greater speed than airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the two airplanes’ lines of flight. Give your answer in degrees.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the length of time between the first airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math> and the second airplane arriving at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> represent the distance between airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and airplane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>5</mn></math>.</p>
<p>Find the minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>
<div class="specification">
<p>The volume of water is increasing at a constant rate of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}">
<mn>0.0008</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mrow>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V{\text{ }}({{\text{m}}^3})">
<mi>V</mi>
<mrow>
<mtext> </mtext>
</mrow>
<mo stretchy="false">(</mo>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> in the trough in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}\theta }}{{{\text{d}}t}}">
<mfrac>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>θ</mi>
</mrow>
<mrow>
<mrow>
<mtext>d</mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta = \frac{\pi }{3}">
<mi>θ</mi>
<mo>=</mo>
<mfrac>
<mi>π</mi>
<mn>3</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 3x\arccos (x)">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo><!-- --></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 \leqslant x \leqslant 1">
<mo>−<!-- − --></mo>
<mn>1</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the inequality <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left| {3x\arccos (x)} \right| > 1">
<mrow>
<mo>|</mo>
<mrow>
<mn>3</mn>
<mi>x</mi>
<mi>arccos</mi>
<mo></mo>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
</mrow>
<mo>|</mo>
</mrow>
<mo>></mo>
<mn>1</mn>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x < \frac{\pi }{2}">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>2</mn>
<mrow>
<msup>
<mi>sin</mi>
<mn>2</mn>
</msup>
</mrow>
<mi>x</mi>
<mo>+</mo>
<mn>7</mn>
<mi>sin</mi>
<mo><!-- --></mo>
<mn>2</mn>
<mi>x</mi>
<mo>+</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>9</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u = \tan x">
<mi>u</mi>
<mo>=</mo>
<mi>tan</mi>
<mo><!-- --></mo>
<mi>x</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f’(x)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span> for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x < \frac{\pi }{2}"> <mn>0</mn> <mo>⩽</mo> <mi>x</mi> <mo><</mo> <mfrac> <mi>π</mi> <mn>2</mn> </mfrac> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x"> <mi>x</mi> </math></span>-coordinate(s) of the point(s) of inflexion of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f(x)"> <mi>y</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>, labelling these clearly on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f’(x)"> <mi>y</mi> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin x"> <mi>sin</mi> <mo></mo> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu "><mi>u</mi></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sin 2x"> <mi>sin</mi> <mo></mo> <mn>2</mn> <mi>x</mi> </math></span> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="u"> <mi>u</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span> can be expressed as <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{u^3} - 7{u^2} + 15u - 9 = 0"> <mrow> <msup> <mi>u</mi> <mn>3</mn> </msup> </mrow> <mo>−</mo> <mn>7</mn> <mrow> <msup> <mi>u</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mn>15</mn> <mi>u</mi> <mo>−</mo> <mn>9</mn> <mo>=</mo> <mn>0</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = 0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </math></span>, giving your answers in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\arctan k"> <mi>arctan</mi> <mo></mo> <mi>k</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k \in \mathbb{Z}"> <mi>k</mi> <mo>∈</mo> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two submarines A and B have their routes planned so that their positions at time <em>t</em> hours, 0 ≤ <em>t</em> < 20 , would be defined by the position vectors <em><strong>r</strong><sub>A</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,2 \hfill \\ \,4 \hfill \\ - 1 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 1 \hfill \\ \,1 \hfill \\ - 0.15 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>4</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.15</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> and <em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.5 \hfill \\ \,1.2 \hfill \\ \,0.1 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.5</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span> relative to a fixed point on the surface of the ocean (all lengths are in kilometres).</p>
</div>
<div class="specification">
<p>To avoid the collision submarine B adjusts its velocity so that its position vector is now given by</p>
<p style="padding-left: 120px;"><em><strong>r</strong><sub>B</sub></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( \begin{gathered} \,0 \hfill \\ \,3.2 \hfill \\ - 2 \hfill \\ \end{gathered} \right) + t\left( \begin{gathered} - 0.45 \hfill \\ \,1.08 \hfill \\ \,0.09 \hfill \\ \end{gathered} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>3.2</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>2</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>t</mi>
<mrow>
<mo>(</mo>
<mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
<mtr>
<mtd>
<mo>−<!-- − --></mo>
<mn>0.45</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>1.08</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mspace width="thinmathspace"></mspace>
<mn>0.09</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the two submarines would collide at a point P and write down the coordinates of P.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that submarine B travels in the same direction as originally planned.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when submarine B passes through P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the distance between the two submarines in terms of <em>t</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>t</em> when the two submarines are closest together.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance between the two submarines at this time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points A, B and C have the following position vectors with respect to an origin O.</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} = 2">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
<mn>2</mn>
</math></span><strong><em>i</em></strong> + <strong><em>j</em></strong> – 2<strong><em>k</em></strong></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OB}}} = 2">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">B</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
<mn>2</mn>
</math></span><strong><em>i</em></strong> – <strong><em>j</em></strong> + 2<strong><em>k</em></strong></p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OC}}} = ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>→<!-- → --></mo>
</mover>
<mo>=</mo>
</math></span> <strong><em>i</em></strong> + 3<strong><em>j</em></strong> + 3<strong><em>k</em></strong></p>
</div>
<div class="specification">
<p>The plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> contains the points O, A and B and the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span> contains the points O, A and C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector equation of the line (BC).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether or not the lines (OA) and (BC) intersect.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span>, which passes through C and is perpendicular to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\overrightarrow {{\rm{OA}}} ">
<mover>
<mrow>
<mrow>
<mi mathvariant="normal">O</mi>
<mi mathvariant="normal">A</mi>
</mrow>
</mrow>
<mo>→</mo>
</mover>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the line (BC) lies in the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_1">
<msub>
<mi></mi>
<mn>1</mn>
</msub>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that 2<strong><em>j </em></strong>+ <strong><em>k </em></strong>is perpendicular to the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector perpendicular to the plane <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between the planes <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_2">
<msub>
<mi></mi>
<mn>2</mn>
</msub>
</math></span> and <em>Π</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_3">
<msub>
<mi></mi>
<mn>3</mn>
</msub>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the planes <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> with the following equations.</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub><mtext>: </mtext><mn>3</mn><mi>x</mi><mo>+</mo><mn>2</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>6</mn></math></p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub><mtext>: </mtext><mi>x</mi><mo>-</mo><mn>2</mn><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mn>4</mn></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a Cartesian equation of the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>3</mn></msub></math> which is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> and passes through the origin <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>1</mn></msub></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>2</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>Π</mtext><mn>3</mn></msub></math> intersect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Iqbal attempts three practice papers in mathematics. The probability that he passes the first paper is 0.6. Whenever he gains a pass in a paper, his confidence increases so that the probability of him passing the next paper increases by 0.1. Whenever he fails a paper the probability of him passing the next paper is 0.6.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the given probability tree diagram for Iqbal’s three attempts, labelling each branch with the correct probability.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that Iqbal passes at least two of the papers he attempts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Iqbal passes his third paper, given that he passed only one previous paper.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows two circles with centres at the points A and B and radii <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2r">
<mn>2</mn>
<mi>r</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>, respectively. The point B lies on the circle with centre A. The circles intersect at the points C and D.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_17.29.37.png" alt="N16/5/MATHL/HP2/ENG/TZ0/09"></p>
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α<!-- α --></mi>
</math></span> be the measure of the angle CAD and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ<!-- θ --></mi>
</math></span> be the measure of the angle CBD in radians.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the shaded area in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta ">
<mi>θ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha = 4\arcsin \frac{1}{4}">
<mi>α</mi>
<mo>=</mo>
<mn>4</mn>
<mi>arcsin</mi>
<mo></mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span> given that the shaded area is equal to 4.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The plane <em>П</em><sub>1</sub> contains the points P(1, 6, −7) , Q(0, 1, 1) and R(2, 0, −4).</p>
</div>
<div class="specification">
<p>The Cartesian equation of the plane <em>П</em><sub>2</sub> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x - 3y - z = 3">
<mi>x</mi>
<mo>−<!-- − --></mo>
<mn>3</mn>
<mi>y</mi>
<mo>−<!-- − --></mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>The Cartesian equation of the plane <em>П</em><sub>3</sub> is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ax + by + cz = 1">
<mi>a</mi>
<mi>x</mi>
<mo>+</mo>
<mi>b</mi>
<mi>y</mi>
<mo>+</mo>
<mi>c</mi>
<mi>z</mi>
<mo>=</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the case that <em>П</em><sub>3</sub> contains <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Cartesian equation of the plane containing P, Q and R.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>1</sub> and <em>П</em><sub>2</sub> meet in a line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>, verify that the vector equation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span> can be given by <em><strong>r</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}} {\frac{5}{4}} \\ 0 \\ { - \frac{7}{4}} \end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}} {\frac{1}{2}} \\ 1 \\ { - \frac{5}{2}} \end{array}} \right)">
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>5</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>7</mn>
<mn>4</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mi>λ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>−</mo>
<mfrac>
<mn>5</mn>
<mn>2</mn>
</mfrac>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>3</sub> is parallel to the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a + 2b - 5c = 0">
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<mi>b</mi>
<mo>−</mo>
<mn>5</mn>
<mi>c</mi>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="5a - 7c = 4">
<mn>5</mn>
<mi>a</mi>
<mo>−</mo>
<mn>7</mn>
<mi>c</mi>
<mo>=</mo>
<mn>4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>П</em><sub>3</sub> is equally inclined to both <em>П</em><sub>1</sub> and <em>П</em><sub>2</sub>, determine two distinct possible Cartesian equations for <em>П</em><sub>3</sub>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist conducted a nine-week experiment on two plants, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>, of the same species. He wanted to determine the effect of using a new plant fertilizer. Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was given fertilizer regularly, while Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was not.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>A</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>sin</mi><mo>(</mo><mn>2</mn><mi>t</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>+</mo><mn>9</mn><mi>t</mi><mo>+</mo><mn>27</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
<p>The scientist found that the height of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>,</mo><mo> </mo><msub><mi>h</mi><mi>B</mi></msub><mo> </mo><mtext>cm</mtext></math>, at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> weeks can be modelled by the function <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>B</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mn>8</mn><mi>t</mi><mo>+</mo><mn>32</mn></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>.</p>
</div>
<div class="specification">
<p>Use the scientist’s models to find the initial height of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> when <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>A</mi></msub><mfenced><mi>t</mi></mfenced><mo>=</mo><msub><mi>h</mi><mi>B</mi></msub><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>></mo><mn>6</mn></math>, prove that Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> was always taller than Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>9</mn></math>, find the total amount of time when the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> was greater than the rate of growth of Plant <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p>The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is denoted by P. The circular arc AB has centre, M, the midpoint of [CP].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find AM.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\mathop {\text{M}}\limits^ \wedge {\text{P}}">
<mrow>
<mtext>A</mtext>
</mrow>
<mover>
<mrow>
<mtext>M</mtext>
</mrow>
<mo>∧</mo>
</mover>
<mo></mo>
<mrow>
<mtext>P</mtext>
</mrow>
</math></span> in radians.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the shaded region.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {\text{tan}}\left( {x + \pi } \right){\text{cos}}\left( {x - \frac{\pi }{2}} \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>tan</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mi>π</mi>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>cos</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 < x < \frac{\pi }{2}">
<mn>0</mn>
<mo><</mo>
<mi>x</mi>
<mo><</mo>
<mfrac>
<mi>π</mi>
<mn>2</mn>
</mfrac>
</math></span>.</p>
<p>Express <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right)">
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> in terms of sin <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> and cos <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the vectors <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">b</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>12</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>5</mn></mtd></mtr></mtable></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mi mathvariant="bold-italic">b</mi></mfenced><mo>=</mo><mn>15</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi><mo>=</mo><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></math>.</p>
</div>
<div class="specification">
<p>Consider the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr></mtable></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>,</mo><mo> </mo><mi>y</mi><mo>∈</mo><msup><mi mathvariant="normal">ℝ</mi><mo>+</mo></msup></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible range of values for <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="|" close="|"><mrow><mi mathvariant="bold-italic">a</mi><mo>+</mo><mi mathvariant="bold-italic">b</mi></mrow></mfenced></math> is a minimum, find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>|</mo><mi mathvariant="bold-italic">q</mi><mo>|</mo><mo>=</mo><mo>|</mo><mi mathvariant="bold-italic">b</mi><mo>|</mo></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">q</mi></math> is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">a</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Three points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>3</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced><mo>,</mo><mo> </mo><mtext>B</mtext><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>7</mn></mrow></mfenced></math> lie on the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>.</p>
</div>
<div class="specification">
<p>Plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math> has equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mi>x</mi><mo>-</mo><mn>2</mn><mi>z</mi><mo>=</mo><mn>3</mn></math>. The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> and the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math> intersect at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
</div>
<div class="specification">
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math> lies on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> and the vector <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math>, expressing your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mi>y</mi><mo>+</mo><mi>c</mi><mi>z</mi><mo>=</mo><mi>d</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>,</mo><mo> </mo><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the intersection of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>1</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>2</mn></msub></math>. Verify that the vector equation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> can be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">r</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd></mtr></mtable></mfenced><mo>+</mo><mi>λ</mi><mfenced><mtable><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mo>-</mo><mn>1</mn></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that at the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>,</mo><mo> </mo><mi>λ</mi><mo>=</mo><mfrac><mn>3</mn><mn>4</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the coordinates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the reflection of the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> in the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the vector equation of the line formed when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is reflected in the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Π</mi><mn>3</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The points <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>5</mn></mrow></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mn>5</mn><mo>,</mo><mo> </mo><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext><mfenced><mrow><mo>-</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>1</mn></mrow></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext><mfenced><mrow><mn>7</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>4</mn><mo>,</mo><mo> </mo><mo>-</mo><mn>3</mn></mrow></mfenced></math> are the vertices of a right-pyramid.</p>
</div>
<div class="specification">
<p>The line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> passes through the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> and is perpendicular to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vectors <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AB</mtext><mo>→</mo></mover></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mover><mtext>AC</mtext><mo>→</mo></mover></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a vector method to show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mover><mtext>A</mtext><mo>^</mo></mover><mtext>C</mtext><mo>=</mo><mn>60</mn><mo>°</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the Cartesian equation of the plane <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math> that contains the triangle <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABC</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi><mo>=</mo><mo>-</mo><mn>2</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a vector equation of the line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the minimum distance, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>d</mi><mtext>min</mtext></msub></math>, from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Π</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of right-pyramid <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>ABCD</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>In triangle ABC, AB = 5, BC = 14 and AC = 11.</p>
<p>Find all the interior angles of the triangle. Give your answers in degrees to one decimal place.</p>
</div>
<br><hr><br><div class="specification">
<p>The following shape consists of three arcs of a circle, each with centre at the opposite vertex of an equilateral triangle as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">For this shape, calculate</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the perimeter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the area.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Barry is at the top of a cliff, standing 80 m above sea level, and observes two yachts in the sea.<br>“<em>Seaview</em>” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(S)"> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </math></span> is at an angle of depression of 25°.<br>“<em>Nauti Buoy</em>” <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(N)"> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </math></span> is at an angle of depression of 35°.<br>The following three dimensional diagram shows Barry and the two yachts at S and N.<br>X lies at the foot of the cliff and angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{SXN}} = "> <mrow> <mtext>SXN</mtext> </mrow> <mo>=</mo> </math></span> 70°.</p>
<p><img src="images/Schermafbeelding_2018-02-08_om_11.45.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/05"></p>
<p>Find, to 3 significant figures, the distance between the two yachts.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mi>lim</mi><mrow><mi>x</mi><mo>→</mo><mn>0</mn></mrow></munder><mfrac><mrow><mtext>arctan</mtext><mfenced><mrow><mi>cos</mi><mo> </mo><mi>x</mi></mrow></mfenced><mo>-</mo><mi>k</mi></mrow><msup><mi>x</mi><mn>2</mn></msup></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a finite limit only exists for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi><mo>=</mo><mfrac><mi mathvariant="normal">π</mi><mn>4</mn></mfrac></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using l’Hôpital’s rule, show algebraically that the value of the limit is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mfrac><mn>1</mn><mn>4</mn></mfrac></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Given that <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <strong><em>b</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \times ">
<mo>×</mo>
</math></span> <strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \ne ">
<mo>≠</mo>
</math></span> <strong>0 </strong>prove that <strong><em>a</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + ">
<mo>+</mo>
</math></span> <strong><em>c</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = ">
<mo>=</mo>
</math></span> <em>s<strong>b </strong></em>where <em>s </em>is a scalar.</p>
</div>
<br><hr><br><div class="question">
<p>Two ships, A and B , are observed from an origin O. Relative to O, their position vectors at time <em>t</em> hours after midday are given by</p>
<p style="padding-left:180px;"><em><strong>r</strong></em><sub>A</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 4 \\ 3 \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 5 \\ 8 \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p style="padding-left:180px;"><em><strong>r</strong></em><sub>B</sub> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} 7 \\ { - 3} \end{array}} \right) + t\left( {\begin{array}{*{20}{c}} 0 \\ {12} \end{array}} \right)"> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mtable columnspacing="1em" rowspacing="4pt"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>12</mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> </math></span></p>
<p>where distances are measured in kilometres.</p>
<p>Find the minimum distance between the two ships.</p>
</div>
<br><hr><br><div class="specification">
<p>In a triangle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ABC, AB}} = 4{\text{ cm, BC}} = 3{\text{ cm}}">
<mrow>
<mtext>ABC, AB</mtext>
</mrow>
<mo>=</mo>
<mn>4</mn>
<mrow>
<mtext> cm, BC</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\rm{B\hat AC}} = \frac{\pi }{9}">
<mrow>
<mrow>
<mi mathvariant="normal">B</mi>
<mrow>
<mover>
<mi mathvariant="normal">A</mi>
<mo stretchy="false">^<!-- ^ --></mo>
</mover>
</mrow>
<mi mathvariant="normal">C</mi>
</mrow>
</mrow>
<mo>=</mo>
<mfrac>
<mi>π<!-- π --></mi>
<mn>9</mn>
</mfrac>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cosine rule to find the two possible values for AC.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the difference between the areas of the two possible triangles ABC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two boats <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> travel due north.</p>
<p>Initially, boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is positioned <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math> metres due east of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
<p>The distances travelled by boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, after <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> seconds, are <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> metres and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> metres respectively. The angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is the radian measure of the bearing of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> from boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. This information is shown on the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>x</mi><mo>+</mo><mn>50</mn><mo> </mo><mtext>cot</mtext><mo> </mo><mi>θ</mi></math> .</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, the following conditions are true.</p>
<p style="padding-left:60px;">Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> has travelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> metres further than boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>Boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> is travelling at double the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.<br>The rate of change of the angle <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>0</mn><mo>.</mo><mn>1</mn></math> radians per second.</p>
<p>Find the speed of boat <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>This diagram shows a metallic pendant made out of four equal sectors of a larger circle of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OB}} = 9{\text{ cm}}">
<mrow>
<mtext>OB</mtext>
</mrow>
<mo>=</mo>
<mn>9</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span> and four equal sectors of a smaller circle of radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{OA}} = 3{\text{ cm}}">
<mrow>
<mtext>OA</mtext>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext> cm</mtext>
</mrow>
</math></span>.<br>The angle <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{BOC}} = ">
<mrow>
<mtext>BOC</mtext>
</mrow>
<mo>=</mo>
</math></span> 20°.</p>
<p><img src="images/Schermafbeelding_2018-02-08_om_11.16.43.png" alt="N17/5/MATHL/HP2/ENG/TZ0/03"></p>
<p>Find the area of the pendant.</p>
</div>
<br><hr><br><div class="question">
<p>Find the Cartesian equation of plane <em>Π</em> containing the points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{A}}\left( {6,{\text{ }}2,{\text{ }}1} \right)">
<mrow>
<mtext>A</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>6</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>2</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{B}}\left( {3,{\text{ }} - 1,{\text{ }}1} \right)">
<mrow>
<mtext>B</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>−</mo>
<mn>1</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> and perpendicular to the plane <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + 2y - z - 6 = 0">
<mi>x</mi>
<mo>+</mo>
<mn>2</mn>
<mi>y</mi>
<mo>−</mo>
<mi>z</mi>
<mo>−</mo>
<mn>6</mn>
<mo>=</mo>
<mn>0</mn>
</math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>Find the acute angle between the planes with equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + z = 3"> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>3</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2x - z = 2"> <mn>2</mn> <mi>x</mi> <mo>−</mo> <mi>z</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
</div>
<br><hr><br><div class="question">
<p>Boat A is situated 10km away from boat B, and each boat has a marine radio transmitter on board. The range of the transmitter on boat A is 7km, and the range of the transmitter on boat B is 5km. The region in which both transmitters can be detected is represented by the shaded region in the following diagram. Find the area of this region.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<br><hr><br>