File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Topic 8 HTML/SL-paper2html
File size: 200.06 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>The following data are available for a natural gas power station that has a high efficiency.</p>
<table style="width: 522px; margin-left: 60px;">
<tbody style="padding-left: 60px;">
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Rate of consumption of natural gas</td>
<td style="width: 155px;">= 14.6 kg s<sup>–1</sup></td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Specific energy of natural gas</td>
<td style="width: 155px;">= 55.5 MJ kg<sup>–1</sup></td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Efficiency of electrical power generation</td>
<td style="width: 155px;">= 59.0 %</td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">Mass of CO<sub>2</sub> generated per kg of natural gas</td>
<td style="width: 155px;">= 2.75 kg</td>
</tr>
<tr style="padding-left: 60px;">
<td style="width: 391px; padding-left: 60px;">One year</td>
<td style="width: 155px;">= 3.16 × 10<sup>7</sup> s&nbsp;</td>
</tr>
</tbody>
</table>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, with a suitable unit, the electrical power output of the power station.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of CO<sub>2</sub> generated in a year assuming the power station operates continuously.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using your answer to (b), why countries are being asked to decrease their dependence on fossil fuels.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of energy transfers, how thermal energy of the burning gas becomes electrical energy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The ratio&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{distance of Mars from the Sun}}}}{{{\text{distance of Earth from the Sun}}}}">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>distance of Mars from the Sun</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>distance of Earth from the Sun</mtext>
      </mrow>
    </mrow>
  </mfrac>
</math></span> = 1.5.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of solar radiation at the orbit of Mars is about 600 W m<sup>–2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in K, the mean surface temperature of Mars. Assume that Mars acts as a black body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atmosphere of Mars is composed mainly of carbon dioxide and has a pressure less than 1 % of that on the Earth. Outline why the greenhouse effect is not significant on Mars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to energy changes, the operation of a pumped storage hydroelectric system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydroelectric system has four 250 MW generators. The specific energy&nbsp;available from the water is 2.7 kJ kg<sup>–1</sup>. Determine the maximum time for which the&nbsp;hydroelectric system can maintain full output when a mass of 1.5 x&nbsp;10<sup>10</sup> kg of water&nbsp;passes through the turbines.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all the stored energy can be retrieved because of energy losses in the system. Explain <strong>one</strong> such loss.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the location of the hydroelectric system, an average intensity of 180 W m<sup>–2</sup> arrives&nbsp;at the Earth’s surface from the Sun. Solar photovoltaic (PV) cells convert this solar&nbsp;energy with an efficiency of 22 %. The solar cells are to be arranged in a square array.&nbsp;Determine the length of one side of the array that would be required to replace the<br>hydroelectric system.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A cell is connected to an ideal voltmeter, a switch S and a resistor R. The resistance&nbsp;of R is 4.0&thinsp;&Omega;.</p>
<p style="text-align: center;"><img src=""></p>
<p>When S is open the reading on the voltmeter is 12&thinsp;V. When S is closed the voltmeter&nbsp;reads 8.0&thinsp;V.</p>
</div>

<div class="specification">
<p>Electricity can be generated using renewable resources.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the laws of conservation that are represented by Kirchhoff’s circuit laws.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the emf of the cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the internal resistance of the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltmeter is used in another circuit that contains two secondary cells.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<p>Cell A has an emf of 10 V and an internal resistance of 1.0 Ω. Cell B has an emf of 4.0 V and an internal resistance of 2.0 Ω.</p>
<p>Calculate the reading on the voltmeter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why electricity is a secondary energy source.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some fuel sources are renewable. Outline what is meant by renewable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A fully charged cell of emf 6.0 V delivers a constant current of 5.0 A for a time of 0.25 hour until it is completely discharged.</p>
<p>The cell is then re-charged by a rectangular solar panel of dimensions 0.40 m × 0.15 m at a place where the maximum intensity of sunlight is 380 W m<sup>−2</sup>.</p>
<p>The overall efficiency of the re-charging process is 18 %.</p>
<p>Calculate the minimum time required to re-charge the cell fully.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why research into solar cell technology is important to society.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two renewable energy sources are solar and wind.</p>
</div>

<div class="specification">
<p>An alternative generation method is the use of wind turbines.</p>
<p>The following data are available:</p>
<p style="padding-left: 120px;">Length of turbine blade = 17 m<br>Density of air = 1.3 kg m<sup>–3</sup><br>Average wind speed = 7.5 m s<sup>–1</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the difference between photovoltaic cells and solar heating panels.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A solar farm is made up of photovoltaic cells of area 25 000 m<sup>2</sup>. The average solar intensity falling on the farm is 240 W m<sup>–2</sup> and the average power output of the farm&nbsp;is 1.6 MW. Calculate the efficiency of the photovoltaic cells.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the minimum number of turbines needed to generate the same power as the solar farm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain <strong>two</strong> reasons why the number of turbines required is likely to be greater than your answer to (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>One possible fission reaction of uranium-235 (U-235) is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">U</mi><mprescripts></mprescripts><mn>92</mn><mn>235</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts><mo>→</mo><mmultiscripts><mi>Xe</mi><mprescripts></mprescripts><mn>54</mn><mn>140</mn></mmultiscripts><mo>+</mo><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>+</mo><mn>2</mn><mmultiscripts><mi mathvariant="normal">n</mi><mprescripts></mprescripts><mn>0</mn><mn>1</mn></mmultiscripts></math></p>
<p style="text-align: left;">Mass of one atom of U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>235</mn><mo> </mo><mi mathvariant="normal">u</mi></math><br>Binding energy per nucleon for U-235 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>7</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Xe-140 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>29</mn><mo> </mo><mi>MeV</mi></math><br>Binding energy per nucleon for Sr-94 <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>=</mo><mn>8</mn><mo>.</mo><mn>59</mn><mo> </mo><mi>MeV</mi></math></p>
</div>

<div class="specification">
<p>A nuclear power station uses U-235 as fuel. Assume that every fission reaction of U-235 gives rise to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math> of energy.</p>
</div>

<div class="specification">
<p>A sample of waste produced by the reactor contains <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mi>kg</mi></math> of strontium-94 (Sr-94). Sr-94 is radioactive and undergoes beta-minus (<math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">β</mi><mo>-</mo></msup></math>) decay into a daughter nuclide X. The reaction for this decay is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Sr</mi><mprescripts></mprescripts><mn>38</mn><mn>94</mn></mmultiscripts><mo>→</mo><mi mathvariant="normal">X</mi><mo>+</mo><msub><mover><mi mathvariant="normal">v</mi><mo>¯</mo></mover><mi>e</mi></msub><mo>+</mo><mi>e</mi></math>.</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>The graph shows the variation with time of the mass of Sr-94 remaining in the sample.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="576" height="367"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by binding energy of a nucleus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why quantities such as atomic mass and nuclear binding energy are often expressed in non-SI units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the energy released in the reaction is about <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn><mo> </mo><mi>MeV</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">J</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, the specific energy of U-235.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The power station has a useful power output of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>2</mn><mo> </mo><mi>GW</mi></math> and an efficiency of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn><mo> </mo><mo>%</mo></math>. Determine the mass of U-235 that undergoes fission in one day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the proton number of nuclide X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the half-life of Sr-94.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of Sr-94 remaining in the sample after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>A satellite powered by solar cells directed towards the Sun is in a polar orbit about the Earth.</p>
<p style="text-align: center;"><img src=""></p>
<p>The satellite is orbiting the Earth at a distance of 6600 km from the centre of the Earth.</p>
</div>

<div class="specification">
<p>The satellite carries an experiment that measures the peak wavelength emitted by&nbsp;different objects. The Sun emits radiation that has a peak wavelength <em>λ</em><sub>S</sub> of 509 nm.&nbsp;The peak wavelength <em>λ</em><sub>E</sub>&nbsp;of the radiation emitted by the Earth is 10.1 μm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the orbital period for the satellite.</p>
<p>Mass of Earth = 6.0 x 10<sup>24</sup> kg</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mean temperature of the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the difference between <em>λ</em><sub>S</sub> and <em>λ</em><sub>E</sub> helps to account for the greenhouse effect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all scientists agree that global warming is caused by the activities of man.</p>
<p>Outline how scientists try to ensure agreement on a scientific issue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet orbits at a distance <em>d</em> from a star. The power emitted by the star is <em>P</em>. The total&nbsp;surface area of the planet is <em>A</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the power incident on the planet is</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>P</mi><mrow><mn>4</mn><mi>π</mi><msup><mi>d</mi><mn>2</mn></msup></mrow></mfrac><mo>×</mo><mfrac><mi>A</mi><mn>4</mn></mfrac><mo>.</mo></math></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The albedo of the planet is <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mtext>p</mtext></msub></math>. The equilibrium surface temperature of the planet&nbsp;is <em>T</em>. Derive the expression</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><mo>=</mo><mroot><mfrac><mrow><mi>P</mi><mo>(</mo><mn>1</mn><mo>-</mo><msub><mi>α</mi><mtext>p</mtext></msub><mo>)</mo></mrow><mrow><mn>16</mn><mi>π</mi><msup><mi>d</mi><mn>2</mn></msup><mi>e</mi><mi>σ</mi></mrow></mfrac><mn>4</mn></mroot></math></p>
<p>where <em>e</em> is the emissivity of the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On average, the Moon is the same distance from the Sun as the Earth. The Moon can&nbsp;be assumed to have an emissivity <em>e</em> = 1 and an albedo <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mtext>M</mtext></msub></math> = 0.13. The solar constant is&nbsp;1.36 × 103 W m<sup>−2</sup>. Calculate the surface temperature of the Moon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A photovoltaic cell is supplying energy to an external circuit. The photovoltaic cell can be&nbsp;modelled as a practical electrical cell with internal resistance.</p>
<p>The intensity of solar radiation incident on the photovoltaic cell at a particular time is at a&nbsp;maximum for the place where the cell is positioned.</p>
<p>The following data are available for this particular time:</p>
<p style="text-align: left; padding-left: 150px;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Operating current = 0.90 A<br>Output potential difference to external circuit = 14.5 V<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Output emf of photovoltaic cell = 21.0 V<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Area of panel = 350 mm × 450 mm</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the output potential difference to the external circuit and the output emf of&nbsp;the photovoltaic cell are different.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the internal resistance of the photovoltaic cell for the maximum intensity&nbsp;condition using the model for the cell.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The maximum intensity of sunlight incident on the photovoltaic cell at the place on the&nbsp;Earth’s surface is 680 W m<sup>−2</sup>.</p>
<p>A measure of the efficiency of a photovoltaic cell is the ratio</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mtext>energy&nbsp;available&nbsp;every&nbsp;second&nbsp;to&nbsp;the&nbsp;external&nbsp;circuit</mtext><mtext>energy&nbsp;arriving&nbsp;every&nbsp;second&nbsp;at&nbsp;the&nbsp;photovoltaic&nbsp;cell&nbsp;surface</mtext></mfrac><mo>.</mo></math></p>
<p>Determine the efficiency of this photovoltaic cell when the intensity incident upon it is at&nbsp;a maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reasons why future energy demands will be increasingly reliant on sources&nbsp;such as photovoltaic cells.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The radioactive nuclide beryllium-10 (Be-10) undergoes beta minus (<em>β–</em>) decay to form a stable boron (B) nuclide.</p>
</div>

<div class="specification">
<p>The initial number of nuclei in a pure sample of beryllium-10 is N<sub>0</sub>. The graph shows how the number of remaining <strong>beryllium </strong>nuclei in the sample varies with time.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>An ice sample is moved to a laboratory for analysis. The temperature of the sample is –20 °C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing information for this decay.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, sketch how the number of <strong>boron </strong>nuclei in the sample varies with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After 4.3 × 10<sup>6</sup> years,</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\frac{{{\text{number of produced boron nuclei}}}}{{{\text{number of remaining beryllium nuclei}}}} = 7.">
  <mfrac>
    <mrow>
      <mrow>
        <mtext>number of produced boron nuclei</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <mtext>number of remaining beryllium nuclei</mtext>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>7.</mn>
</math></span></p>
<p>Show that the half-life of beryllium-10 is 1.4 × 10<sup>6</sup> years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beryllium-10 is used to investigate ice samples from Antarctica. A sample of ice initially contains 7.6 × 10<sup>11</sup> atoms of beryllium-10. State the number of remaining beryllium-10 nuclei in the sample after 2.8 × 10<sup>6</sup> years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by thermal radiation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the frequency of the radiation emitted by a black body can be used to estimate the temperature of the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the peak wavelength in the intensity of the radiation emitted by the ice sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Derive the units of intensity in terms of fundamental SI units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Titan is a moon of Saturn. The Titan-Sun distance is 9.3 times greater than the&nbsp;Earth-Sun distance.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the intensity of the solar radiation at the location of Titan is 16 W m<sup>−2</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titan has an atmosphere of nitrogen. The albedo of the atmosphere is 0.22. The surface of Titan may be assumed to be a black body. Explain why the <strong>average </strong>intensity of solar radiation <strong>absorbed</strong> by the whole surface of Titan is 3.1 W m<sup>−2</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equilibrium surface temperature of Titan is about 90 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> and the period of revolution is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>T</mi><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>4</mn><msup><mi mathvariant="normal">π</mi><mn>2</mn></msup><msup><mi>R</mi><mrow><mo> </mo><mn>3</mn></mrow></msup></mrow><mrow><mi>G</mi><mi>M</mi></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> is the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The orbital radius of Titan around Saturn is 1.2 × 10<sup>9 </sup>m and the orbital period is 15.9 days. Estimate the mass of Saturn.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Cold milk enters a small sterilizing unit and flows over an electrical heating element.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The temperature of the milk is raised from 11&thinsp;&deg;C to 84&thinsp;&deg;C. A mass of 55&thinsp;g of milk enters&nbsp;the sterilizing unit every second.</p>
<p style="padding-left: 210px;">Specific heat capacity of milk = 3.9&thinsp;kJ&thinsp;kg<sup>&minus;1&thinsp;</sup>K<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The milk flows out through an insulated metal pipe. The pipe is at a temperature&nbsp;of 84&thinsp;&deg;C. A small section of the insulation has been removed from around the pipe.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the power input to the heating element. State an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether your answer to (a) is likely to overestimate or underestimate the power input.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, with reference to the molecules in the liquid, the difference between milk at 11 °C and milk at 84 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how energy is transferred from the inside of the metal pipe to the outside of the metal pipe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The missing section of insulation is 0.56 m long and the external radius of the pipe is 0.067 m. The emissivity of the pipe surface is 0.40. Determine the energy lost every second from the pipe surface. Ignore any absorption of radiation by the pipe surface.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> other method by which significant amounts of energy can be transferred from the pipe to the surroundings.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The average temperature of ocean surface water is 289 K. Oceans behave as black bodies.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show that the intensity radiated by the oceans is about 400 W m<sup>-2</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain why some of this radiation is returned to the oceans from the atmosphere.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Moon has no atmosphere and orbits the Earth. The diagram shows the Moon with rays of light from the Sun that are incident at 90° to the axis of rotation of the Moon.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A black body is on the Moon’s surface at point A. Show that the maximum temperature that this body can reach is 400 K. Assume that the Earth and the Moon are the same distance from the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another black body is on the Moon’s surface at point B.</p>
<p>Outline, without calculation, why the aximum temperature of the black body at point B is less than at point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The albedo of the Earth’s atmosphere is 0.28. Outline why the maximum temperature of a black body on the Earth when the Sun is overhead is less than that at point A on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a force acts on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this force does no work on the Moon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Wind is incident on the blades of a wind turbine. The radius of the blades is 12 m. The following data are available for the air immediately before and after impact with the blades.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the maximum power that can be extracted from the wind by this turbine.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the answer in (a) is a maximum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In a pumped storage hydroelectric system, water is stored in a dam of depth 34 m.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_13.07.03.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/05"></p>
<p>The water leaving the upper lake descends a vertical distance of 110 m and turns the turbine&nbsp;of a generator before exiting into the lower lake.</p>
</div>

<div class="specification">
<p>Water flows out of the upper lake at a rate of 1.2 × 10<sup>5</sup> m<sup>3</sup> per minute. The density of&nbsp;water is 1.0 × 10<sup>3</sup> kg m<sup>–3</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the specific energy of water in this storage system, giving an&nbsp;appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the average rate at which the gravitational potential energy of the&nbsp;water decreases is 2.5 GW.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The storage system produces 1.8 GW of electrical power. Determine the overall&nbsp;efficiency of the storage system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the upper lake is emptied it must be refilled with water from the lower lake and&nbsp;this requires energy. Suggest how the operators of this storage system can still make&nbsp;a profit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>