File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 5 HTML/SL-paper2html
File size: 2.02 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p>An ohmic conductor is connected to an ideal ammeter and to a power supply of output voltage V.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_17.57.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/04"></p>
<p>The following data are available for the conductor:</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; density of free electrons&nbsp; &nbsp; &nbsp;= 8.5 &times; 10<sup>22</sup> cm<sup>&minus;3</sup></p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; resistivity&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &rho; =&nbsp;1.7 &times; 10<sup>&minus;8</sup>&nbsp;&Omega;m</p>
<p>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; dimensions&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;w&nbsp;&times; h&nbsp;&times; l = 0.020 cm &times; 0.020 cm &times; 10 cm.</p>
<p>&nbsp;</p>
<p>The ammeter reading is 2.0 A.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resistance of the conductor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the drift speed <em>v </em>of the electrons in the conductor in cm s<sup>–1</sup>. State your answer to an appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about simple harmonic motion (SHM) and sound.&nbsp;<strong>Part 2 </strong>is about electric and magnetic fields.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1 </strong>Simple harmonic motion (SHM) and sound</p>
<p class="p1">The diagram shows a section of continuous track of a long-playing (LP) record. The stylus (needle) is placed in the track of the record.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-07_om_08.51.49.png" alt="M14/4/PHYSI/HP2/ENG/TZ2/07_01"></p>
<p class="p1">As the LP record rotates, the stylus moves because of changes in the width and position of the track. These movements are converted into sound waves by an electrical system and a loudspeaker.</p>
<p class="p1">A recording of a single-frequency musical note is played. The graph shows the variation in horizontal acceleration of the stylus with horizontal displacement.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-07_om_08.53.18.png" alt="M14/4/PHYSI/HP2/ENG/TZ2/07_02"></p>
</div>

<div class="specification">
<p class="p1">Sound is emitted from a loudspeaker which is outside a building. The loudspeaker emits a sound wave that has the same frequency as the recorded note.</p>
<p class="p1">A person standing at position 1 outside the building and a person standing at position 2 inside the building both hear the sound emitted by the loudspeaker.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-08_om_17.14.44.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/05_Part1.c"></p>
<p class="p1">A, B and C are wavefronts emitted by the loudspeaker.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2 </strong>Electric and magnetic fields</p>
<p class="p1">Electrical leads used in physics laboratories consist of a central conductor surrounded by an insulator.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the graph shows that the stylus undergoes simple harmonic motion.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Using the graph on page 14, show that the frequency of the note being played is about 200 Hz.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;On the graph on page 14, identify, with the letter P, the position of the stylus at which the kinetic energy is at a maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Draw rays to show how the person at <strong>position 1 </strong>is able to hear the sound emitted by the loudspeaker.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The speed of sound in the air is \({\text{330 m}}\,{{\text{s}}^{ - 1}}\). Calculate the wavelength of the note.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The walls of the room are designed to absorb sound. Explain how the person at <strong>position 2 </strong>is able to hear the sound emitted by the loudspeaker.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The arrangement in (c) is changed and another loudspeaker is added. Both loudspeakers emit the same recorded note in phase with each other.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_08.22.26.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/05_Part1.d"></p>
<p class="p1">Outline why there are positions between the loudspeakers where the sound can only be heard faintly.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between an insulator and a conductor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The diagram shows a current <em>I </em>in a vertical wire that passes through a hole in a horizontal piece of cardboard.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_08.39.08.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/05_Part2.f"></p>
<p class="p1">On the cardboard, draw the magnetic field pattern due to the current.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;The diagram shows a length of copper wire that is horizontal in the magnetic field of the Earth.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_08.46.30.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/05_Part2.g"></p>
<p class="p1">The wire carries an electric current and the force on the wire is as shown. Identify, with an arrow, the direction of electron flow in the wire.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The horizontal component of the magnetic field of the Earth at the position of the wire is \({\text{40 }}\mu {\text{T}}\). The mass per unit length of the wire is \({\text{1.41}} \times {\text{1}}{{\text{0}}^{ - 4}}{\text{ kg}}\,{{\text{m}}^{ - 2}}\). The net force on the wire is zero. Determine the current in the wire.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the internal resistance of a cell.</p>
</div>

<div class="specification">
<p class="p1">A circuit is used to determine the internal resistance and emf of a cell. It consists of the cell, a variable resistor, an ideal ammeter and an ideal voltmeter. The diagram shows part of the circuit with the ammeter and voltmeter missing.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_08.22.20.png" alt="N14/4/PHYSI/SP2/ENG/TZ0/02.b"></p>
<p class="p1">The variable resistor is set to \(1.5{\text{ }}\Omega \). When the cell converts 7.2 mJ of energy, 5.8 mC of charge moves completely around the circuit. The potential difference across the variable resistor is 0.55 V.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define <em>electromotive force (emf )</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw on the diagram the positions of the ammeter and voltmeter.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the emf of the cell is 1.25 V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the internal resistance of the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the energy dissipated per second in the variable resistor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about kinematics and Newton&rsquo;s laws of motion.</p>
<p class="p1"><strong>Part 2 </strong>is about electrical circuits.</p>
<p class="p1"><strong>Part 1 </strong>Kinematics and Newton&rsquo;s laws of motion</p>
<p class="p1">Cars I and B are on a straight race track. I is moving at a constant speed of \({\text{45 m}}\,{{\text{s}}^{ - 1}}\) and B is initially at rest. As I passes B, B starts to move with an acceleration of \({\text{3.2 m}}\,{{\text{s}}^{ - 2}}\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_17.13.17.png" alt="N15/4/PHYSI/SP2/ENG/TZ0/06"></p>
<p class="p1">At a later time B passes I. You may assume that both cars are point particles.</p>
</div>

<div class="specification">
<p class="p1">A third car O with mass 930 kg joins the race. O collides with I from behind, moving along the same straight line as I. Before the collision the speed of I is \({\text{45 m}}\,{{\text{s}}^{ - 1}}\) and its mass is 850 kg. After the collision, I and O stick together and move in a straight line with an initial combined speed of \({\text{52 m}}\,{{\text{s}}^{ - 1}}\).</p>
</div>

<div class="specification">
<p>This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about kinematics and Newton&rsquo;s laws of motion.</p>
<p class="p1"><strong>Part 2 </strong>Electrical circuits</p>
<p class="p1">The circuit shown is used to investigate how the power developed by a cell varies when the load resistance \(R\) changes.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_17.20.36.png" alt="N15/4/PHYSI/SP2/ENG/TZ0/06_Part2_01"></p>
<p class="p1">The variable resistor is adjusted and a series of current and voltage readings are taken. The graph shows the variation with \(R\) of the power dissipated in the cell and the power dissipated in the variable resistor.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_17.22.40.png" alt="N15/4/PHYSI/SP2/ENG/TZ0/06_Part2_02"></p>
</div>

<div class="specification">
<p class="p1">The cell has an internal resistance.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the time taken for B to pass I is approximately 28 s.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the distance travelled by B in this time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">B slows down while I remains at a constant speed. The driver in each car wears a seat belt. Using Newton&rsquo;s laws of motion, explain the difference in the tension in the seat belts of the two cars.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the speed of O immediately before the collision.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The duration of the collision is 0.45 s. Determine the average force acting on O.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">An ammeter and a voltmeter are used to investigate the characteristics of a variable resistor of resistance \(R\). State how the resistance of the ammeter and of the voltmeter compare to \(R\) so that the readings of the instruments are reliable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the current in the circuit is approximately 0.70 A when \(R = 0.80{\text{ }}\Omega \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline what is meant by the internal resistance of a cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the internal resistance of the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the electromotive force (emf) of the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about the motion of a car. <strong>Part 2 </strong>is about electricity.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1</strong> Motion of a car</p>
</div>

<div class="specification">
<p class="p1">A car is travelling along the straight horizontal road at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). The power output required at the wheels is 0.13 MW.</p>
</div>

<div class="specification">
<p class="p1">A driver moves the car in a horizontal circular path of radius 200 m. Each of the four tyres will not grip the road if the frictional force between a tyre and the road becomes less than 1500 N.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2 </strong>Electricity</p>
</div>

<div class="specification">
<p class="p1">A lemon can be used to make an electric cell by pushing a copper rod and a zinc rod into the lemon.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-08_om_17.27.58.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/06_Part2.d"></p>
<p class="p1">A student constructs a lemon cell and connects it in an electrical circuit with a variable resistor. The student measures the potential difference <em>V </em>across the lemon and the current <em>I </em>in the lemon.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A car accelerates uniformly along a straight horizontal road from an initial speed of \({\text{12 m}}\,{{\text{s}}^{ - 1}}\) to a final speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\) in a distance of 250 m. The mass of the car is 1200 kg. Determine the rate at which the engine is supplying kinetic energy to the car as it accelerates.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A car is travelling along a straight horizontal road at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). The power output required at the wheels is 0.13 MW.</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate the total resistive force acting on the car when it is travelling at a constant speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The mass of the car is 1200 kg. The resistive force \(F\) is related to the speed \(v\) by \(F \propto {v^2}\). Using your answer to (b)(i), determine the maximum theoretical acceleration of the car at a speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Calculate the maximum speed of the car at which it can continue to move in the circular path. Assume that the radius of the path is the same for each tyre.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;While the car is travelling around the circle, the people in the car have the sensation that they are being thrown outwards. Outline how Newton&rsquo;s first law of motion accounts for this sensation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Draw a circuit diagram of the experimental arrangement that will enable the student to collect the data for the graph.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that the potential difference \(V\) across the lemon is given by</p>
<p class="p1">\[V = E - Ir\]</p>
<p class="p1">where \(E\) is the emf of the lemon cell and \(r\) is the internal resistance of the lemon cell.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The graph shows how \(V\) varies with \(I\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_09.50.40.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/06_Part2.d.iii"></p>
<p class="p2">Using the graph, estimate the emf of the lemon cell.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Determine the internal resistance of the lemon cell.</p>
<p class="p2">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The lemon cell is used to supply energy to a digital clock that requires a current of \({\text{6.0 }}\mu {\text{A}}\). The clock runs for 16 hours. Calculate the charge that flows through the clock in this time.</p>
<div class="marks">[10]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A heater in an electric shower has a power of 8.5 kW when connected to a 240 V electrical supply. It is connected to the electrical supply by a copper cable.</p>
<p>The following data are available:</p>
<p style="padding-left: 120px;">Length of cable = 10 m<br>Cross-sectional area of cable = 6.0 mm<sup>2</sup><br>Resistivity of copper = 1.7 &times; 10<sup>&ndash;8</sup> &Omega; m</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current in the copper cable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the resistance of the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of electrons, what happens to the resistance of the cable as the temperature of the cable increases.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The heater changes the temperature of the water by 35 K. The specific heat capacity of water is 4200 J kg<sup>&ndash;1</sup> K<sup>&ndash;1</sup>.</p>
<p>Determine the rate at which water flows through the shower. State an appropriate unit for your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about a lightning discharge. <strong>Part 2 </strong>is about fuel for heating.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1&nbsp; &nbsp; &nbsp;</strong>Lightning discharge</p>
</div>

<div class="specification">
<p class="p1">The magnitude of the electric field strength \(E\) between two infinite charged parallel plates is given by the expression</p>
<p class="p1">\[E = \frac{\sigma }{{{\varepsilon _0}}}\]</p>
<p class="p1">where \(\sigma \) is the charge per unit area on one of the plates.</p>
<p class="p1">A thundercloud carries a charge of magnitude 35 C spread over its base. The area of the base is \(1.2 \times {10^7}{\text{ }}{{\text{m}}^{\text{2}}}\).</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2&nbsp; &nbsp; &nbsp;</strong>Fuel for heating</p>
</div>

<div class="specification">
<p class="p1">A room heater burns liquid fuel and the following data are available.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Density of liquid fuel}}}&amp;{ = 8.0 \times {{10}^2}{\text{ kg}}\,{{\text{m}}^{ - 3}}} \\ {{\text{Energy produced by 1 }}{{\text{m}}^{\text{3}}}{\text{ of liquid fuel}}}&amp;{ = 2.7 \times {{10}^{10}}{\text{ J}}} \\ {{\text{Rate at which fuel is consumed}}}&amp;{ = 0.13{\text{ g}}\,{{\text{s}}^{ - 1}}} \\ {{\text{Latent heat of vaporization of the fuel}}}&amp;{ = 290{\text{ kJ}}\,{\text{k}}{{\text{g}}^{ - 1}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define <em>electric field strength</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">Part1.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A thundercloud can be modelled as a negatively charged plate that is parallel to the ground.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_07.24.35.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B2.Part1.b"></p>
<p class="p1">The magnitude of the charge on the plate increases due to processes in the atmosphere. Eventually a current discharges from the thundercloud to the ground.</p>
<p class="p1">On the diagram, draw the electric field pattern between the thundercloud base and the ground.</p>
<div class="marks">[3]</div>
<div class="question_part_label">Part1.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Determine the magnitude of the electric field between the base of the thundercloud and the ground.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State <strong>two </strong>assumptions made in (c)(i).</p>
<p class="p1">1.</p>
<p class="p1">2.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>When the thundercloud discharges, the average discharge current is 1.8 kA. Estimate the discharge time.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The potential difference between the thundercloud and the ground before discharge is \(2.5 \times {10^8}{\text{ V}}\). Determine the energy released in the discharge.</p>
<div class="marks">[12]</div>
<div class="question_part_label">Part1.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the <em>energy density </em>of a fuel.</p>
<div class="marks">[1]</div>
<div class="question_part_label">Part2.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Use the data to calculate the power output of the room heater, ignoring the power required to convert the liquid fuel into a gas.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show why, in your calculation in (b)(i), the power required to convert the liquid fuel into a gas at its boiling point can be ignored.</p>
<div class="marks">[5]</div>
<div class="question_part_label">Part2.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State, in terms of molecular structure and their motion, <strong>two </strong>differences between a liquid and a gas.</p>
<p class="p1">1.</p>
<p class="p1">2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">Part2.c.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron moves in circular motion in a uniform magnetic field.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_18.05.11.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/05"></p>
<p>The velocity of the electron at point P is 6.8 &times; 10<sup>5</sup> m s<sup>&ndash;1</sup> in the direction shown.</p>
<p>The magnitude of the magnetic field is 8.5 T.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the magnetic field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in N, the magnitude of the magnetic force acting on the electron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves at constant speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves on a circular path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a potential divider circuit used to measure the emf <em>E </em>of a cell X.&nbsp;Both cells have negligible internal resistance.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_13.01.10.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/04"></p>
</div>

<div class="specification">
<p>AB is a wire of uniform cross-section and length 1.0 m. The resistance of wire AB&nbsp;is 80 &Omega;. When the length of AC is 0.35 m the current in cell X is zero.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the emf of a cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the resistance of the wire AC is 28 Ω.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine <em>E</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Electric potential difference and electric circuits</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ionized hydrogen atoms are accelerated from rest in the vacuum between two vertical&nbsp;parallel conducting plates. The potential difference between the plates is <em>V</em>. As a result&nbsp;of the acceleration each ion gains an energy of 1.9&times;10<sup>&ndash;18</sup>J.</p>
<p>Calculate the value of <em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The plates in (a) are replaced by a cell that has an emf of 12.0 V and internal resistance&nbsp;5.00 &Omega;. A resistor of resistance <em>R</em> is connected in series with the cell. The energy&nbsp;transferred by the cell to an electron as it moves through the resistor is 1.44 &times;10<sup>&ndash;18</sup> J.</p>
<p>(i) Define <em>resistance</em> of a resistor.</p>
<p>(ii) Describe what is meant by internal resistance.</p>
<p>(iii) Show that the value of <em>R</em> is 15.0 &Omega;.</p>
<p>(iv) Calculate the total power supplied by the cell.</p>
<p>&nbsp;</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about energy resources. <strong>Part 2 </strong>is about electric fields.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1</strong> Energy resources</p>
</div>

<div class="specification">
<p class="p1">A photovoltaic panel is made up of a collection (array) of photovoltaic cells. The panel has a total area of \({\text{1.3 }}{{\text{m}}^{\text{2}}}\) and is mounted on the roof of a house. The maximum intensity of solar radiation at the location of the panel is \({\text{750 W}}\,{{\text{m}}^{ - 2}}\). The panel produces a power output of 210 W when the solar radiation is at its maximum intensity.</p>
</div>

<div class="specification">
<p class="p1">The owner of the house chooses between photovoltaic panels and solar heating panels to provide 4.2 kW of power to heat water. The solar heating panels have an efficiency of 70%. The maximum intensity of solar radiation at the location remains at \({\text{750 W}}\,{{\text{m}}^{ - 2}}\).</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2</strong> Electric fields</p>
<p class="p1">An isolated metal sphere is placed in a vacuum. The sphere has a negative charge of magnitude 12 nC.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_10.12.42.png" alt="N14/4/PHYSI/SP2/ENG/TZ0/06_Part2"></p>
</div>

<div class="specification">
<p class="p1">Outside the sphere, the electric field strength is equivalent to that of a point negative charge of magnitude 12 nC placed at the centre of the sphere. The radius \(r\)<em>&nbsp;</em>of the sphere is 25 mm.</p>
</div>

<div class="specification">
<p class="p1">An electron is initially at rest on the surface of the sphere.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The Sun is a renewable energy source whereas a fossil fuel is a non-renewable energy source. Outline the difference between renewable and non-renewable energy sources.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">With reference to the energy transformations and the operation of the devices, distinguish between a photovoltaic cell and a solar heating panel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the efficiency of the photovoltaic panel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>reasons why the intensity of solar radiation at the location of the panel is not constant.</p>
<p class="p1">&nbsp;</p>
<p class="p1">1.</p>
<p class="p1">&nbsp;</p>
<p class="p1">2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the minimum area of solar heating panel required to provide this power.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Comment on whether it is better to use a solar heating panel rather than an array of photovoltaic panels for the house. Do not consider the installation cost of the panels in your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the diagram, draw the electric field pattern due to the charged sphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the magnitude of the electric field strength at the surface of the sphere is about \(2 \times {10^5}{\text{ N}}\,{{\text{C}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the axes, draw a graph to show the variation of the electric field strength \(E\) with distance \(d\) from the centre of the sphere.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_14.39.55.png" alt="N14/4/PHYSI/SP2/ENG/TZ0/06.g.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the initial acceleration of the electron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss the subsequent motion of the electron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the complete diagram of the circuit that uses a potential divider, ammeter, voltmeter and cell to measure the current-voltage characteristics for component X.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_05.46.50.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/A3.a"></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph shows the current-voltage characteristics for the component X.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-10_om_05.51.30.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/A3.b"></p>
<p class="p1">Component X is now connected across the terminals of a cell of emf 2.0 V and negligible internal resistance. Use the graph to show that the resistance of X is \({\text{0.83 }}\Omega \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Gravitational fields and electric fields</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnitude of gravitational field strength <em>g</em> is defined from the equation shown below.</p>
<p>\[g = \frac{{{F_g}}}{m}\]</p>
<p>The magnitude of electric field strength <em>E</em> is defined from the equation shown below.</p>
<p>\[E = \frac{{{F_E}}}{q}\]</p>
<p>For each of these defining equations, state the meaning of the symbols</p>
<p>(i) <em>F</em><sub>g</sub>.</p>
<p>(ii) <em>F</em><sub>E</sub>.</p>
<p>(iii) <em>m</em>.</p>
<p>(iv) <em>q</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple model of the hydrogen atom, the electron is regarded as being in a&nbsp;circular orbit about the proton. The magnitude of the electric field strength at the&nbsp;electron due to the proton is <em>E</em><sub>p</sub>. The magnitude of the gravitational field strength at&nbsp;the electron due to the proton is <em>g</em><sub>p</sub>.</p>
<p>(i) Draw the electric field pattern of the proton alone.</p>
<p>(ii) Determine the order of magnitude of the ratio shown below.</p>
<p>\[\frac{{{E_p}}}{{{g_p}}}\]</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. <strong>Part 1</strong> is about electric charge and electric circuits. <strong>Part 2</strong> is about momentum.</p>
<p><strong>Part 1</strong> Electric charge and electric circuits</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Coulomb&rsquo;s law.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple model of the hydrogen atom, the electron can be regarded as being in a&nbsp;circular orbit about the proton. The radius of the orbit is 2.0&times;10<sup>&ndash;10 </sup>m.</p>
<p>(i) Determine the magnitude of the electric force between the proton and the electron.</p>
<p>(ii) Calculate the magnitude of the electric field strength <em>E</em> and state the direction of&nbsp;the electric field due to the proton at a distance of 2.0&times;10<sup>&ndash;10</sup> m from the proton.</p>
<p>(iii) The magnitude of the gravitational field due to the proton at a distance of&nbsp;2.0&times;10<sup>&ndash;10</sup> m from the proton is <em>H.</em><br>Show that the ratio&nbsp;\(\frac{H}{E}\) is of the order 10<sup>&ndash;28</sup>C kg<sup>&ndash;1</sup>.</p>
<p>(iv) The orbital electron is transferred from its orbit to a point where the potential&nbsp;is zero. The gain in potential energy of the electron is 5.4&times;10<sup>&ndash;19</sup>J. Calculate the&nbsp;value of the potential difference through which the electron is moved.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electric cell is a device that is used to transfer energy to electrons in a circuit. A particular circuit consists of a cell of emf <em>&epsilon;</em> and internal resistance <em>r</em> connected in series with a resistor of resistance 5.0 &Omega;.</p>
<p>(i) Define<em> emf of a cell.</em></p>
<p>(ii) The energy supplied by the cell to one electron in transferring it around the circuit&nbsp;is 5.1&times;10<sup>&ndash;19</sup>J. Show that the emf of the cell is 3.2V.</p>
<p>(iii) Each electron in the circuit transfers an energy of 4.0&times;10<sup>&ndash;19</sup> J to the 5.0 &Omega; resistor.&nbsp;Determine the value of the internal resistance <em>r.</em></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Electric motor</p>
<p>An electric motor is used to raise a load.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Whilst being raised, the load accelerates uniformly upwards. The weight of the cable is negligible compared to the weight of the load.</p>
<p>(i) Draw a labelled free-body force diagram of the forces acting on the accelerating load. The dot below represents the load.</p>
<p><img src="" alt></p>
<p>(ii) The load has a mass of 350 kg and it takes 6.5 s to raise it from rest through a height of 8.0 m.</p>
<p>Determine the tension in the cable as the load is being raised.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electric motor can be adjusted such that, after an initial acceleration, the load moves at constant speed. The motor is connected to a 450 V supply and with the load moving at constant speed, it takes the motor 15 s to raise the load through 7.0 m.</p>
<p>(i) Calculate the power delivered to the load by the motor.</p>
<p>(ii) The current in the motor is 30 A. Estimate the efficiency of the motor.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Electrical resistors can be made by forming a thin film of carbon on a layer of an insulating&nbsp;material.</p>
</div>

<div class="specification">
<p>A carbon film resistor is made from a film of width 8.0 mm and of thickness 2.0 &mu;m.&nbsp;The diagram shows the direction of charge flow through the resistor.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The resistance of the carbon film is 82 &Omega;. The resistivity of carbon is&nbsp;4.1&nbsp;x 10<sup>&ndash;5</sup> &Omega; m. Calculate the length <em>l</em> of the film.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The film must dissipate a power less than 1500 W from each square metre&nbsp;of its surface to avoid damage. Calculate the maximum allowable current for&nbsp;the resistor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why knowledge of quantities such as resistivity is useful to scientists.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The current direction is now changed so that charge flows vertically through the film.</p>
<p style="text-align: center;"><img src=""></p>
<p>Deduce, without calculation, the change in the resistance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a circuit diagram to show how you could measure the resistance of the&nbsp;carbon-film resistor using a potential divider arrangement to limit the potential&nbsp;difference across the resistor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about electric and magnetic fields.</p>
<p>A proton travelling to the right with horizontal speed 1.6&times;10<sup>4</sup>ms<sup>&ndash;1</sup> enters a uniform electric field of strength <em>E</em>. The electric field has magnitude 2.0&times;10<sup>3</sup>NC<sup>&ndash;1</sup> and is directed downwards.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude of the electric force acting on the proton when it is in the electric field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A uniform magnetic field is applied in the same region as the electric field. A second proton enters the field region with the same velocity as the proton in (a). This second proton continues to move horizontally.</p>
<p>(i) Determine the magnitude and direction of the magnetic field.</p>
<p>(ii) An alpha particle enters the field region at the same point as the second proton, moving with the same velocity. Explain whether or not the alpha particle will move in a straight line.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the properties of tungsten.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Tungsten is a conductor used as the filament of an electric lamp. The filament of the lamp is surrounded by glass which is an insulator.</p>
<p>Outline, in terms of their atomic structure, the difference between the electrical properties of tungsten and of glass.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A tungsten filament lamp is marked 6.0 V, 15 W.</p>
<p>(i) Show that the resistance of the lamp at its working voltage is 2.4 &Omega;.</p>
<p>(ii) The length of the filament is 0.35 m and the resistivity of tungsten is 5.6&times;10<sup>&ndash;7 </sup>&Omega; m at its working voltage.</p>
<p>Calculate the cross-sectional area of the tungsten filament.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows part of a potential divider circuit used to measure the current-potential difference (<em>I</em>&ndash;<em>V</em>) characteristic of the bulb.</p>
<p><img src="" alt></p>
<p>Draw the complete circuit showing the correct position of the bulb, ammeter and voltmeter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>electric field strength</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows a pair of horizontal metal plates. Electrons can be deflected vertically&nbsp;using an electric field between the plates.</p>
<p><img src="" alt></p>
<p>(i) Label, on the diagram, the polarity of the metal plates which would cause an electron<br>positioned between the plates to accelerate upwards.&nbsp;</p>
<p>(ii) Draw the shape and direction of the electric field between the plates on the diagram.</p>
<p>(iii)&nbsp;Calculate the force on an electron between the plates when the electric field strength&nbsp;has a value of 2.5 &times; 10<sup>3</sup> NC<sup>&ndash;1</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows two isolated electrons, X and Y, initially at rest in a vacuum. The initial separation of the electrons is 5.0 mm. The electrons subsequently move apart&nbsp;in the directions shown.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<p>(i) Show that the initial electric force acting on each electron due to the other electron is approximately 9 &times; 10<sup>&ndash;24</sup>N.</p>
<p>(ii) Calculate the initial acceleration of one electron due to the force in (c)(i).</p>
<p>(iii) Discuss the motion of one electron after it begins to move.</p>
<p>(iv) The diagram shows Y as seen from X, at one instant. Y is moving into the plane of the paper. For this instant, draw on the diagram the shape and direction of the magnetic field produced by Y.</p>
<p><img src="" alt></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold;">Part 2 </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">Electrical resistance </span></p>
</div>
</div>
</div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 24">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p>A resistor of resistance 1.5&Omega; is made from copper wire of radius 0.18mm. The resistivity of copper is 1.7&times;10<sup>&ndash;8</sup>&Omega;m. Determine the length of copper wire used to make the resistor.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 23">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 24">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p>The manufacturer of the resistor in (a) guarantees that the resistance is within 10% of 1.5&Omega;, provided that the power dissipation in the resistor does not exceed 1.0W.</p>
</div>
<div class="column">
<p>(i) Suggest why the resistance of the resistor might be greater than 1.65&Omega; if the power dissipation in the resistor is greater than 1.0W.</p>
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p>(ii) Show that, for a power dissipation of 1.0W, the current in a resistor of resistance 1.5&Omega; is 0.82A.</p>
<div class="page" title="Page 26">
<div class="layoutArea">
<div class="column">
<p>(iii) The 1.5&Omega; resistor is connected in series with a variable resistor and battery of emf 6.0V and internal resistance 1.8&Omega;.</p>
<p><img src="" alt></p>
<div class="page" title="Page 26">
<div class="layoutArea">
<div class="column">
<p>Estimate the resistance <em>R</em> of the variable resistor that will limit the current&nbsp;to 0.82A.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about motion in a magnetic field.</p>
<p>An electron, that has been accelerated from rest by a potential difference of 250 V, enters a&nbsp;region of magnetic field of strength 0.12 T that is directed into the plane of the page.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electron&rsquo;s path while in the region of magnetic field is a quarter circle. Show that the</p>
<p>(i) speed of the electron after acceleration is 9.4&times;10<sup>6</sup>ms<sup>&minus;1</sup>.</p>
<p>(ii) radius of the path is 4.5&times;10<sup>&minus;4</sup>m.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows the momentum of the electron as it enters and leaves the&nbsp;region of magnetic field. The magnitude of the initial momentum and of the final&nbsp;momentum is 8.6&times;10<sup>&minus;24</sup>Ns.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) On the diagram above, draw an arrow to indicate the vector representing the change&nbsp;in the momentum of the electron.</p>
<p style="text-align: left;">(ii) Show that the magnitude of the change in the momentum of the electron is&nbsp;1.2&times;10<sup>&minus;23</sup>Ns.</p>
<p style="text-align: left;">(iii) The time the electron spends in the region of magnetic field is 7.5 &times;10<sup>&minus;11</sup>s.&nbsp;Estimate the magnitude of the average force on the electron.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about a lighting system. <strong>Part 2</strong> is about a satellite.</p>
<p><strong>Part 1</strong> Lighting system</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Ohm&rsquo;s law.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A lighting system is designed so that additional lamps can be added in parallel.</p>
<p><img src="" alt></p>
<p>The diagram shows three 6V, 9W lamps connected in parallel to a supply of emf 6.0V and negligible internal resistance. A fuse in the circuit melts if the current in the circuit exceeds 13A.</p>
<p>(i) Determine the maximum number of lamps that can be connected in parallel in the circuit without melting the fuse.</p>
<p>(ii) Calculate the resistance of a lamp when operating at its normal brightness.</p>
<p>(iii) By mistake, a lamp rated at 12V, 9W is connected in parallel with three lamps rated at 6V, 9W. Estimate the resistance of the circuit stating any assumption that you make.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A possible decay of a lambda particle (\({\Lambda ^0}\)) is shown by the Feynman diagram.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quark structures of a meson and a baryon.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which interaction is responsible for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw arrow heads on the lines representing \({\bar u}\) and d in the \({\pi ^ - }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the exchange particle in this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> benefit of international cooperation in the construction or use of&nbsp;high-energy particle accelerators.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A cable consisting of many copper wires is used to transfer electrical energy from a generator&nbsp;to an electrical load. The copper wires are protected by an insulator.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The cable consists of 32 copper wires each of length 35 km. Each wire has a&nbsp;resistance of 64 &Omega;. The resistivity of copper is 1.7 x&nbsp;10<sup>&ndash;8</sup> &Omega; m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The copper wires and insulator are both exposed to an electric field. Discuss,&nbsp;with reference to charge carriers, why there is a significant electric current only in&nbsp;the copper wires.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of each <strong>wire</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a current of 730 A in the cable. Show that the power loss in 1 m of the&nbsp;cable is about 30 W.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the current is switched on in the cable the initial rate of rise of temperature&nbsp;of the cable is 35 mK s<sup>&ndash;1</sup>. The specific heat capacity of copper is 390 J kg<sup>&ndash;1</sup> K<sup>&ndash;1</sup>.&nbsp;Determine the mass of a length of one metre of the cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about magnetic fields.</p>
<p>A long straight vertical conductor carries an electric current. The conductor passes through a hole in a horizontal piece of paper.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how a magnetic field arises.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram below, sketch the magnetic field pattern around the long straight current-carrying conductor. The direction of the current is into the plane of the paper.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The long straight conductor is formed into a coil consisting of two separate turns, X and Y. The coil hangs with its axis vertical.</p>
<p>Assume that the turns of the coil each behave as a long straight conductor.</p>
<p>(i) Explain why, when there is a current in the coil, the separation of X and Y decreases.</p>
<p>(ii) The current in the coil is 15 A and the circumference of one turn is 0.48m. In order to restore X and Y to their original separation, a mass of 2.8&times;10<sup>&ndash;4</sup> kg is suspended from turn Y. Estimate the magnetic field strength at X due to Y.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows how current <em>I</em> varies with potential difference <em>V</em> for a resistor R and a non-ohmic component T.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State how the resistance of T varies with the current going through T.</p>
<p>(ii) Deduce, without a numerical calculation, whether R <strong>or</strong> T has the greater resistance at <em>I</em>=0.40 A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Components R and T are placed in a circuit. Both meters are ideal.</p>
<p style="text-align: center;"><img src=""></p>
<p>Slider Z of the potentiometer is moved from Y to X.</p>
<p>(i) State what happens to the magnitude of the current in the ammeter.</p>
<p>(ii) Estimate, with an explanation, the voltmeter reading when the ammeter reads 0.20 A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment a student constructs the circuit shown in the diagram. The ammeter and the voltmeter are assumed to be ideal.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an ideal voltmeter.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student adjusts the variable resistor and takes readings from the ammeter and voltmeter. The graph shows the variation of the voltmeter reading <em>V</em> with the ammeter reading <em>I</em>.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Use the graph to determine</p>
<p style="text-align: left;">(i) the electromotive force (emf) of the cell.</p>
<p style="text-align: left;">(ii) the internal resistance of the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A connecting wire in the circuit has a radius of 1.2mm and the current in it is 3.5A. The number of electrons per unit volume of the wire is 2.4&times;10<sup>28</sup>m<sup>&minus;3</sup>. Show that the drift speed of the electrons in the wire is 2.0&times;10<sup>&minus;4</sup>ms<sup>&minus;1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows a cross-sectional view of the connecting wire in (c).</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The wire which carries a current of 3.5A into the page, is placed in a region of uniform magnetic field of flux density 0.25T. The field is directed at right angles to the wire.</p>
<p style="text-align: left;">Determine the magnitude <strong>and</strong> direction of the magnetic force on one of the charge carriers in the wire.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about electric circuits.<strong> Part 2</strong> is about the energy&nbsp;balance of the Earth.</p>
<p><strong>Part 1</strong> Electric circuits</p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define</p>
<p>(i) <em>electromotive force</em> (emf ) of a battery.</p>
<p>(ii) <em>electrical resistance</em> of a conductor.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;">A battery of emf <em>&epsilon;</em> and negligible internal resistance is connected in series to two resistors.&nbsp;The current in the circuit is <em>I</em>.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) State an equation giving the total power delivered by the battery.</p>
<p style="text-align: left;">(ii) The potential difference across resistor <em>R</em><sub>1</sub> is <em>V</em><sub>1</sub> and that across resistor <em>R</em><sub>2</sub> is <em>V</em><sub>2</sub>. &nbsp;Using the law of the conservation of energy, deduce the equation below.</p>
<p style="text-align: center;"><em>&epsilon;</em> =<em>V</em><sub>1</sub> +<em>V</em><sub>2</sub></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the<em> I</em>-<em>V</em> characteristics of two conductors, X and Y.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>On the axes below, sketch graphs to show the variation with potential difference<em> V</em> of&nbsp;the resistance of conductor X (label this graph X) and conductor Y (label this graph Y).&nbsp;You do not need to put any numbers on the vertical axis.</p>
<p style="text-align: center;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The conductors in (c) are connected in series to a battery of emf <em>&epsilon;</em> and negligible internal&nbsp;resistance.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The power dissipated in each of the two resistors is the same.</p>
<p style="text-align: left;">Using the graph given in (c),</p>
<p style="text-align: left;">(i) determine the emf of the battery.</p>
<p style="text-align: left;">(ii) calculate the total power dissipated in the circuit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Electric current and resistance</p>
<p>The graph below shows how the current <em>I</em> in a tungsten filament lamp varies with potential difference <em>V</em> across the lamp.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define the electrical <em>resistance</em> of a component.</p>
<p>(ii) Explain whether or not the filament obeys Ohm&rsquo;s law.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the resistance of the filament lamp when the potential difference across it is 2.8 V.</p>
<p>(ii) The length of the filament in a lamp is 0.40 m. The resistivity of tungsten when the potential difference across it is 2.8 V is 5.8&times;10<sup>&ndash;7</sup>&Omega; m. Calculate the radius of the filament.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two identical filament lamps are connected in series with a cell of emf 6.0 V and negligible internal resistance. Using the graph on page 26, calculate the total power dissipated in the circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about electric fields and radioactive decay. <strong>Part 2</strong> is about change of phase.</p>
<p><strong>Part 1</strong> Electric fields and radioactive decay</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Change of phase</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>electric field strength</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A simple model of the proton is that of a sphere of radius 1.0&times;10<sup>&ndash;15</sup>m with charge concentrated at the centre of the sphere. Estimate the magnitude of the field strength at the surface of the proton.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Protons travelling with a speed of 3.9&times;10<sup>6</sup>ms<sup>&ndash;1</sup> enter the region between two charged parallel plates X and Y. Plate X is positively charged and plate Y is connected to earth.</p>
<p><img src="" alt></p>
<p>A uniform magnetic field also exists in the region between the plates. The direction of the field is such that the protons pass between the plates without deflection.</p>
<p>(i) State the direction of the magnetic field.</p>
<p>(ii) The magnitude of the magnetic field strength is 2.3&times;10<sup>&ndash;4</sup>T. Determine the magnitude of the electric field strength between the plates, stating an appropriate unit for your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Protons can be produced by the bombardment of nitrogen-14 nuclei with alpha particles. The nuclear reaction equation for this process is given below.</p>
<p>\[{}_7^{14}{\rm{N}} + {}_2^4{\rm{He}} \to {\rm{X}} + {}_1^1{\rm{H}}\]</p>
<p>Identify the proton number and nucleon number for the nucleus X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data are available for the reaction in (d).</p>
<p style="padding-left: 30px;">Rest mass of nitrogen-14 nucleus =14.0031 u<br>Rest mass of alpha particle =4.0026 u<br>Rest mass of X nucleus =16.9991 u<br>Rest mass of proton =1.0073 u</p>
<p>Show that the minimum kinetic energy that the alpha particle must have in order for the reaction to take place is about 0.7 Me V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A nucleus of another isotope of the element X in (d) decays with a half-life&nbsp;\({T_{\frac{1}{2}}}\) to a nucleus of an isotope of fluorine-19 (F-19).</p>
<p>(i) Define the terms <em>isotope</em> and <em>half-life</em>.</p>
<p>(ii) Using the axes below, sketch a graph to show how the number of atoms <em>N</em> in a sample of X varies with time <em>t</em>, from <em>t</em>=0 to \(t = 3{T_{\frac{1}{2}}}\). There are <em>N</em><sub>0</sub> atoms in the sample at <em>t</em>=0.</p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Water at constant pressure boils at constant temperature. Outline, in terms of the energy of the molecules, the reason for this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In an experiment to measure the specific latent heat of vaporization of water, steam at 100&deg;C was passed into water in an insulated container. The following data are available.</p>
<p style="padding-left: 30px;">Initial mass of water in container = 0.300kg<br>Final mass of water in container = 0.312kg<br>Initial temperature of water in container = 15.2&deg;C<br>Final temperature of water in container = 34.6&deg;C<br>Specific heat capacity of water = 4.18&times;10<sup>3</sup>Jkg<sup>&ndash;1</sup>K<sup>&ndash;1</sup></p>
<p>Show that the data give a value of about 1.8&times;10<sup>6</sup>Jkg<sup>&ndash;1</sup> for the specific latent heat of vaporization <em>L</em> of water.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why, other than measurement or calculation error, the accepted value of <em>L</em> is greater than that given in (h).</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>A company designs a spring system for loading ice blocks onto a truck. The ice block is placed in a holder H in front of the spring and an electric motor compresses the spring by pushing H to the left. When the spring is released the ice block is accelerated towards a<br>ramp ABC. When the spring is fully decompressed, the ice block loses contact with the spring at A. The mass of the ice block is 55 kg.</p>
<p style="text-align: center;"><img src="" alt></p>
<p>Assume that the surface of the ramp is frictionless and that the masses of the spring and the holder are negligible compared to the mass of the ice block.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The block arrives at C with a speed of 0.90ms<sup>&minus;1</sup>. Show that the elastic energy stored in the spring is 670J.</p>
<p>(ii) Calculate the speed of the block at A.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the motion of the block</p>
<p>(i) from A to B with reference to Newton's first law.</p>
<p>(ii) from B to C with reference to Newton's second law.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch a graph to show how the displacement of the block varies with time from A to C. (You do not have to put numbers on the axes.)</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spring decompression takes 0.42s. Determine the average force that the spring exerts on the block.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electric motor is connected to a source of potential difference 120V and draws a current of 6.8A. The motor takes 1.5s to compress the spring.</p>
<p>Estimate the efficiency of the motor.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about simple harmonic motion (SHM) and waves. <strong>Part 2</strong> is about voltage&ndash;current (<em>V</em>&ndash;<em>I</em>) characteristics.</p>
<p><strong>Part 1</strong> Simple harmonic motion (SHM) and waves</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Voltage&ndash;current (<em>V</em>&ndash;<em>I</em>) characteristics</p>
<p>The graph shows the voltage&ndash;current (<em>V</em>&ndash;<em>I</em>) characteristics, at constant temperature, of two electrical components X and Y.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A particle P moves with simple harmonic motion. State, with reference to the motion of P, what is meant by simple harmonic motion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph opposite to determine for the motion of P the</p>
<p>(i) period.</p>
<p>(ii) amplitude.</p>
<p>(iii) displacement of P from equilibrium at <em>t</em>=0.2s.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The particle P in (b) is a particle in medium M<sub>1</sub> through which a transverse wave is travelling.</p>
<p>(i) Describe, in terms of energy propagation, what is meant by a transverse wave.</p>
<p>(ii) The speed of the wave through the medium is 0.40ms<sup>&ndash;1</sup>. Calculate, using your answer to (b)(i), the wavelength of the wave.</p>
<p>(iii) The wave travels into another medium M<sub>2</sub>. The refractive index of&nbsp;M<sub>2</sub> relative to&nbsp;M<sub>1</sub> is 1.8. Calculate the wavelength of the wave in M<sub>2</sub>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the graph and to Ohm&rsquo;s law, whether or not each component is ohmic.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Components X and Y are connected in parallel. The parallel combination is then connected in series with a variable resistor R and a cell of emf 8.0V and negligible internal resistance.</p>
<p><img src="" alt></p>
<p>The resistance of R is adjusted until the currents in X and Y are equal.</p>
<p>(i) Using the graph, calculate the resistance of the parallel combination of X and Y.</p>
<p>(ii) Using your answer to (e)(i), determine the resistance of R.</p>
<p>(iii) Determine the power delivered by the cell to the circuit.</p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about alternative energy supplies.</p>
<p>A small island community requires a peak power of 850 kW. Two systems are available for&nbsp;supplying the energy: using wind power or photovoltaic cells.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline, with reference to the energy conversions in the machine, the main features&nbsp;of a conventional horizontal-axis wind generator.</p>
<p style="text-align: left;">(ii) The mean wind speed on the island is 8.0 ms<sup>&ndash;1</sup>. Show that the maximum power&nbsp;available from a wind generator of blade length 45 m is approximately 2 MW.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Density of air = 1.2 kg m<sup>-3</sup></p>
<p style="text-align: left;">(iii) The efficiency of the generator is 24%. Deduce the number of these generators that would be required to provide the islanders with enough power to meet their energy requirements.</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph below shows how the wind speed varies with height above the land and above&nbsp;the sea.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<p>(i) Suggest why, for any given height, the mean wind speed above the sea is greater&nbsp;than the mean wind speed above the land.</p>
<p>(ii) There is a choice of mounting the wind generators either 60m above the land or&nbsp;60m above the sea.</p>
<p>Calculate the ratio</p>
<p style="text-align: center;">\[\frac{{{\rm{power available from a land - based generator}}}}{{{\rm{power available from a sea - based generator}}}}\]</p>
<p>at a height of 60m.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between photovoltaic cells and solar heating panels.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows 12 photovoltaic cells connected in series and in parallel to form a&nbsp;module to provide electrical power.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<p>Each cell in the module has an emf of 0.75V and an internal resistance of 1.8&Omega;.</p>
<p>(i) Calculate the emf of the module.</p>
<p>(ii) Determine the internal resistance of the module.</p>
<p>(iii) The diagram below shows the module connected to a load resistor of&nbsp;resistance 2.2&Omega;.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>&nbsp;</p>
<p>Calculate the power dissipated in the load resistor.</p>
<p>(iv) Discuss the benefits of having cells combined in series and parallel within the module.</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The intensity of the Sun&rsquo;s radiation at the position of the Earth&rsquo;s orbit (the solar constant)&nbsp;is approximately 1.4&times;10<sup>3</sup>Wm<sup>&ndash;2</sup>.</p>
<p>(i) Explain why the average solar power per square metre arriving at the Earth&nbsp;is 3.5&times;10<sup>2</sup> W.</p>
<p>(ii) State why the solar constant is an approximate value.</p>
<p>(iii) Photovoltaic cells are approximately 20% efficient. Estimate the minimum area&nbsp;needed to supply an average power of 850kW over a 24 hour period.</p>
<p>&nbsp;</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. <strong>Part 1</strong> is about momentum. <strong>Part 2</strong> is about electric point charges.</p>
<p><strong>Part 1</strong> Momentum</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Electric point charges</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the law of conservation of linear momentum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A toy car crashes into a wall and rebounds at right angles to the wall, as shown in the plan view.</p>
<p><img src="" alt></p>
<p>The graph shows the variation with time of the force acting on the car due to the wall during the collision.</p>
<p><img src="" alt>The kinetic energy of the car is unchanged after the collision. The mass of the car is 0.80 kg.</p>
<p>(i) Determine the initial momentum of the car.</p>
<p>(ii) Estimate the average acceleration of the car before it rebounds.</p>
<p>(iii) On the axes, draw a graph to show how the momentum of the car varies during the impact. You are not required to give values on the y-axis.</p>
<h4><img src="" alt></h4>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two identical toy cars, A and B are dropped from the same height onto a solid floor without rebounding. Car A is unprotected whilst car B is in a box with protective packaging around the toy. Explain why car B is less likely to be damaged when dropped.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>electric field strength</em> at a point in an electric field.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Six point charges of equal magnitude <em>Q</em> are held at the corners of a hexagon with the signs of the charges as shown. Each side of the hexagon has a length <em>a</em>.</p>
<p><img src="" alt></p>
<p>P is at the centre of the hexagon.</p>
<p>(i) Show, using Coulomb&rsquo;s law, that the magnitude of the electric field strength at point P due to <strong>one</strong> of the point charges is</p>
<p>\[\frac{{kQ}}{{{a^2}}}\]</p>
<p>(ii) On the diagram, draw arrows to represent the direction of the field at P due to point charge A (label this direction A) and point charge B (label this direction B).</p>
<p>(iii) The magnitude of <em>Q</em> is 3.2 &mu;C and length <em>a</em> is 0.15 m. Determine the magnitude and the direction of the electric field strength at point P due to all six charges.</p>
<div class="marks">[8]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. <strong>Part 1</strong> is about simple harmonic motion (SHM). <strong>Part 2</strong> is about current electricity.</p>
<p><strong>Part 1</strong> Simple harmonic motion (SHM)</p>
<p>An object is placed on a frictionless surface. The object is attached by a spring fixed at one end and oscillates at the end of the spring with simple harmonic motion (SHM).</p>
<h4><img src="" alt></h4>
<p>The tension <em>F</em> in the spring is given by <em>F = k x</em> where <em>x</em> is the extension of the spring and<em> k</em> is a constant.</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Current electricity</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\omega ^2} = \frac{k}{m}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One cycle of the variation of displacement with time is shown for two separate mass&ndash;spring systems, A and B.</p>
<p><img src="" alt></p>
<p>(i) Calculate the frequency of the oscillation of A.</p>
<p>(ii) The springs used in A and B are identical. Show that the mass in A is equal to the mass in B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of the potential energy of A with displacement.</p>
<p><img src="" alt></p>
<p>On the axes,</p>
<p>(i) draw a graph to show the variation of kinetic energy with displacement for the mass in A. Label this A.</p>
<p>(ii) sketch a graph to show the variation of kinetic energy with displacement for the mass in B. Label this B.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A 24 &Omega; resistor is made from a conducting wire.</p>
<p>(i) The diameter of the wire is 0.30 mm and the wire has a resistivity of 1.7\( \times \)10<sup>&ndash;8</sup>&Omega;m. Calculate the length of the wire.</p>
<p>(ii) On the axes, draw a graph to show how the resistance of the wire in (d)(i) varies with the diameter of the wire when the length is constant. The data point for the diameter of 0.30 mm has already been plotted for you.</p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The 24 &Omega; resistor is covered in an insulating material. Explain the reasons for the differences between the electrical properties of the insulating material and the electrical properties of the wire.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electric circuit consists of a supply connected to a 24&Omega; resistor in parallel with a variable resistor of resistance <em>R</em>. The supply has an emf of 12V and an internal resistance of 11&Omega;.</p>
<p><img src="" alt></p>
<p>Power supplies deliver maximum power to an external circuit when the resistance of the external circuit equals the internal resistance of the power supply.</p>
<p>(i) Determine the value of <em>R</em> for this circuit at which maximum power is delivered to the external circuit.</p>
<p>(ii) Calculate the reading on the voltmeter for the value of <em>R</em> you determined in (f)(i).</p>
<p>(iii) Calculate the total power dissipated in the circuit when the maximum power is being delivered to the external circuit.</p>
<div class="marks">[8]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. Part 1 is about a thermistor circuit. Part 2 is about vibrations and waves.</p>
<p><strong>Part 1</strong> Thermistor circuit<br>The circuit shows a negative temperature coefficient (NTC) thermistor X and a 100 k&Omega; fixed resistor R connected across a battery.</p>
<p><img src="" alt><br>The battery has an electromotive force (emf) of 12.0 V and negligible internal resistance.</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Vibrations and waves</p>
<p>The cone and dust cap D of a loudspeaker L vibrates with a frequency of 1.25 kHz with simple harmonic motion (SHM).</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define <em>electromotive force (emf)</em>.</p>
<p>(ii) State how the emf of the battery can be measured.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph below shows the variation with temperature <em>T</em> of the resistance <em>R</em><sub>X</sub> of the thermistor.</p>
<p><img src="" alt></p>
<p>(i) Determine the temperature of X when the potential difference across R is 4.5V.</p>
<p>(ii) State the range of temperatures for which the change in the resistance of the thermistor is most sensitive to changes in temperature.</p>
<p>(iii) State and explain the effect of a decrease in temperature on the ratio</p>
<p>\[\frac{{{\rm{voltage across X}}}}{{{\rm{voltage across R}}}}\].</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>simple harmonic motion (SHM)</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>D has mass 6.5&nbsp;\( \times \) 10<sup>&minus;3</sup> kg and vibrates with amplitude 0.85 mm.</p>
<p>(i) Calculate the maximum acceleration of D.</p>
<p>(ii) Determine the total energy of D.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sound waves from the loudspeaker travel in air with speed 330 ms<sup>&minus;1</sup>.</p>
<p>(i) Calculate the wavelength of the sound waves.</p>
<p>(ii) Describe the characteristics of sound waves in air.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second loudspeaker S emits the same frequency as L but vibrates out of phase with L. The graph below shows the variation with time <em>t</em> of the displacement <em>x</em> of the waves emitted by S and L.</p>
<p><img src="" alt></p>
<p>(i) Deduce the relationship between the phase of L and the phase of S.</p>
<p>(ii) On the graph, sketch the variation with <em>t</em> of <em>x</em> for the wave formed by the superposition of the two waves.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br>