File "SL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Physics/Option A HTML/SL-paper3html
File size: 599.86 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define<em> proper length.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A charged pion decays spontaneously in a time of 26 ns as measured in the frame of reference in which it is stationary. The pion moves with a velocity of 0.96<em>c</em> relative to the Earth. Calculate the pion’s lifetime as measured by an observer on the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the pion reference frame, the Earth moves a distance X before the pion decays. In the Earth reference frame, the pion moves a distance Y before the pion decays. Demonstrate, with calculations, how length contraction applies to this situation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron X is moving parallel to a current-carrying wire. The positive ions and the wire are fixed in the reference frame of the laboratory. The drift speed of the free electrons in the wire is the same as the speed of the external electron X.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>frame of reference.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the reference frame of the laboratory the force on X is magnetic.</p>
<p>(i) State the nature of the force acting on X in this reference frame where X is at rest.</p>
<p>(ii) Explain how this force arises.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Identical twins, A and B, are initially on Earth. Twin A remains on Earth while twin B leaves the Earth at a speed of 0.6<em>c</em> for a return journey to a point three light years from Earth.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the journey in the reference frame of twin A as measured on Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time taken for the journey in the reference frame of twin B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, for the reference frame of twin A, a spacetime diagram that represents the worldlines for both twins.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the twin paradox arises and how it is resolved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer P sitting in a train moving at a speed <em>v</em> measures that his journey takes a time Δ<em>t</em><sub>P</sub>. An observer Q at rest with respect to the ground measures that the journey takes a time Δ<em>t</em><sub>Q</sub>.</p>
</div>

<div class="specification">
<p>According to Q there is an instant at which the train is completely within the tunnel.</p>
<p>At that instant two lights at the front and the back of the train are turned on simultaneously according to Q.</p>
<p style="text-align: center;"><img src=""></p>
<p>The spacetime diagram according to observer Q shows event B (back light turns on) and event F (front light turns on).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_14.55.20.png" alt="M17/4/PHYSI/SP3/ENG/TZ1/4d_02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which of the two time intervals is a proper time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed <em>v</em> of the train for the ratio <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\Delta {t_{\text{P}}}}}{{\Delta {t_{\text{Q}}}}} = 0.30">
  <mfrac>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msub>
          <mi>t</mi>
          <mrow>
            <mtext>P</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mi mathvariant="normal">Δ</mi>
      <mrow>
        <msub>
          <mi>t</mi>
          <mrow>
            <mtext>Q</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>0.30</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Later the train is travelling at a speed of 0.60c. Observer P measures the length of the train to be 125 m. The train enters a tunnel of length 100 m according to observer Q.</p>
<p>Show that the length of the train according to observer Q is 100 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the time <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="ct'">
  <mi>c</mi>
  <msup>
    <mi>t</mi>
    <mo>′</mo>
  </msup>
</math></span>&nbsp;and space <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x'">
  <msup>
    <mi>x</mi>
    <mo>′</mo>
  </msup>
</math></span>&nbsp;axes for observer P’s reference frame on the spacetime diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, using the spacetime diagram, which light was turned on first according to observer P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply a Lorentz transformation to show that the time difference between events B and F according to observer P is 2.5 × 10<sup>–7</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that the spacetime interval between events B and F is invariant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second train is moving at a velocity of –0.70c with respect to the ground.</p>
<p><img src=""></p>
<p>Calculate the speed of the second train relative to observer P.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> prediction of Maxwell’s theory of electromagnetism that is consistent with&nbsp;special relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A current is established in a long straight wire that is at rest in a laboratory.</p>
<p><img src=""></p>
<p>A proton is at rest relative to the laboratory and the wire.</p>
<p>Observer X is at rest in the laboratory. Observer Y moves to the right with&nbsp;constant speed relative to the laboratory. Compare and contrast how observer X&nbsp;and observer Y account for any non-gravitational forces on the proton.</p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket of proper length 450 m is approaching a space station whose proper length is&nbsp;9.0 km. The speed of the rocket relative to the space station is 0.80<em>c</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>X is an observer at rest in the space station.</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>Two lamps at opposite ends of the space station turn on at the same time according&nbsp;to X. Using a Lorentz transformation, determine, according to an observer at rest in&nbsp;the rocket,</p>
</div>

<div class="specification">
<p>The rocket carries a different lamp. Event 1 is the flash of the rocket’s lamp occurring&nbsp;at the origin of <strong>both</strong> reference frames. Event 2 is the flash of the rocket’s lamp at&nbsp;time<em> ct'</em> = 1.0 m according to the rocket. The coordinates for event 2 for observers&nbsp;in the space station are <em>x</em> and <em>ct</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.57.21.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/05c"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the rocket according to X.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A space shuttle is released from the rocket. The shuttle moves with speed&nbsp;0.20<em>c</em> <strong>to the right</strong> according to X. Calculate the <strong>velocity</strong> of the shuttle relative to&nbsp;the rocket.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the time interval between the lamps turning on.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>which lamp turns on first.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram label the coordinates <em>x</em> and <em>ct</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the <em>ct</em> coordinate in (c)(i) is less than, equal to <strong>or&nbsp;</strong>greater than 1.0 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>c</em> <sup>2</sup><em>t </em><sup>2</sup> – <em>x </em><sup>2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="question">
<p>Muons are unstable particles with a proper lifetime of 2.2 μs. Muons are produced 2.0 km&nbsp;above ground and move downwards at a speed of 0.98<em>c</em> relative to the ground. For this&nbsp;speed <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\gamma ">
  <mi>γ</mi>
</math></span> = 5.0. Discuss, with suitable calculations, how this experiment provides evidence&nbsp;for time dilation.</p>
</div>
<br><hr><br><div class="specification">
<p>A spaceship S leaves the Earth with a speed <em>v&nbsp;</em>= 0.80<em>c</em>. The spacetime diagram for the Earth is shown. A clock on the Earth and a clock on the spaceship are synchronized at the origin of the spacetime diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle between the worldline of S and the worldline of the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the diagram, the <em>x′</em>-axis for the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An event Z is shown on the diagram. Label the co-ordinates of this event in the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A long current-carrying wire is at rest in the reference frame S of the laboratory. A positively charged particle P outside the wire moves with velocity <em>v</em> relative to S. The electrons making up the current in the wire move with the same velocity<em> v</em> relative to S.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a reference frame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in reference frame S.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in the rest frame of P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two parallel current-carrying wires have equal currents in the same direction. There is an attractive force between the wires.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Maxwell’s equations led to the constancy of the speed of light. Identify what Maxwell’s equations describe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a postulate that is the same for both special relativity and Galilean relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the nature of the attractive force recorded by an observer stationary with respect to the wires.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second observer moves at the drift velocity of the electron current in the wires. Discuss how this observer accounts for the force between the wires.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>A spaceship is travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>80</mn><mi>c</mi></math>, away from Earth. It launches a probe away from Earth, at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>50</mn><mi>c</mi></math> relative to the spaceship. An observer on the probe measures the length of the probe to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn><mo>.</mo><mn>0</mn><mo> </mo><mi mathvariant="normal">m</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Lorentz transformations assume that the speed of light is constant. Outline what the Galilean transformations assume.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the length of the probe as measured by an observer in the spaceship.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which of the lengths is the proper length.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the probe in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>, relative to Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two rockets, A and B, are moving towards each other on the same path. From the frame&nbsp;of reference of the Earth, an observer measures the speed of A to be 0.6<em>c</em> and the speed of&nbsp;B to be 0.4<em>c</em>. According to the observer on Earth, the distance between A and B is 6.0&nbsp;x 10<sup>8</sup> m.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the observer on Earth, the time taken for A and B to meet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the terms in the formula.</p>
<p><em>u′</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{u - v}}{{1 - \frac{{uv}}{{{c^2}}}}}">
  <mfrac>
    <mrow>
      <mi>u</mi>
      <mo>−</mo>
      <mi>v</mi>
    </mrow>
    <mrow>
      <mn>1</mn>
      <mo>−</mo>
      <mfrac>
        <mrow>
          <mi>u</mi>
          <mi>v</mi>
        </mrow>
        <mrow>
          <mrow>
            <msup>
              <mi>c</mi>
              <mn>2</mn>
            </msup>
          </mrow>
        </mrow>
      </mfrac>
    </mrow>
  </mfrac>
</math></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the velocity of B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the time taken for B to meet A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, without further calculation, how the time taken for A to meet B, according to an observer in B, compares with the time taken for the same event according to an observer in A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Muons are created in the upper atmosphere of the Earth at an altitude of 10 km above the surface. The muons travel vertically down at a speed of 0.995<em>c </em>with respect to the Earth. When measured at rest the average lifetime of the muons is 2.1 μs.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to Galilean relativity, the time taken for a muon to travel to the ground.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce why only a small fraction of the total number of muons created is expected to be detected at ground level according to Galilean relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the theory of special relativity, the time taken for a muon to reach the ground in the reference frame of the muon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how your result in (b)(i) and the outcome of the muon decay experiment support the theory of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer on Earth watches rocket A travel away from Earth at a speed of 0.80<em>c</em>. The spacetime diagram shows the worldline of rocket A in the frame of reference of the Earth observer who is at rest at <em>x </em>= 0.</p>
<p style="text-align: left;"><img src=""></p>
<p>Another rocket, B, departs from the same location as A but later than A at <em>ct </em>= 1.2 km according to the Earth observer. Rocket B travels at a constant speed of 0.60<em>c </em>in the opposite direction to A according to the Earth observer.</p>
</div>

<div class="specification">
<p>Rocket A and rocket B both emit a flash of light that are received simultaneously by the Earth observer. Rocket A emits the flash of light at a time coordinate <em>ct </em>= 1.8 km according to the Earth observer.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the spacetime diagram the worldline of B according to the Earth observer and label it B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, showing your working on the spacetime diagram, the value of <em>ct </em>according to the Earth observer at which the rocket B emitted its flash of light.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain whether or not the arrival times of the two flashes in the Earth frame are simultaneous events in the frame of rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of rocket B relative to rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Observer A detects the creation (event 1) and decay (event 2) of a nuclear particle.&nbsp;After creation, the particle moves at a constant speed relative to A. As measured by A,&nbsp;the distance between the events is 15 m and the time between the events is 9.0 × 10<sup>–8</sup> s.</p>
<p>Observer B moves with the particle.</p>
<p>For event 1 and event 2,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by the statement that the spacetime interval is an invariant&nbsp;quantity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>calculate the spacetime interval.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the time between them according to observer B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observed times are different for A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A train is passing through a tunnel of proper length 80 m. The proper length of the train&nbsp;is 100 m. According to an observer at rest relative to the tunnel, when the front of the train&nbsp;coincides with one end of the tunnel, the rear of the train coincides with the other end of&nbsp;the tunnel.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by proper length.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a spacetime diagram for this situation according to an observer at rest relative to the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the train, according to an observer at rest relative to the tunnel, at which the train fits the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an observer on the train, it is the tunnel that is moving and therefore will appear length contracted. This seems to contradict the observation made by the observer at rest to the tunnel, creating a paradox. Explain how this paradox is resolved. You may refer to your spacetime diagram in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the axes for two inertial reference frames. Frame S represents the&nbsp;ground and frame S′ is a box that moves to the right relative to S with speed <em>v</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>When the origins of the two frames coincide all clocks show zero. At that instant a&nbsp;beam of light of speed <em>c</em> is emitted from the left wall of the box towards the right wall.&nbsp;The box has proper length <em>L</em>. Consider the event E = light arrives at the right wall of&nbsp;the box.</p>
<p><br>Using <strong>Galilean</strong> relativity,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a reference frame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>explain why the time coordinate of E in frame S is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{L}{c}">
  <mi>t</mi>
  <mo>=</mo>
  <mfrac>
    <mi>L</mi>
    <mi>c</mi>
  </mfrac>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>hence show that the space coordinate of E in frame S is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = L + \frac{{vL}}{c}">
  <mi>x</mi>
  <mo>=</mo>
  <mi>L</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mi>v</mi>
      <mi>L</mi>
    </mrow>
    <mi>c</mi>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket of proper length 120 m moves to the right with speed 0.82<em>c</em> relative to the ground.</p>
<p style="text-align: center;"><img src=""></p>
<p>A probe is released from the back of the rocket at speed 0.40<em>c</em> relative to the rocket.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of the probe relative to the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time it takes the probe to reach the front of the rocket according to&nbsp;an observer&nbsp;at rest in the rocket.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time it takes the probe to reach the front of the rocket according to&nbsp;an observer at rest on the ground.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The spacetime diagram shows the axes of an inertial reference frame S and the axes of a&nbsp;second inertial reference frame S′ that moves relative to S with speed 0.745<em>c</em>. When clocks&nbsp;in both frames show zero the origins of the two frames coincide.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Event E has coordinates <em>x</em> = 1 m and <em>ct</em> = 0 in frame S. Show that in frame S′ the space&nbsp;coordinate and time coordinate of event E are</p>
</div>

<div class="specification">
<p>A rod at rest in frame S has proper length 1.0 m. At <em>t</em> = 0 the left-hand end of the rod is&nbsp;at <em>x</em> = 0 and the right-hand end is at <em>x</em> = 1.0 m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><em>x</em>′ = 1.5 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><em>ct</em>′ = –1.1 m.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label, on the diagram, the space coordinate of event E in the S′ frame. Label this event with the letter P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label, on the diagram, the event that has coordinates <em>x</em>′ = 1.0 m and <em>ct</em>′ = 0. Label this event with the&nbsp;letter Q.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the spacetime diagram, outline without calculation, why observers in frame S′ measure the length of the<br>rod to be less than 1.0 m.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the spacetime diagram, estimate, in m, the length of this rod in the S′ frame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the motion of the electrons in a metal wire carrying an electric current as seen by an observer X at rest with respect to the wire. The distance between adjacent positive charges is <em>d</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.22.52.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/03"></p>
</div>

<div class="specification">
<p>Observer Y is at rest with respect to the electrons.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the field around the wire according to observer X is electric, magnetic or a combination of both.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the change in <em>d </em>according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the overall field around the wire is electric, magnetic or a combination of both according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Rocket A and rocket B are travelling in opposite directions from the Earth along the same&nbsp;straight line.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.33.49.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/03"></p>
<p>In the reference frame of the Earth, the speed of rocket A is 0.75<em>c </em>and the speed of rocket B&nbsp;is 0.50<em>c</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the&nbsp;Galilean transformation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the&nbsp;Lorentz transformation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to special relativity, which of your calculations in (a) is more&nbsp;likely to be valid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>When a spaceship passes the Earth, an observer on the Earth and an observer on the&nbsp;spaceship both start clocks. The initial time on both clocks is 12 midnight. The spaceship&nbsp;is travelling at a constant velocity with <em>γ</em> = 1.25. A space station is stationary relative to the&nbsp;Earth and carries clocks that also read Earth time.</p>
</div>

<div class="specification">
<p>Some of the radio signal is reflected at the surface of the Earth and this reflected&nbsp;signal is later detected at the spaceship. The detection of this signal is event B.&nbsp;The spacetime diagram is shown for the Earth, showing the space station and&nbsp;the spaceship. Both axes are drawn to the same scale.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the spaceship relative to the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spaceship passes the space station 90 minutes later as measured by the&nbsp;spaceship clock. Determine, for the reference frame of the Earth, the distance&nbsp;between the Earth and the space station.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As the spaceship passes the space station, the space station sends a radio signal&nbsp;back to the Earth. The reception of this signal at the Earth is event A. Determine the&nbsp;time on the Earth clock when event A occurs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct event A and event B on the spacetime diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the spacetime diagram, the time at which event B occurs for&nbsp;the spaceship.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The speed of a spaceship is measured to be 0.50<em>c</em> by an observer at rest in the Earth’s reference frame.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Define an <em>inertial reference frame.</em></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ai.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">As the spaceship passes the Earth it emits a flash of light that travels in the same direction as the spaceship with speed <em>c</em> as measured by an observer on the spaceship. Calculate, according to the Galilean transformation, the speed of the light in the Earth’s reference frame.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">aii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Use your answer to (a)(ii) to describe the paradigm shift that Einstein’s theory of special relativity produced.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A spaceship moves away from the Earth in the direction of a nearby planet. An observer on the Earth determines the planet is 4 ly from the Earth. The spacetime diagram for the Earth’s reference frame shows the worldline of the spaceship. Assume the clock on the Earth, the clock on the planet, and the clock on the spaceship were all synchronized when<em> ct</em> = 0.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Show, using the spacetime diagram, that the speed of the spaceship relative to the Earth is 0.80<em>c</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Label, with the letter E, the event of the spaceship going past the planet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, according to an observer on the spaceship as the spaceship passes the planet, the time shown by the clock on the spaceship.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ci.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Determine, according to an observer on the spaceship as the spaceship passes the planet, the time shown by the clock on the planet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">cii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">On passing the planet a probe containing the spaceship’s clock and an astronaut is sent back to Earth at a speed of 0.80<em>c</em> relative to Earth. Suggest, for this situation, how the twin paradox arises and how it is resolved.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A train of proper length 85 m moves with speed 0.60<em>c</em> relative to a stationary observer on a platform.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Define <em>proper length</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">In the reference frame of the train a ball travels with speed 0.50<em>c</em> from the back to the front of the train, as the train passes the platform. Calculate the time taken for the ball to reach the front of the train in the reference frame of the train.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">bi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">In the reference frame of the train a ball travels with speed 0.50<em>c</em> from the back to the front of the train, as the train passes the platform. Calculate the time taken for the ball to reach the front of the train in the reference frame of the platform.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">bii.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket moving with speed v relative to the ground emits a flash of light in the backward direction.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">An observer in the rocket measures the speed of the flash of light to be <em>c</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the <strong>speed</strong> of the flash of light according to an observer on the ground using Galilean relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the <strong>speed</strong> of the flash of light according to an observer on the ground using Maxwell’s theory of electromagnetism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the <strong>speed</strong> of the flash of light according to an observer on the ground using Einstein’s theory of relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows space and time axes&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <em>ct</em> for an observer at rest with respect to a galaxy. A spacecraft moving through the galaxy has space and time axes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>′ and <em>ct</em>′.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A rocket is launched towards the right from the spacecraft when it is at the origin of the axes. This is labelled event 1 on the spacetime diagram. Event 2 is an asteroid exploding at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> = 100 ly and <em>ct</em> = 20 ly.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot, on the axes, the point corresponding to event 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest whether the rocket launched by the spacecraft might be the cause of the explosion of the asteroid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the value of the invariant spacetime interval between events 1 and 2 is 9600 ly<sup>2</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An observer in the spacecraft measures that events 1 and 2 are a distance of 120 ly apart. Determine, according to the spacecraft observer, the time between events 1 and 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the spacetime diagram, determine which event occurred first for the spacecraft observer, event 1 or event 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, using the diagram, the speed of the spacecraft relative to the galaxy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A long straight current-carrying wire is at rest in a laboratory. A negatively-charged particle P outside the wire moves parallel to the current with constant velocity<em> v</em> relative to the laboratory.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">In the reference frame of the laboratory the particle P experiences a repulsive force away from the wire.</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">One of the two postulates of special relativity states that the speed of light in a vacuum is the same for all observers in inertial reference frames. State the other postulate of special relativity.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the nature of the force on the particle P in the reference frame of the laboratory.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce, using your answer to part (a), the nature of the force that acts on the particle P in the rest frame of P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the force in part (b)(ii) arises.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The velocity of P is 0.30<em>c</em> relative to the laboratory. A second particle Q moves at a velocity of 0.80<em>c</em> relative to the laboratory.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the speed of Q relative to P.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Muons are created at a height of 3230 m above the Earth’s surface. The muons move vertically downward at a speed of 0.980 c relative to the Earth’s surface. The gamma factor for this speed is 5.00. The half-life of a muon in its rest frame is 2.20 μs.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate in the Earth frame the fraction of the original muons that will reach the Earth’s surface before decaying according to Newtonian mechanics.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate in the Earth frame the fraction of the original muons that will reach the Earth’s surface before decaying according to special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate how an observer moving with the same velocity as the muons accounts for the answer to (a)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The spacetime diagram is in the reference frame of an observer O on Earth. Observer O and spaceship A are at the origin of the spacetime diagram when time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mi>t</mi><mo>'</mo><mo>=</mo><mn>0</mn></math>. The worldline for spaceship A is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>Event E is the emission of a flash of light. Observer O sees light from the flash when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>9</mn></math> years and calculates that event E is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mi>ly</mi></math>&nbsp;away, in the positive <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> direction.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math> the velocity of spaceship A relative to observer O.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>'</mo></math> axis for the reference frame of spaceship A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the event E on the spacetime diagram and label it E.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time, according to spaceship A, when light from event E was observed on spaceship A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A train is moving across a bridge with a speed <em>v</em> = 0.40<em>c</em>. Observer A is at rest in the train. Observer B is at rest with respect to the bridge.</span></p>
<p><span style="background-color: #ffffff;">The length of the bridge<em> L</em><sub>B</sub> according to observer B is 2.0 km.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">According to observer B, two lamps at opposite ends of the bridge are turned on simultaneously as observer A crosses the bridge. Event X is the lamp at one end of the bridge turning on. Event Y is the lamp at the other end of the bridge turning on.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src=""></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Events X and Y are shown on the spacetime diagram. The space and time axes of the reference frame for observer B are <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math></em> and <em>ct</em>. The line labelled <em>ct'</em> is the worldline of observer A.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src=""></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, for observer A,&nbsp;the length<em> L</em><sub>A</sub> of the bridge</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate, for observer A,&nbsp;the time taken to cross the bridge.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why<em> L</em><sub>B</sub> is the proper length of the bridge.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw, on the spacetime diagram, the space axis for the reference frame of observer A. Label this axis <em><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>'</em>.</span></p>
<p>&nbsp;</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Demonstrate using the diagram which lamp, according to observer A, was <strong>turned on</strong> first.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Demonstrate, using the diagram, which lamp observer A <strong>observes</strong> to light first.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the time, according to observer A, between X and Y.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Two protons are moving to the right with the same speed <em>v</em> with respect to an observer at rest in the laboratory frame.</span></p>
<p><span style="background-color: #ffffff;"><img src=""></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Outline why there is an attractive magnetic force on each proton in the laboratory frame. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain why there is no magnetic force on each proton in its own rest frame.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color:#ffffff;">Explain why there must be a resultant repulsive force on the protons in all reference frames.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Outline the conclusion from Maxwell’s work on electromagnetism that led to one of the postulates of special relativity.</p>
</div>
<br><hr><br>