File "HL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 6/HL-paper2html
File size: 588.76 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 2</h2><div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50&deg;C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Now consider the second stage of the reaction.</p>
<p style="text-align: center;">CO (g) + 2H<sub>2</sub> (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Δ<em>H</em><sup>⦵</sup>&nbsp;= –129 kJ</p>
</div>

<div class="specification">
<p>Hydrogen peroxide can react with methane and oxygen to form methanol. This reaction can occur below 50°C if a gold nanoparticle catalyst is used.</p>
</div>

<div class="specification">
<p>Methanol is usually manufactured from methane in a two-stage process.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)<br>CO (g) + 2H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>3</sub>OH (l)</p>
</div>

<div class="specification">
<p>Consider the first stage of the reaction.</p>
<p style="text-align: center;">CH<sub>4 </sub>(g) + H<sub>2</sub>O (g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CO (g) + 3H<sub>2 </sub>(g)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the Maxwell-Boltzmann curve for the uncatalyzed reaction.</p>
<p>Draw a distribution curve at a lower temperature (T<sub>2</sub>) <strong>and</strong> show on the diagram how the addition of a catalyst enables the reaction to take place more rapidly than at T<sub>1</sub>.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="486" height="385"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hydrogen peroxide could cause further oxidation of the methanol. Suggest a possible oxidation product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the overall equation for the production of methanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>8.00 g of methane is completely converted to methanol. Calculate, to three significant figures, the final volume of hydrogen at STP, in dm<sup>3</sup>. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, Δ<em>H</em>, in kJ. Use section 11 of the data booklet.</p>
<p>Bond enthalpy of CO = 1077 kJ mol<sup>−1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why you would expect the value of Δ<em>H</em> calculated from the&nbsp;<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msubsup><mi>H</mi><mi>f</mi><mi mathvariant="normal">⦵</mi></msubsup></math> values, given in section 12 of data booklet, to differ from your answer to (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the expression for <em>K</em><sub>c</sub> for this stage of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the effect of increasing temperature on the value of <em>K<sub>c</sub></em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equilibrium constant, <em>K</em><sub>c</sub>, has a value of 1.01 at 298 K.</p>
<p>Calculate Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>–1</sup>, for this reaction. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for the entropy change, Δ<em>S</em><sup>⦵</sup>, in J K<sup>–1</sup> mol<sup>–1</sup> at 298 K. Use your answers to (e)(i) and section 1 of the data booklet.</p>
<p>If you did not get answers to (e)(i) use –1 kJ, but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the sign of Δ<em>S</em> with reference to the equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how a change in temperature from 298 K to 273 K would affect the spontaneity of the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>When dinitrogen pentoxide, N<sub>2</sub>O<sub>5</sub>, is heated the colourless gas undergoes thermal decomposition to produce brown nitrogen dioxide:</p>
<p style="text-align: center;">N<sub>2</sub>O<sub>5 </sub>(g) → 2NO<sub>2 </sub>(g) +&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>1</mn><mn>2</mn></mfrac></math>O<sub>2 </sub>(g)</p>
</div>

<div class="specification">
<p>Data for the decomposition at constant temperature is given.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the extent of decomposition could be measured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the missing point on the graph and draw the best-fit line.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why increasing the concentration of N<sub>2</sub>O<sub>5</sub> increases the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant, <em>k</em>, giving its units.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The thermal decomposition of dinitrogen monoxide occurs according to the equation:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">The reaction can be followed by measuring the change in total pressure, at constant temperature, with time.</span></p>
<p><span style="background-color: #ffffff;">The <em>x</em>-axis and <em>y</em>-axis are shown with arbitrary units.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/2.PNG" alt width="564" height="283"></span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">This decomposition obeys the rate expression:</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - \frac{{d[{{\text{N}}_2}{\text{O]}}}}{{dt}}">
  <mo>−<!-- − --></mo>
  <mfrac>
    <mrow>
      <mi>d</mi>
      <mo stretchy="false">[</mo>
      <mrow>
        <msub>
          <mrow>
            <mtext>N</mtext>
          </mrow>
          <mn>2</mn>
        </msub>
      </mrow>
      <mrow>
        <mtext>O]</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mi>d</mi>
      <mi>t</mi>
    </mrow>
  </mfrac>
</math></span> = <em>k</em>[N<sub>2</sub>O]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why, as the reaction proceeds, the pressure increases by the amount shown.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, in terms of collision theory, how a decrease in pressure would affect the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce how the rate of reaction at <em>t</em> = 2 would compare to the initial rate.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">It has been suggested that the reaction occurs as a two-step process:</span></p>
<p><span style="background-color: #ffffff;">Step 1: N<sub>2</sub>O (g) → N<sub>2</sub> (g) + O (g)</span></p>
<p><span style="background-color: #ffffff;">Step 2: N<sub>2</sub>O (g) + O (g) → N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p><span style="background-color: #ffffff;">Explain how this could support the observed rate expression.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment is repeated using the same amount of dinitrogen monoxide in the same apparatus, but at a lower temperature.</span></p>
<p><span style="background-color: #ffffff;">Sketch, on the axes in question 2, the graph that you would expect.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The experiment gave an error in the rate because the pressure gauge was inaccurate.</span></p>
<p><span style="background-color: #ffffff;">Outline whether repeating the experiment, using the same apparatus, and averaging the results would reduce the error.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph below shows the Maxwell–Boltzmann distribution of molecular energies at a particular temperature.</span></p>
<p><img src="images/2f.PNG" alt width="637" height="309"></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The rate at which dinitrogen monoxide decomposes is significantly increased by a metal oxide catalyst.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Annotate and use the graph to outline why a catalyst has this effect.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the standard entropy change, in J K−1, for the decomposition of dinitrogen monoxide. </span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2N<sub>2</sub>O (g) → 2N<sub>2</sub> (g) + O<sub>2</sub> (g)</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src="images/2gi.PNG" alt width="325" height="154"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Dinitrogen monoxide has a positive standard enthalpy of formation, Δ<em>H</em><sub>f</sub></span><sup>θ</sup><span style="background-color: #ffffff;">.</span></p>
<p><span style="background-color: #ffffff;">Deduce, giving reasons, whether altering the temperature would change the </span><span style="background-color: #ffffff;">spontaneity of the <strong>decomposition</strong> reaction.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The rate of the acid-catalysed iodination of propanone can be followed by measuring how the&nbsp;concentration of iodine changes with time.</p>
<p style="text-align: center;">I<sub>2</sub>(aq) + CH<sub>3</sub>COCH<sub>3</sub>(aq) → CH<sub>3</sub>COCH<sub>2</sub>I(aq) + H<sup>+</sup>(aq) + I<sup>−</sup>(aq)</p>
<p style="text-align: left;">The general form of the rate equation is:</p>
<p style="text-align: center;">Rate = [H<sub>3</sub>CCOCH<sub>3</sub>(aq)]<sup>m</sup> × [I<sub>2</sub>(aq)]<sup>n</sup> × [H<sup>+</sup>(aq)]<sup>p</sup></p>
<p style="text-align: left;">The reaction is first order with respect to propanone.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the change of iodine concentration could be followed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student produced these results with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mo stretchy="false">[</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
  <mo stretchy="false">]</mo>
  <mo>=</mo>
  <mn>0.15</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>. Propanone and acid were in excess and iodine was the limiting reagent. Determine the relative rate of reaction when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="[{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}">
  <mo stretchy="false">[</mo>
  <mrow>
    <msup>
      <mrow>
        <mtext>H</mtext>
      </mrow>
      <mo>+</mo>
    </msup>
  </mrow>
  <mo stretchy="false">]</mo>
  <mo>=</mo>
  <mn>0.15</mn>
  <mrow>
    <mtext> mol</mtext>
  </mrow>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>d</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mrow>
        <mo>−</mo>
        <mn>3</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-09-19_om_17.58.35.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/01.a.ii"></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.</p>
<p><img src=""></p>
<p>Determine the relationship between the rate of reaction and the concentration of acid and the order of reaction with respect to hydrogen ions.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the concentration of iodine is varied, while keeping the concentrations of acid and propanone constant, the following graphs are obtained.</p>
<p><img src=""></p>
<p>Deduce, giving your reason, the order of reaction with respect to iodine.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the reaction is carried out in the absence of acid the following graph is obtained.</p>
<p><img src=""></p>
<p>Discuss the shape of the graph between A and B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>
<p><span class="fontstyle0"> The following experimental data was obtained.<br> </span></p>
<p><span class="fontstyle0"><img src="" width="463" height="150"></span></p>
<p><span class="fontstyle0"> Deduce the partial order of reaction with respect to nitrogen monoxide and oxygen.<br> </span></p>
<p><span class="fontstyle0"><img src="" width="583" height="148"></span></p>
<p> </p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nitrogen monoxide reacts with oxygen gas to form nitrogen dioxide.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, whether the following mechanism is possible.</span></p>
<p><span class="fontstyle0"><img src="" width="477" height="67"></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p><span class="fontstyle0">Label the diagram with the species in the equation.</span></p>
<p><span class="fontstyle0"><img src="" width="576" height="239"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard cell potential, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">V</mi></math>, for the cell at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>. Use section 24 of the data booklet</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the standard free energy change, </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msup><mi mathvariant="normal">G</mi><mo>⦵</mo></msup></math><span class="fontstyle0">, </span><span class="fontstyle4"><strong>in</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="bold">kJ</mi></math></span><span class="fontstyle0">, for the cell using sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(vi).</div>
</div>
<br><hr><br><div class="specification">
<p>3.26 g of iron powder are added to 80.0 cm<sup>3</sup> of 0.200 mol dm<sup>−3</sup> copper(II) sulfate solution. The following reaction occurs:</p>
<p style="text-align: center;">Fe (s) + CuSO<sub>4</sub> (aq) → FeSO<sub>4</sub> (aq) + Cu (s)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the limiting reactant showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of copper obtained experimentally was 0.872 g. Calculate the percentage yield of copper.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction was carried out in a calorimeter. The maximum temperature rise of the solution was 7.5 °C.</p>
<p>Calculate the enthalpy change, Δ<em>H</em>, of the reaction, in kJ, assuming that all the heat released was absorbed by the solution. Use sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State another assumption you made in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The only significant uncertainty is in the temperature measurement.</p>
<p>Determine the absolute uncertainty in the calculated value of Δ<em>H</em> if the uncertainty in the temperature rise was ±0.2 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the concentration of iron(II) sulfate, FeSO<sub>4</sub>, against time as the reaction proceeds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be determined from the graph in part (c)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the collision theory, why replacing the iron powder with a piece of iron of the same mass slows down the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student electrolyzed aqueous iron(II) sulfate, FeSO<sub>4</sub> (aq), using platinum electrodes. State half-equations for the reactions at the electrodes, using section 24 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbonate reacts with hydrochloric acid.</p>
<p style="text-align: center;">CaCO<sub>3</sub>(s) + 2HCl(aq) → CaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l) + CO<sub>2</sub>(g)</p>
</div>

<div class="specification">
<p>The results of a series of experiments in which the concentration of HCl was varied are shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-07_om_11.18.37.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/X04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>ways in which the progress of the reaction can be monitored. No practical details are required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why point D is so far out of line assuming human error is not the cause.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line for the reaction excluding point D.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rate constant of the reaction, stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict from your line of best fit the rate of reaction when the concentration of HCl is 1.00 mol dm<sup>−3</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the activation energy of this reaction could be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Limestone can be converted into a variety of useful commercial products through the lime cycle. Limestone contains high percentages of calcium carbonate, CaCO<sub>3</sub>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="538" height="218"></p>
</div>

<div class="specification">
<p>Thermodynamic data for the decomposition of calcium carbonate is given.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The second step of the lime cycle produces calcium hydroxide, Ca(OH)<sub>2</sub>.</p>
</div>

<div class="specification">
<p>Calcium hydroxide reacts with carbon dioxide to reform calcium carbonate.</p>
<p style="text-align: center;">Ca(OH)<sub>2 </sub>(aq) + CO<sub>2 </sub>(g) → CaCO<sub>3</sub> (s) + H<sub>2</sub>O (l)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbonate is heated to produce calcium oxide, CaO.</p>
<p style="text-align:center;">CaCO<sub>3 </sub>(s) → CaO (s) + CO<sub>2 </sub>(g)</p>
<p>Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of reaction, <em>ΔH</em>, in kJ, for the decomposition of calcium carbonate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the change in entropy, Δ<em>S</em>, in J K<sup>−1</sup>, for the decomposition of calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the temperature, in K, at which the decomposition of calcium carbonate becomes spontaneous, using b(i), b(ii) and section 1 of the data booklet.</p>
<p>(If you do not have answers for b(i) and b(ii), use Δ<em>H</em> = 190 kJ and Δ<em>S</em> = 180 J K<sup>−1</sup>, but these are not the correct answers.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch an energy profile for the decomposition of calcium carbonate based on your answer to b(i), labelling the axes and activation energy, <em>E</em><sub>a</sub>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how adding a catalyst to the reaction would impact the enthalpy change of reaction, Δ<em>H</em>, and the activation energy, <em>E</em><sub>a</sub>.</p>
<p><img src="" width="679" height="174"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction of Ca(OH)<sub>2 </sub>(aq) with hydrochloric acid, HCl (aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in dm<sup>3</sup>, of 0.015 mol dm<sup>−3</sup> calcium hydroxide solution needed to neutralize 35.0 cm<sup>3</sup> of 0.025 mol dm<sup>−3</sup> HCl (aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Saturated calcium hydroxide solution is used to test for carbon dioxide. Calculate the pH of a 2.33 × 10<sup>−2 </sup>mol dm<sup>−3</sup> solution of calcium hydroxide, a strong base.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass, in g, of CaCO<sub>3 </sub>(s) produced by reacting 2.41 dm<sup>3</sup> of 2.33 × 10<sup>−2</sup> mol dm<sup>−3</sup> of Ca(OH)<sub>2</sub> (aq) with 0.750 dm<sup>3</sup> of CO<sub>2</sub> (g) at STP.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.85 g of CaCO<sub>3</sub> was collected in the experiment in d(i). Calculate the percentage yield of CaCO<sub>3</sub>.</p>
<p>(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how <strong>one</strong> calcium compound in the lime cycle can reduce a problem caused by acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen and iodine react to form hydrogen iodide.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)</p>
</div>

<div class="specification">
<p>The following experimental data was obtained.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Consider the reaction of hydrogen with solid iodine.</p>
<p style="text-align: center;">H<sub>2</sub>&thinsp;(g) + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sub>2</sub>&thinsp;(s) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2H<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&thinsp;(g)&nbsp; &nbsp; &nbsp;&Delta;<em>H</em><sup>⦵</sup>&nbsp;= +53.0&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the order of reaction with respect to hydrogen.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of the rate constant stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> conditions necessary for a successful collision between reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the entropy change of reaction, Δ<em>S</em><sup>⦵</sup>, in J K<sup>−1</sup> mol<sup>−1</sup>.</p>
<p style="text-align:center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, how the value of the ΔS<sup>⦵</sup><sub>reaction</sub> would be affected if <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> (g) were used as a reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy change, Δ<em>G</em><sup>⦵</sup>, in kJ mol<sup>−1</sup>, for the reaction at 298 K. Use section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the equilibrium constant, <em>K</em><sub>c</sub>, for this reaction at 298 K. Use your answer to (d)(iii) and sections 1 and 2 of the data booklet.</p>
<p>(If you did not obtain an answer to (d)(iii) use a value of 2.0 kJ mol<sup>−1</sup>, although this is not the correct answer).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>

<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>&nbsp;+ HO<sup>&ndash;</sup>&nbsp;&rarr; CH<sub>3</sub>OH +&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>&ndash;</sup></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound B, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound A and Compound B are both liquids at room temperature and pressure. Identify the strongest intermolecular force between molecules of Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>σ</mtext></math> (sigma) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> (pi) bonds in Compound A.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the hybridization of the central carbon atom in Compound A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the isomer of Compound B that exists as optical isomers (enantiomers).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction produces more (CH<sub>3</sub>)<sub>3</sub>COH than (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>OH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Sulfur trioxide is produced from sulfur dioxide.</p>
<p style="text-align: center;">2SO<sub>2&thinsp;</sub>(g) + O<sub>2&thinsp;</sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>&#8652;</mo></math> 2SO<sub>3&thinsp;</sub>(g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &Delta;<em>H</em> = &minus;196&thinsp;kJ&thinsp;mol<sup>&minus;1</sup></p>
</div>

<div class="specification">
<p>The reaction between sulfur dioxide and oxygen can be carried out at different temperatures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving a reason, the effect of a catalyst on a reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch Maxwell–Boltzmann energy distribution curves for the reacting species at two temperatures T<sub>1</sub> <strong>and</strong> T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing temperature on the yield of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis structure of SO<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the electron domain geometry of SO<sub>3</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the product formed from the reaction of SO<sub>3</sub> with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of a strong Brønsted–Lowry acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about the decomposition of hydrogen peroxide.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Hydrogen peroxide decomposes to water and oxygen when a catalyst such as potassium iodide, KI, is added.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><br>2H<sub>2</sub>O<sub>2</sub> (aq)&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\xrightarrow{{{\text{KI (aq)}}}}">
  <mover>
    <mo>→</mo>
    <mpadded width="+0.611em" lspace="0.278em" voffset=".15em">
      <mrow>
        <mrow>
          <mtext>KI (aq)</mtext>
        </mrow>
      </mrow>
    </mpadded>
  </mover>
</math></span> O<sub>2</sub> (g) + 2H<sub>2</sub>O (l)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why many chemicals, including hydrogen peroxide, are kept in brown bottles instead of clear colourless bottles.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">In a laboratory experiment solutions of potassium iodide and hydrogen peroxide were mixed and the volume of oxygen generated was recorded. The volume was adjusted to 0 at t = 0.</span></p>
<p><span style="background-color: #ffffff;"><img src="images/4bi_1.PNG" alt width="427" height="250"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The data for the first trial is given below.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="images/4bi_2.PNG" alt width="398" height="220"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Plot a graph on the axes below and from it determine the average rate of<br>formation of oxygen gas in cm<sup>3</sup> O<sub>2</sub> (g) s<sup>−1</sup>.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="images/4bi_3.PNG" alt width="388" height="614"></span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Average rate of reaction:</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Two more trials (2 and 3) were carried out. The results are given below.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Determine the rate equation for the reaction and its overall order, using your answer from (b)(i).</span></span></p>
<p>Rate equation: </p>
<p>Overall order: </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Additional experiments were carried out at an elevated temperature. On the axes below, sketch Maxwell–Boltzmann energy distribution curves at two temperatures T<sub>1</sub> and T<sub>2</sub>, where T<sub>2</sub> &gt; T<sub>1</sub>.</span></p>
<p><img src="images/4biii.PNG" alt width="583" height="382"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Apart from a greater frequency of collisions, explain, by annotating your graphs in (b)(iii), why an increased temperature causes the rate of reaction to increase.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">MnO<sub>2</sub> is another possible catalyst for the reaction. State the IUPAC name for MnO<sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">H<sub>2</sub>O<sub>2</sub> (aq) + CH<sub>3</sub>COOH (aq) ⇌ CH<sub>3</sub>COOOH (aq) + H<sub>2</sub>O (l)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sodium percarbonate, 2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>, is an adduct of sodium carbonate and hydrogen peroxide and is used as a cleaning agent.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">M<sub>r</sub> (2Na<sub>2</sub>CO<sub>3</sub>•3H<sub>2</sub>O<sub>2</sub>) = 314.04</span></p>
<p><span style="background-color: #ffffff;">Calculate the percentage by mass of hydrogen peroxide in sodium percarbonate, giving your answer to two decimal places.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Copper forms two chlorides, copper(I) chloride and copper(II) chloride.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Two electrolysis cells were assembled using graphite electrodes and connected in series as shown.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Copper(I) chloride undergoes a disproportionation reaction, producing copper(II) chloride and copper.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">2Cu<sup>+</sup> (aq) → Cu (s) + Cu<sup>2+</sup> (aq)</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Dilute copper(II) chloride solution is light blue, while copper(I) chloride solution is colourless.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the electron configuration of the Cu<sup>+</sup> ion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Copper(II) chloride is used as a catalyst in the production of chlorine from hydrogen chloride.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">4HCl (g) + O<sub>2</sub> (g) → 2Cl<sub>2</sub> (g) + 2H<sub>2</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Calculate the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction, using section 12 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The diagram shows the Maxwell–Boltzmann distribution and potential energy profile for the reaction without a catalyst.</span></p>
<p><span style="background-color: #ffffff;">Annotate both charts to show the activation energy for the catalysed reaction, using the label <em>E</em><sub>a (cat)</sub>.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="313"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the catalyst increases the rate of the reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Solid copper(II) chloride absorbs moisture from the atmosphere to form a hydrate of formula CuCl<sub>2</sub>•<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>H<sub>2</sub>O.</span></p>
<p><span style="background-color: #ffffff;">A student heated a sample of hydrated copper(II) chloride, in order to determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>. The following results were obtained:</span></p>
<p><span style="background-color: #ffffff;">Mass of crucible = 16.221 g<br>Initial mass of crucible and hydrated copper(II) chloride = 18.360 g<br>Final mass of crucible and anhydrous copper(II) chloride = 17.917 g</span></p>
<p><span style="background-color: #ffffff;">Determine the value of <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how current is conducted through the wires and through the electrolyte.</span></p>
<p><span style="background-color: #ffffff;">Wires: </span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrolyte:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write the half-equation for the formation of gas bubbles at electrode 1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Bubbles of gas were also observed at another electrode. Identify the electrode and the gas.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Electrode number (on diagram):</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name of gas: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the half-equation for the formation of the gas identified in (c)(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of solution of copper(II) chloride, using data from sections 18 and 20 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">The enthalpy of hydration of the copper(II) ion is −2161 kJ mol<sup>−1</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the cell potential at 298 K for the disproportionation reaction, in V, using section 24 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Comment on the spontaneity of the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the standard Gibbs free energy change, Δ<em>G</em><sup>θ</sup>, to two significant figures, for the disproportionation at 298 K. Use your answer from (e)(i) and sections 1 and 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, whether the entropy of the system increases or decreases during the disproportionation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, giving a reason, the sign of the standard enthalpy change, Δ<em>H</em><sup>θ</sup>, for the disproportionation reaction at 298 K.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the effect of increasing temperature on the stability of copper(I) chloride solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how the blue colour is produced in the Cu(II) solution. Refer to section 17 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce why the Cu(I) solution is colourless.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">When excess ammonia is added to copper(II) chloride solution, the dark blue complex ion, [Cu(NH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>2+</sup>, forms.</span></p>
<p><span style="background-color: #ffffff;">State the molecular geometry of this complex ion, and the bond angles within it.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Molecular geometry:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Bond angles: </span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the relationship between the Brønsted–Lowry and Lewis definitions of a base, referring to the ligands in the complex ion [CuCl<sub>4</sub>]<sup>2−</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f(iv).</div>
</div>
<br><hr><br>