File "SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 10/SL-paper2html
File size: 729.54 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p><span style="background-color: #ffffff;">The following shows some compounds which can be made from ethene, C<sub>2</sub>H<sub>4</sub>.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">ethene (C<sub>2</sub>H<sub>4</sub>) → C<sub>2</sub>H<sub>5</sub>Cl → C<sub>2</sub>H<sub>6</sub>O → C<sub>2</sub>H<sub>4</sub>O</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of reaction which converts ethene into C<sub>2</sub>H<sub>5</sub>Cl.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the reaction of C<sub>2</sub>H<sub>5</sub>Cl with aqueous sodium hydroxide to produce a C<sub>2</sub>H<sub>6</sub>O compound, showing structural formulas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of the organic product in (b).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of combustion of the organic product in (b), in kJ mol<sup>−1</sup>, using data from section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagents and conditions for the conversion of the compound C<sub>2</sub>H<sub>6</sub>O, produced in (b), into C<sub>2</sub>H<sub>4</sub>O.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the compound C<sub>2</sub>H<sub>6</sub>O, produced in (b), has a higher boiling point than compound C<sub>2</sub>H<sub>4</sub>O, produced in d(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Ethene is often polymerized. Draw a section of the resulting polymer, showing two repeating units.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be formed according to the following reaction.</p>
<p>2CO (g) + 3H<sub>2 </sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (g)</p>
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p> </p>
<p>(ii) State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of <em>K</em><sub>c</sub>.</p>
<p>Position of equilibrium:</p>
<p><em>K</em><sub>c</sub>:</p>
<p> </p>
<p>(iii) Calculate the enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO (g) is 1077kJmol<sup>-1</sup>.</p>
<p> </p>
<p>(iv) The enthalpy change, ΔH<sup>θ</sup>, for the following similar reaction is –233.8 kJ.</p>
<p>2CO(g) + 3H<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>Deduce why this value differs from your answer to (a)(iii).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.</p>
<p>Ethene:</p>
<p>Ethane-1,2-diol:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be oxidized first to ethanedioic acid, (COOH)<sub>2</sub>, and then to carbon dioxide and water. Suggest the reagents to oxidize ethane-1,2-diol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>ϴ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p> 3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p>3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (b)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-09_om_15.01.32.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/03.c"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the characteristic reaction mechanism of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a reactive metal often found in alloys.</p>
</div>
<div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>
<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>–</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium can be produced by the electrolysis of molten magnesium chloride.</p>
<p>Write the half-equation for the formation of magnesium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest force between the molecules of Compound B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, C<sub>2</sub>H<sub>6</sub>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p>carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, C<sub>2</sub>H<sub>3</sub>Cl, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formulas of propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both propane and propene react with bromine.</p>
<p>(i) State an equation and the condition required for the reaction of 1 mol of propane with 1 mol of bromine.</p>
<p>(ii) State an equation for the reaction of 1 mol of propene with 1 mol of bromine.</p>
<p>(iii) State the type of each reaction with bromine.</p>
<p>Propane:</p>
<p>Propene:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Propan-2-ol is a useful organic solvent.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of propan-2-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of hydrogen atoms in 1.00 g of propan-2-ol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify propan-2-ol as a primary, secondary or tertiary alcohol, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable oxidizing agent for the oxidation of propan-2-ol in an acidified aqueous solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in propan-2-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the oxidation of propan-2-ol with the oxidizing agent in (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="314" height="124"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Bromine reacts with alkanes.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of 1H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>
<p><span style="background-color: #ffffff;">Number of signals:</span><span style="background-color: #ffffff;"><br></span></p>
<p><span style="background-color: #ffffff;">Ratio:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the initiation step of the reaction and its conditions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The structure of an organic molecule can help predict the type of reaction it can undergo.</p>
</div>
<div class="specification">
<p>Improvements in instrumentation have made identification of organic compounds routine.</p>
<p>The empirical formula of an unknown compound containing a phenyl group was found to be C<sub>4</sub>H<sub>4</sub>O. The molecular ion peak in its mass spectrum appears at <em>m</em>/<em>z </em>= 136.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Kekulé structure of benzene suggests it should readily undergo addition reactions.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_10.35.21.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.a_01"></p>
<p>Discuss two pieces of evidence, <strong>one </strong>physical and <strong>one </strong>chemical, which suggest this is not the structure of benzene.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the ionic equation for the oxidation of propan-1-ol to the corresponding aldehyde by acidified dichromate(VI) ions. Use section 24 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The aldehyde can be further oxidized to a carboxylic acid.</p>
<p>Outline how the experimental procedures differ for the synthesis of the aldehyde and the carboxylic acid.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the molecular formula of the compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bonds causing peaks <strong>A </strong>and <strong>B </strong>in the IR spectrum of the unknown compound using section 26 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.50.17.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.ii_01"></p>
<p> <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce full structural formulas of <strong>two </strong>possible isomers of the unknown compound, both of which are esters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the formula of the unknown compound based on its <sup>1</sup>H NMR spectrum using section 27 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.59.18.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.iv"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math> </span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the equation for the reaction of chloroethane with a dilute aqueous solution of sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the nucleophile for the reaction in d(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion. Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and their chemical shifts in the </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">H</mi><mprescripts></mprescripts><mn>1</mn></mmultiscripts><mo> </mo><mi>NMR</mi></math> <span class="fontstyle0">spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The reactivity of organic compounds depends on the nature and positions of their functional groups.</p>
</div>
<div class="specification">
<p>The structural formulas of two organic compounds are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the type of chemical reaction and the reagents used to distinguish between these compounds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the observation expected for each reaction giving your reasons.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals and the ratio of areas under the signals in the <sup>1</sup>H NMR spectra of the two compounds.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with the help of equations, the mechanism of the free-radical substitution reaction of ethane with bromine in presence of sunlight.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>Label the diagram with the species in the equation.</p>
<p><span class="fontstyle0"><img src=""></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Benzene is an aromatic hydrocarbon.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the physical evidence for the structure of benzene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the typical reactions that benzene and cyclohexene undergo with bromine.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Ethyne, C<sub>2</sub>H<sub>2</sub>, reacts with oxygen in welding torches.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Ethyne reacts with steam.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>2</sub> (g) + H<sub>2</sub>O (g) → C<sub>2</sub>H<sub>4</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Two possible products are:</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="317" height="189"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Product <strong>B</strong>, CH<sub>3</sub>CHO, can also be synthesized from ethanol.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of ethyne.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the Lewis (electron dot) structure of ethyne.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare, giving a reason, the length of the bond between the carbon atoms in ethyne with that in ethane, C<sub>2</sub>H<sub>6</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of interaction that must be overcome when liquid ethyne vaporizes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Product<strong> A</strong> contains a carbon–carbon double bond. State the type of reactions that compounds containing this bond are likely to undergo.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of product <strong>B</strong>, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy change for the reaction, in kJ, to produce<strong> A</strong> using section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The enthalpy change for the reaction to produce <strong>B</strong> is −213 kJ. Predict, giving a reason, which product is the most stable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The IR spectrum and low resolution <sup>1</sup>H NMR spectrum of the actual product formed are shown.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="639" height="621"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Deduce whether the product is <strong>A</strong> or <strong>B</strong>, using evidence from these spectra together with sections 26 and 27 of the data booklet. </span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Identity of product:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">One piece of evidence from IR:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">One piece of evidence from <sup>1</sup>H NMR:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the reagents and conditions required to ensure a good yield of product <strong>B</strong>.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Reagents:</span></p>
<p><span style="background-color: #ffffff;">Conditions:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the average oxidation state of carbon in product <strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why product <strong>B</strong> is water soluble.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>The photochemical chlorination of methane can occur at low temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using relevant equations, show the initiation and the propagation steps for this reaction.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Polyvinyl chloride (PVC) is a polymer with the following structure.</p>
<p><img src=""></p>
<p>State the structural formula for the monomer of PVC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon forms many compounds.</p>
</div>
<div class="specification">
<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>
</div>
<div class="specification">
<p>But-2-ene reacts with hydrogen bromide.</p>
</div>
<div class="specification">
<p>Chlorine reacts with methane.</p>
<p style="text-align: center;">CH<sub>4</sub> (g) + Cl<sub>2 </sub>(g) → CH<sub>3</sub>Cl (g) + HCl (g)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> difference between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two features showing that propane and butane are members of the same homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formula of but-2-ene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label an enthalpy level diagram for this reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of compound to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the molecular formula of the next member of the homologous series to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why ethene has only a single signal in its <sup>1</sup>H NMR spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> possible products of the incomplete combustion of ethene that would not be formed by complete combustion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A white solid was formed when ethene was subjected to high pressure.</p>
<p>Deduce the type of reaction that occurred.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic chemistry can be used to synthesize a variety of products.</p>
</div>
<div class="specification">
<p>Combustion analysis of an unknown organic compound indicated that it contained only carbon, hydrogen and oxygen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Several compounds can be synthesized from but-2-ene. Draw the structure of the final product for each of the following chemical reactions.</p>
<p><img src="" width="651" height="241"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in enthalpy, Δ<em>H</em>, for the combustion of but-2-ene, using section 11 of the data booklet. </p>
<p style="text-align:center;">CH<sub>3</sub>CH=CHCH<sub>3 </sub>(g) + 6O<sub>2</sub> (g) → 4CO<sub>2 </sub>(g) + 4H<sub>2</sub>O (g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce two features of this molecule that can be obtained from the mass spectrum. Use section 28 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="660" height="270"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bond responsible for the absorption at <strong>A</strong> in the infrared spectrum. Use section 26 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="692" height="321"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved. </p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the identity of the unknown compound using the previous information, the <sup>1</sup>H NMR spectrum and section 27 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="387" height="329"></p>
<p style="text-align:center;">SDBS, National Institute of Advanced Industrial Science and Technology (AIST).</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR.</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p><span class="fontstyle0"><br>Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>1-chloropentane reacts with aqueous sodium hydroxide.</p>
</div>
<div class="specification">
<p>The reaction was repeated at a lower temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the role of the hydroxide ion in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch labelled Maxwell–Boltzmann energy distribution curves at the original temperature (T<sub>1</sub>) and the new lower temperature (T<sub>2</sub>).</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="449" height="297"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of lowering the temperature on the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Alkanes undergo combustion and substitution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the molar enthalpy of combustion of an alkane if 8.75 × 10<sup>−4</sup> moles are burned, raising the temperature of 20.0 g of water by 57.3 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Hess’s law cycle:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction in step 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change, Δ<em>H</em><sup>Θ</sup>, of step 2 using section 13 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup>, of step 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the calculated value of Δ<em>H</em><sup>Θ</sup> using Hess’s Law in part (c) can be considered accurate and one reason why it can be considered approximate.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>