File "SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Option A/SL-paper3html
File size: 454.61 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>Materials science involves understanding the properties of materials and applying those properties to desired structures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium oxide, MgO, and silicon carbide, SiC, are examples of ceramic materials. State the name of the predominant type of bonding in each material.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the predominant type of bonding for a binary compound AB in which the electronegativity of both atoms is low. Use section 29 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Aluminium is produced by the electrolysis of a molten electrolyte containing bauxite.</p>
<p>Determine the mass, in g, of aluminium produced by the passage of a charge of 1.296 × 10<sup>13</sup> C. Use sections 2 and 6 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p>Nanocatalysts have large surface areas per unit mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>one</strong> concern of using nanoscale catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how zeolites act as selective catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carbon nanotubes, which can be produced by the HIPCO process, show great potential as nanocatalysts. Identify the catalyst and conditions used in the HIPCO process.</p>
<p>Catalyst:<br><br></p>
<p>Conditions:<br> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Since the accidental discovery of polyethene in the 1930s, polymers have played an essential role in daily life because of their wide range of properties and uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Titanium compounds are used as catalysts in the manufacture of high-density polyethene (HDPE). Discuss <strong>two </strong>factors scientists would have considered in choosing these catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a structural feature of low-density polyethene (LDPE) that explains why LDPE has a different melting point from that of HDPE.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>environmental impact of the disposal of these polyethenes by using incineration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum metal may be produced by the electrolysis of molten LaBr<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why lanthanum cannot be produced by reducing its oxide with carbon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current (<em>I</em>), in A, required to produce 1.00 kg of lanthanum metal per hour. Use the formula \(Q(C) = I(A) \times t(s)\) and sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum, La, and antimony, Sb, form compounds with bromine that have similar formulas, LaBr<sub>3</sub> and SbBr<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the type of bond present in SbBr<sub>3</sub>, showing your method. Use sections 8 and 29 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum has a similar electronegativity to group 2 metals. Explain, in terms of bonding and structure, why crystalline lanthanum bromide is brittle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium and high density polyethene (HDPE) are both materials readily found in the kitchen, for example as saucepans and mixing bowls respectively. In these applications it is important that they are impermeable to water.</p>
</div>
<div class="specification">
<p>Both materials are also used in other applications that are more demanding of their physical properties. Carbon nanotubes are often incorporated into their structures to improve certain properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, in terms of its structure, why an aluminium saucepan is impermeable to water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name given to a material composed of two distinct solid phases.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one physical property of HDPE that will be affected by the incorporation of carbon nanotubes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how carbon nanotubes are produced by chemical vapour deposition (CVD).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the property of carbon nanotubes that enables them to form a nematic liquid crystal phase.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Chemical vapour deposition (CVD) produces multi-walled carbon nanotubes (MWCNT) of a more appropriate size for use in liquid crystals than production by arc discharge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the source of carbon for MWCNT produced by arc discharge and by CVD.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>three </strong>properties a substance should have to be suitable for use in liquid crystal displays.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Catalysts can take many forms and are used in many industrial processes.</p>
<p>Suggest two reasons why it might be worth using a more expensive catalyst to increase the rate of a reaction.</p>
</div>
<br><hr><br><div class="specification">
<p>Nanotechnology has many applications.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State equations for the formation of iron nanoparticles and carbon atoms from Fe(CO)<sub>5</sub> in the HIPCO process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the iron nanoparticle catalysts produced by the HIPCO process are more efficient than solid iron catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss one possible risk associated with the use of nanotechnology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propene can polymerize to form polypropene.</p>
<p>Propene monomer: <img src="images/Schermafbeelding_2018-08-08_om_17.53.44.png" alt="M18/4/CHEMI/HP3/ENG/TZ2/05"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch four repeating units of the polymer to show atactic and isotactic polypropene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the chemical reason why plastics do not degrade easily.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare <strong>two </strong>ways in which recycling differs from reusing plastics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Civilizations are often characterized by the materials they use.</p>
<p>Suggest an advantage polymers have over materials from the iron age.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid Crystal on Silicon, LCoS, uses liquid crystals to control pixel brightness. The degree of rotation of plane polarized light is controlled by the voltage received from the silicon chip.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two important properties of a liquid crystal molecule are being a polar molecule and having a long alkyl chain. Explain why these are essential components of a liquid crystal molecule.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Metal impurities during the production of LCoS can be analysed using ICP-MS. Each metal has a detection limit below which the uncertainty of data is too high to be valid. Suggest <strong>one</strong> factor which might influence a detection limit in ICP-MS/ICP-OES.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Both HDPE (high density polyethene) and LDPE (low density polyethene) are produced by the polymerization of ethene.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both of these are thermoplastic polymers. Outline what this term means.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the structures of HDPE and LDPE.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>way in which a physical property of HDPE, other than density, differs from that of LDPE as a result of this structural difference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The production of HDPE involves the use of homogeneous catalysts. Outline how homogeneous catalysts reduce the activation energy of reactions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Trace amounts of metal from the catalysts used in the production of HDPE sometimes remain in the product. State a technique that could be used to measure the concentration of the metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>of the major obstacles, other than collection and economic factors, which have to be overcome in plastic recycling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why there are so many different ways in which plastics can be classified. HDPE can, for example, be categorized thermoplastic, an addition polymer, having Resin Identification Code (RIC) 2, <em>etc</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>It is wise to fill dental cavities before irreversible tooth decay sets in. An amalgam (alloy of mercury, silver, and other metals) is often used although many prefer a white composite material.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the composition of an alloy and a composite.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why an alloy is usually harder than its components by referring to its structure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At present, composite fillings are more expensive than amalgam fillings.</p>
<p>Suggest why a patient might choose a composite filling.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how Inductively Coupled Plasma (ICP) Spectroscopy could be used to determine the concentration of mercury in a sample of dental filling.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium and palladium are often used together in catalytic converters. Rhodium is a good reduction catalyst whereas palladium is a good oxidation catalyst.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a catalytic converter, carbon monoxide is converted to carbon dioxide. Outline the process for this conversion referring to the metal used.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nickel is also used as a catalyst. It is processed from an ore until nickel(II) chloride solution is obtained. Identify <strong>one</strong> metal, using sections 24 and 25 of the data booklet, which will not react with water and can be used to extract nickel from the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the redox equation for the reaction of nickel(II) chloride solution with the metal identified in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another method of obtaining nickel is by electrolysis of a nickel(II) chloride solution. Calculate the mass of nickel, in g, obtained by passing a current of 2.50 A through the solution for exactly 1 hour. Charge (<em>Q</em>) = current (<em>I</em>) × time (<em>t</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Research has led to the discovery of new catalysts that are in high demand and used in many chemical industries.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to their structure, the great selectivity of zeolites as catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nanocatalysts play an essential role in the manufacture of industrial chemicals.</p>
<p>(i) Describe the high pressure carbon monoxide (HIPCO) method for the production of carbon nanotubes.</p>
<p>(ii) Outline one benefit of using nanocatalysts compared to traditional catalysts in industry.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Both carbon monoxide and hydrogen can be used to reduce iron ores. State the equations for the reduction of magnetite, Fe<sub><span class="s1">3</span></sub>O<sub><span class="s1">4</span></sub>, with</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why iron is obtained from its ores using chemical reducing agents but aluminium is obtained from its ores using electrolysis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Both carbon monoxide and hydrogen can be used to reduce iron ores. State the equations for the reduction of magnetite, Fe<sub><span class="s1">3</span></sub>O<sub><span class="s1">4</span></sub>, with</p>
<p class="p1">(i) carbon monoxide.</p>
<p class="p1">(ii) hydrogen.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why much of the iron produced in a blast furnace is converted into steel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the materials used for the positive and negative electrodes in the production of aluminium by electrolysis.</p>
<p class="p1">Positive electrode:</p>
<p class="p1">Negative electrode:</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum nanoparticles are incorporated into certain catalysts and the electrodes of some fuel cells.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the major advantage that nanoparticles have in these applications.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why nanoparticles need to be handled with care.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Describe how the structures of ceramics differ from those of metals.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Petroleum (mineral oil) can be used either as a fuel or a chemical feedstock.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Name <strong>two </strong>fuels that are obtained from petroleum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>one </strong>environmental problem that can result from the combustion of these fuels in the internal combustion engine and identify the specific combustion product responsible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Plastic litter is an environmental problem that results from the use of petroleum as a chemical feedstock. Identify the property of plastics that is responsible for this.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One product that is made from crude oil is the chemical feedstock that can be used to synthesize commercial liquid-crystal displays. Discuss the properties that a substance must have to make it suitable for use as a liquid-crystal display.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Liquid crystals are widely used in electrically controlled liquid crystal display (LCD) devices such as calculators, computers and watches.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the meaning of the term <em>liquid crystals</em>. State and explain which diagram, I or II, represents molecules that are in a liquid crystalline phase.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-17_om_09.35.34.png" alt="M09/4/CHEMI/SP3/ENG/TZ1/C2.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between <em>thermotropic </em>and <em>lyotropic </em>liquid crystals and state <strong>one </strong>example of each type.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss the properties needed for a substance to be used in liquid crystal displays.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Liquid-crystal displays are used in digital watches, calculators and laptops.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the liquid-crystal state, in terms of molecular arrangement, and explain what happens as temperature increases.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>three </strong>properties a substance should have if it is to be used in liquid-crystal displays.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Poly(ethene) can be produced in a low density (LDPE) or a high density (HDPE) form.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe how the two forms differ in their chemical structure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain in terms of their structures how the flexibility of the two forms of poly(ethene) differ.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe why pentane is sometimes added during the formation ofpoly(phenylethene), also known as polystyrene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>use for the product formed from this process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Exciting developments have taken place in recent years in the area of nanotechnology.</p>
</div>
<div class="specification">
<p class="p1">Carbon nanotubes can be used to make <em>designer catalysts</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>nanotechnology</em>, and state why it is of interest to chemists.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Describe the structure of carbon nanotubes.</p>
<p class="p1">(ii) State <strong>one </strong>physical property of carbon nanotubes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest <strong>two </strong>concerns about the use of nanotechnology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium is chemically reactive so it has to be extracted by the electrolysis of aluminium oxide dissolved in molten cryolite.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_14.43.47.png" alt="N14/4/CHEMI/SP3/ENG/TZ0/08"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce an equation for the discharge of the ions at each electrode.</p>
<p> </p>
<p>Positive electrode (anode):</p>
<p> </p>
<p> </p>
<p>Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline why aluminium is alloyed with copper and magnesium when used to construct aircraft bodies.</p>
<p> </p>
<p> </p>
<p>(ii) State <strong>two </strong>properties of aluminium that make it suitable for use in overhead power cables.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Polyacrylonitrile is an important polymer used in the manufacture of carbon fibres. The monomer has the structure below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-27_om_07.43.06.png" alt="N13/4/CHEMI/SP3/ENG/TZ0/09"></p>
</div>
<div class="specification">
<p class="p1">The rate of the polymerization reaction from the gaseous monomer is increased in the presence of a zeolite with the cage structure shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-27_om_07.48.26.png" alt="N13/4/CHEMI/SP3/ENG/TZ0/09"></p>
</div>
<div class="specification">
<p class="p1">A new range of light batteries has been developed that uses open carbon nanotubes, covered with silicon, as electrodes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Polyacrylonitrile is similar to polypropene and can exist in two forms.</p>
<p class="p1"> </p>
<p class="p1">Draw the structure of the isotactic form of polyacrylonitrile showing <strong>three</strong> repeating units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Polyacrylonitrile is similar to polypropene and can exist in two forms.</p>
<p> </p>
<p>Explain why the isotactic form is more suitable for the manufacture of strong fibres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the role of the zeolite in the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest an explanation for its efficiency in favouring the production of the crystalline polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the structure of the open carbon nanotubes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State a property of these nanotubes that makes them suitable for this use.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Nitrogen dioxide and sulfur dioxide are two air pollutants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Nitrogen dioxide is formed in a two-stage process. Describe <strong>one </strong>anthropogenic (man-made) source of nitrogen dioxide and state the <strong>two </strong>chemical equations for its formation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Both of these air pollutants also contribute to acid deposition. State <strong>one </strong>chemical equation for <strong>each </strong>gas to describe how each forms an acidic solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student wanted to determine the formula of indium sulfate. She applied an electrical current of 0.300A to an aqueous solution of indium sulfate for 9.00 × 10<sup>3 </sup>s and found that 1.07 g of indium metal deposited on the cathode.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge, in coulombs, passed during the electrolysis.</p>
<p>\(\left( {{\text{current }}I = \frac{{{\text{charge }}Q\,}}{{{\text{time }}t}}} \right)\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of electrons passed using section 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of indium deposited by one mole of electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of moles of electrons required to deposit one mole of indium. Relative atomic mass of indium, <em>A</em><sub>r</sub>=114.82.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the indium ion and the formula of indium sulfate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">It was over a hundred years after the accidental discovery of liquid crystals that liquid-crystal displays (LCDs) came into common use in the 1990s. Liquid crystals are formed over a temperature range between the solid and the liquid state.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the nematic liquid-crystal phase in terms of the arrangement of the molecules.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the effect of increasing the temperature on the nematic liquid crystal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Addition polymers are extensively used in society. The properties of addition polymers may be modified by the introduction of certain substances.</p>
</div>
<div class="question">
<p class="p1">(a) For two different addition polymers, describe and explain <strong>one </strong>way in which the properties of addition polymers may be modified.</p>
<p class="p1">Polymer one:</p>
<p class="p1">Polymer two:</p>
<p class="p1">(b) Describe and explain how the extent of branching affects the properties of poly(ethene).</p>
<p class="p1">(c) Discuss <strong>two </strong>advantages and <strong>two </strong>disadvantages of using poly(ethene).</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aluminium is extracted by the electrolysis of a molten mixture containing alumina, Al<sub><span class="s1">2</span></sub>O<sub><span class="s1">3</span></sub>, using graphite electrodes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the molten electrolyte also contains cryolite.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State a half-equation for the reaction at the negative electrode (cathode).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Oxygen is produced at the positive electrode (anode). State the name of another gas produced at this electrode.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>properties of aluminium that make it suitable for use as an overhead electric cable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Alloys of aluminium with nickel are used to make engine parts. Explain, by referring to the structure of these alloys, why they are less malleable than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The Industrial Revolution was the result of large-scale extraction of iron from its ore and had significant impact worldwide.</p>
</div>
<div class="specification">
<p class="p1">In a blast furnace, a large volume of air is introduced under pressure near the bottom while a mixture of limestone, coke and iron(III) oxide is introduced at the top.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction of coke with air in the blast furnace.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The product formed in part (i) reacts with coke to produce carbon monoxide. Explain, giving an equation, why this reaction is important in the extraction of iron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Catalytic cracking uses heterogeneous catalysts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The initial products of the fractional distillation of oil often undergo cracking. This can be carried out in a number of ways. State the <strong>major </strong>reason for choosing each of the following techniques.</p>
<p class="p1">Catalytic cracking:</p>
<p class="p1">Thermal cracking:</p>
<p class="p1">Steam cracking:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how these differ from homogeneous catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify <strong>one </strong>disadvantage of using heterogeneous catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Many of the compounds produced by cracking are used in the manufacture of addition polymers. State the essential structural feature of these compounds and explain its importance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The polymers often have other substances added to modify their properties. One group of additives are plasticizers. State how plasticizers modify the physical properties of polyvinyl chloride and explain at the molecular level how this is achieved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Nanotechnology creates and uses structures that have novel properties because of their size.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the size range of structures which are involved in nanotechnology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>implications of nanotechnology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the difference between homogeneous and heterogeneous catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>advantage and <strong>one </strong>disadvantage that homogeneous catalysts have over heterogeneous catalysts.</p>
<p class="p1">Advantage:</p>
<p class="p1">Disadvantage:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apart from their selectivity to form the required product and their cost, discuss <strong>two </strong>other factors which should be considered when choosing a suitable catalyst for an industrial process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethene can be polymerized to form high-density poly(ethene), HDPE, or low-density poly(ethene), LDPE, depending on the reaction conditions. Describe the main structural difference between HDPE and LDPE and explain how this accounts for their different properties.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>The repeating unit of poly(propene) has the formula:</p>
<p class="p2" style="text-align: center;">–[–\({\text{C}}{{\text{H}}_{\text{2}}}{\text{–CH(C}}{{\text{H}}_{\text{3}}}{\text{)}}\)–]–</p>
<p class="p1">Draw a section of the polymer containing <strong>five </strong>repeating units to illustrate atactic</p>
<p class="p1">poly(propene).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Explain why isotactic poly(propene) is tough and can be used to make car bumpers (fenders), whereas atactic poly(propene) is soft and flexible making it suitable for sealants.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Crude oil (petroleum) is initially separated into its components by fractional distillation, but subsequent cracking of the heavier fractions is usually required.</p>
</div>
<div class="specification">
<p>Ethene can be polymerized to form poly(ethene) and, depending on the conditions used, either high-density poly(ethene) (HDPE) or low-density poly(ethene) (LDPE) is formed.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the thermal cracking of \({{\text{C}}_{{\text{20}}}}{{\text{H}}_{{\text{42}}}}\) in which octane and ethene are products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Other than density, state <strong>two</strong> differences in the physical properties of HDPE and LDPE.</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Outline how the differences in (b)(i) relate to differences in their chemical structure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It has been said that bitumen and heavy fuel oils are too valuable a resource to use for road surfacing and electricity generation. Comment on this statement.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Detergents are one example of lyotropic liquid crystals.</p>
<p class="p1">State <strong>one </strong>other example of a lyotropic liquid crystal and describe the difference between lyotropic and thermotropic liquid crystals.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alloys are important substances in industries that use metals.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe an alloy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how alloying can modify the structure and properties of metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Nano-sized ‘<em>test-tubes</em>’ with one open end, can be formed from carbon structures.</p>
</div>
<div class="specification">
<p class="p1">Carbon nanotubes can be used as catalysts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe these ‘<em>test-tubes</em>’ with reference to the structures of carbon allotropes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">These tubes are believed to be stronger than steel. Explain the strength of these ‘<em>test-tubes</em>’ on a molecular level.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest <strong>two </strong>reasons why they are effective heterogeneous catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>potential concern associated with the use of carbon nanotubes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In the last 15 years several Nobel prizes have been awarded in the area of nanotechnology, from the development of the scanning probe microscope, to the discovery of fullerenes. By 2015 nanotechnology could employ two million workers worldwide.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">After the discovery of \({{\text{C}}_{60}}\), chemists discovered carbon nanotubes. Describe the structure and properties of carbon nanotubes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Nanotechnology could provide new solutions for developing countries where basic services such as good health care, education, safe drinking water and reliable energy are often lacking. Discuss some of the potential risks associated with developing nanotechnology.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Many recent developments in chemistry have involved making use of devices that operate on a nanoscale.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the scale at which nanotechnology takes place and outline the importance of working at this scale.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>public concern regarding the development of nanotechnology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One development has been the production of nanotubes. Describe the way in which the arrangement of carbon atoms in the wall and sealed end of a nanotube differ.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Catalysts may be homogeneous or heterogeneous.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between <em>homogeneous </em>and <em>heterogeneous </em>catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>factors which need to be considered when selecting a catalyst for a particular chemical process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the catalyst used in the catalytic cracking of long chain hydrocarbons and state <strong>one </strong>other condition needed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation for the catalytic cracking of the straight chain hydrocarbon pentadecane, \({{\text{C}}_{{\text{15}}}}{{\text{H}}_{{\text{32}}}}\), to produce <strong>two </strong>products with similar masses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from an ore containing Fe<sub>2</sub>O<sub>3</sub> in a blast furnace by reaction with coke, limestone and air. Aluminium is obtained by electrolysis of an ore containing Al<sub>2</sub>O<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the overall redox equation when carbon monoxide reduces Fe<sub>2</sub>O<sub>3</sub> to Fe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the magnetic properties of Fe<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> in terms of the electron structure of the metal ion, giving your reasons.</p>
<p>Fe<sub>2</sub>O<sub>3</sub>:<br><br></p>
<p>Al<sub>2</sub>O<sub>3</sub>:<br> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Molten alumina, Al<sub>2</sub>O<sub>3</sub>(l), was electrolysed by passing 2.00×10<sup>6</sup> C through the cell. Calculate the mass of aluminium produced, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The two diagrams below show the arrangement of molecules in two different types of polyethene, labelled <strong>A </strong>and <strong>B</strong>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_06.17.13.png" alt="N12/4/CHEMI/SP3/ENG/TZ0/C3"></p>
</div>
<div class="specification">
<p class="p1">Predict which type of polyethene (<strong>A </strong>or <strong>B</strong>) has the strongest intermolecular forces, highest density and greatest flexibility.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Strongest intermolecular forces:</p>
<p class="p1">(ii) Highest density:</p>
<p class="p1">(iii) Greatest flexibility:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The polymer polyvinyl chloride (PVC), also known as poly(chloroethene), is hard and brittle when pure. Explain, in terms of intermolecular forces, how adding a plasticizer to PVC modifies the properties of the polymer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use high-density poly(ethene) and low-density poly(ethene) as examples to explain the difference that branching can make to the properties of a polymer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">During the formation of poly(styrene), a volatile hydrocarbon such as pentane is often added. Describe how this affects the properties of the polymer and give <strong>one </strong>use for this product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The main ore used to produce aluminium by electrolysis is bauxite. Bauxite is mainly aluminium hydroxide, and contains iron(III) oxide and titanium(IV) oxide as impurities.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how pure aluminium oxide is obtained from bauxite.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why sodium hexafluoroaluminate, \({\text{N}}{{\text{a}}_{\text{3}}}{\text{Al}}{{\text{F}}_{\text{6}}}\), (cryolite) is added to the aluminium oxide before electrolysis takes place to produce aluminium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the half-equations for the reactions taking place at the positive and negative electrodes during the production of aluminium by electrolysis.</p>
<p class="p2"> </p>
<p class="p1">Positive electrode (anode):</p>
<p class="p2"> </p>
<p class="p1">Negative electrode (cathode):</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Before the introduction of the electrolytic method by Hall and Héroult in the 1880s it was very difficult to obtain aluminium metal from its ores. Suggest <strong>one </strong>way in which it was achieved.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The worldwide production of aluminium by electrolysis makes a significant impact on global warming. Suggest <strong>two </strong>different ways in which the process increases the amount of carbon dioxide in the atmosphere.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Nanotechnology has expanded in the past 30 years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between the arrangement of carbon atoms at the sides and at the ends of carbon nanotubes.</p>
<p> </p>
<p>Sides:</p>
<p> </p>
<p>Ends:</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why bundles of carbon nanotubes have high tensile strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>two </strong>concerns regarding the development of nanotechnology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Poly(propene) has different forms. Isotactic poly(propene) is tough, while atactic poly(propene) is flexible.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the difference in the structure of the two polymers.</p>
<p class="p2"> </p>
<p class="p1">Isotactic:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Atactic:</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the difference in structure results in the different properties of isotactic and atactic poly(propene).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron acts as a catalyst in the chemical reactions below.</p>
<p>Reaction I, catalysed by \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\): \({{\text{S}}_{\text{2}}}{\text{O}}_8^{2 - }{\text{(aq)}} + {\text{2}}{{\text{I}}^ - }{\text{(aq)}} \to {\text{2SO}}_4^{2 - }{\text{(aq)}} + {{\text{I}}_{\text{2}}}{\text{(aq)}}\)</p>
<p>Reaction II, catalysed by Fe(s): \({\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}} + {{\text{N}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of catalysis occurring in reaction I.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the mechanism by which each catalyst lowers the activation energy in the reactions above, and state a particular disadvantage of each type of catalysis.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_15.05.47.png" alt="N14/4/CHEMI/SP3/ENG/TZ0/09.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Liquid-crystal displays are used in many electronic appliances. The molecule below has liquid-crystal display properties.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-27_om_13.12.41.png" alt="N13/4/CHEMI/SP3/ENG/TZ0/10"></p>
<p class="p1">Suggest <strong>three </strong>reasons why the molecule is suitable for use in liquid-crystal display devices.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between a <em>homogeneous </em>and a <em>heterogeneous </em>catalyst.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than cost, state <strong>one </strong>advantage and <strong>one </strong>disadvantage of using a homogeneous catalyst rather than a heterogeneous catalyst.</p>
<p class="p2"> </p>
<p class="p1">Advantage:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Disadvantage:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than selectivity and cost, list <strong>three </strong>factors which should be considered when choosing a catalyst for a particular industrial process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Liquid crystals are sometimes used in the construction of “smart windows”.</p>
<p class="p2">Smart windows are milky white as their randomly arranged liquid crystals scatter light. When a voltage is applied, the liquid crystals align in the same direction. The light then passes through them without scattering, making the windows transparent.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the property of the liquid-crystal molecules that allows them to align when a voltage is applied.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List <strong>two </strong>substances that can behave as liquid crystals.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between <em>thermotropic </em>and <em>lyotropic </em>liquid crystals.</p>
<p class="p2"> </p>
<p class="p1">Thermotropic liquid crystals:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Lyotropic liquid crystals:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In order to make waste water acceptable for drinking, it is treated in a series of steps to remove hazardous substances.</p>
<p class="p1">Tertiary treatment removes phosphates, nitrates and heavy metal ions from water.</p>
</div>
<div class="question">
<p class="p1">State an ionic equation, including the state symbols, to show how hydrogen sulfide gas, \({{\text{H}}_{\text{2}}}{\text{S(g)}}\), is able to remove mercury(II) ions, \({\text{H}}{{\text{g}}^{2 + }}{\text{(aq)}}\), when it is bubbled through a water sample.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aluminium and its alloys are widely used in industry.</p>
</div>
<div class="specification">
<p class="p1">Aluminium metal is obtained by the electrolysis of alumina dissolved in molten cryolite.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the function of the molten cryolite.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the half-equations for the reactions that take place at each electrode.</p>
<p class="p1">Positive electrode (anode):</p>
<p class="p1">Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>two </strong>different ways that carbon dioxide may be produced during the production of aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Cracking is the process by which long-chain alkanes found in oil are broken down into smaller molecules.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The following reaction occurs during the cracking of tetradecane, \({{\text{C}}_{{\text{14}}}}{{\text{H}}_{{\text{30}}}}\).</p>
<p class="p1">\[{{\text{C}}_{14}}{{\text{H}}_{30}}{\text{(g)}} \to {{\text{C}}_{10}}{{\text{H}}_{22}}{\text{(g)}} + {\text{2}}{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}}\]</p>
<p class="p1">Suggest a use for each of the products formed in the reaction.</p>
<p class="p2"> </p>
<p class="p1">\({{\text{C}}_{{\text{10}}}}{{\text{H}}_{{\text{22}}}}\):</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the main type of product obtained from steam cracking.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Catalytic cracking uses silica as a heterogeneous catalyst. Explain the mode of action of a heterogeneous catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>advantage of using a heterogeneous catalyst rather than a homogeneous catalyst.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>factors that need to be considered when choosing a catalyst for a process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Cholesteryl benzoate was one of the first liquid crystals studied.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_05.17.24.png" alt="m15/4/CHEMI/SP3/eng/TZ2/12"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the structural feature of cholesteryl benzoate which makes it suitable for use as a liquid crystal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the essential feature a liquid-crystal molecule must have so that the display can be turned “on” and “off”.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>There is much debate about the need for laws to regulate research and development into nanotechnology.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>nanotechnology</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>two</strong> concerns about its development and use.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In 1989 Don Eigler and his team carried out one of the first experiments in nanotechnology.</p>
<p>They spelled out the IBM logo with 35 xenon atoms.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_16.30.22.png" alt="M15/4/CHEMI/SP3/ENG/TZ1/09"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the technique used to manipulate the atoms in this way.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atomic radius of xenon is \(1.36 \times {10^{ - 10}}{\text{ m}}\). Estimate the approximate length, in m, of the “I” in the original IBM image.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Landfill sites are used to dispose of about 90% of the world’s domestic waste, but incineration is being increasingly used in some countries.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why some biodegradable plastics do not decompose in landfill sites.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">High-level and low-level wastes are two types of radioactive waste. Compare the half-lives and the methods of disposal of the two types of waste.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There has been a shift in the use of crude oil (petroleum) away from its use as an energy source and towards its use as a chemical feedstock.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>reasons for this shift.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A lot of feedstock is used in the production of plastics. Discuss <strong>two </strong>advantages and <strong>one </strong>disadvantage of using plastic for packaging instead of cardboard.</p>
<p> </p>
<p>Two advantages:</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>One disadvantage:</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Steel is a vital structural material in modern society. Some of it is obtained from recycled iron and steel, but much of it is produced from iron ore using a blast furnace.</p>
</div>
<div class="question">
<p class="p1">State <strong>one </strong>negative impact that the production of iron and steel has on the environment.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">State <strong>three </strong>factors which need to be considered when an industrial catalyst is chosen. In <strong>each</strong> case explain why they are important.</p>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals are widely used in devices such as calculators, laptop computers and advanced optical materials.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Describe the meaning of the term liquid crystals and state which of the representations below (A, B or C) best describes molecules present in the liquid-crystalline phase.</p>
<p><img src="images/Schermafbeelding_2016-08-18_om_12.17.43.png" alt="M14/4/CHEMI/SP3/ENG/TZ1/10.a.i"></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Deduce, with reasoning, which of the following substance(s) is/are most likely to show liquid-crystalline behaviour.</p>
<p> </p>
<p>Substance I:</p>
<p><img src="images/Schermafbeelding_2016-08-18_om_12.43.12.png" alt="M14/4/CHEMI/SP3/ENG/TZ1/10.a.ii.01"></p>
<p>Liquid-crystalline behaviour (yes/no):</p>
<p> </p>
<p>Reasoning:</p>
<p> </p>
<p> </p>
<p> </p>
<p>Substance II:</p>
<p><img src="images/Schermafbeelding_2016-08-18_om_12.44.14.png" alt="M14/4/CHEMI/SP3/ENG/TZ1/10.a.ii.02"></p>
<p>Liquid-crystalline behaviour (yes/no):</p>
<p> </p>
<p>Reasoning:</p>
<p> </p>
<p> </p>
<p> </p>
<p>Substance III:</p>
<p><img src="images/Schermafbeelding_2016-08-18_om_12.45.23.png" alt="M14/4/CHEMI/SP3/ENG/TZ1/10.a.ii.03"></p>
<p>Liquid-crystalline behaviour (yes/no):</p>
<p> </p>
<p>Reasoning:</p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) Suggest why octane does not show liquid-crystalline behaviour.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State <strong>one </strong>difference between thermotropic and lyotropic liquid crystals.</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Identify, by stating yes or no, the substance(s) which show(s) thermotropic liquid crystalline behaviour.</p>
<p><img src="images/Schermafbeelding_2016-08-18_om_12.51.57.png" alt="M14/4/CHEMI/SP3/ENG/TZ1/10.b.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aluminium is the most abundant metal on Earth and its alloys are widely used.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the term <em>alloy</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the main improvement made to the properties of aluminium when it is alloyed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Polyvinyl chloride (PVC) and polyethene are both polymers made from crude oil.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why PVC is less flexible than polyethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State how PVC can be made more flexible during its manufacture and explain the increase in flexibility on a molecular level.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">PVC can exist in isotactic and atactic forms. Draw the structure of the isotactic form showing a chain of at least six carbon atoms.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Thermotropic liquid crystals are widely used in display devices and sensors.</p>
</div>
<div class="specification">
<p>The structure of a material used in electrical display devices is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_15.43.07.png" alt="M15/4/CHEMI/SP3/ENG/TZ1/08.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows eight molecules in the liquid state. Suggest, with a diagram, a possible arrangement that these rod-shaped molecules could adopt in the nematic liquid-crystal phase.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_15.46.36.png" alt="M15/4/CHEMI/SP3/ENG/TZ1/08.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with reference to the structure, why the molecule is able to change orientation in an electric field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the C<sub>5</sub>H<sub>11</sub> chain contributes to the liquid-crystal properties of the compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a liquid-crystal device may be unreliable at low temperatures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium is an important metal to modern society.</p>
</div>
<div class="specification">
<p>Aluminium is often used to produce lightweight alloys for use in the aerospace industry.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Describe the production of aluminium from its purified ore. Explain the role of cryolite and deduce the equations for the reactions occurring at the two electrodes.</p>
<p> </p>
<p>Production of aluminium:</p>
<p> </p>
<p> </p>
<p> </p>
<p>Role of cryolite:</p>
<p> </p>
<p> </p>
<p>Negative electrode (cathode):</p>
<p> </p>
<p>Positive electrode (anode):</p>
<p> </p>
<p>(ii) Outline why aluminium was not available in large quantities before 1900.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State <strong>one </strong>advantage of using an alloy rather than the pure metal.</p>
<p> </p>
<p> </p>
<p>(ii) Outline why the range of metals alloyed with aluminium for this use is very limited.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> possible environmental impact that can result from the large-scale production of aluminium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The large-scale production of iron is important for the industrial development of many countries.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnetite, Fe<sub>3</sub>O<sub>4</sub>, is a common ore of iron. Calculate the average oxidation state of iron in the compound and comment on your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reduction of this ore to iron with carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why iron is obtained from its ores using chemical reducing agents but aluminium is obtained using electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Compare the positional and directional order in a crystalline solid, nematic phase liquid crystal and a pure liquid. Show your answer by stating <strong>yes </strong>or <strong>no </strong>in the table below.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-20_om_06.07.28.png" alt="M09/4/CHEMI/SP3/ENG/TZ2/02"></p>
</div>
<br><hr><br><div class="specification">
<p>The development and application of plastics was one of the most important technological developments of the last century.</p>
<p>The diagram below represents a section of a polymer.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_17.36.41.png" alt="M15/4/CHEMI/SP3/ENG/TZ1/10"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the <strong>two </strong>functional groups in the monomer from which this polymer is manufactured.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An expanded form of the plastic is often used in packaging. Describe how this is manufactured.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>two </strong>advantages and <strong>one </strong>disadvantage of using the expanded form as a packaging material.</p>
<p> </p>
<p>Two advantages:</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>One disadvantage:</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Modern society is very dependent on electrical power for portable devices.</p>
</div>
<div class="specification">
<p>Two common rechargeable batteries are lead-acid and nickel-cadmium (NiCad) batteries.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State equations for the reactions that occur at each electrode in a <strong>lead-acid battery</strong> when it delivers a current.</p>
<p> </p>
<p>Positive electrode (cathode):</p>
<p> </p>
<p>Negative electrode (anode):</p>
<p> </p>
<p>(ii) State equations for the reactions that occur at each electrode in a <strong>nickel-cadmium (NiCad) battery </strong>when it delivers a current.</p>
<p> </p>
<p>Positive electrode (cathode):</p>
<p> </p>
<p>Negative electrode (anode):</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another source of power for portable devices is the fuel cell. Compare fuel cells with lead-acid rechargeable batteries, stating one similarity and two differences.</p>
<p> </p>
<p>Similarity:</p>
<p> </p>
<p> </p>
<p>Differences:</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Iron ore can be reduced in a blast furnace.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-27_om_07.36.06.png" alt="N13/4/CHEMI/SP3/ENG/TZ0/08"></p>
</div>
<div class="specification">
<p class="p1">The properties of a metal can be altered by alloying or heat treatment.</p>
</div>
<div class="question">
<p class="p1">Explain why alloying can modify the structure and properties of a metal.</p>
</div>
<br><hr><br><div class="specification">
<p>Iron is extracted from its ore by reduction in a blast furnace.</p>
</div>
<div class="question">
<p>State an equation for the reaction by which iron (III) oxide, Fe<sub>2</sub>O<sub>3</sub>, is reduced to iron in the blast furnace.</p>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals are widely used in displays.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the meaning of the term liquid crystals.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When a liquid-crystal display is warmed with a hairdryer, the display loses its clarity and may no longer be visible. Explain why this happens on a molecular level.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The two major acids that cause acid rain originate from different sources.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation that shows why rain water is naturally acidic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the process responsible for the production of each acid and state an equation to show its formation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Acid rain has caused damage to limestone buildings and marble statues. State an equation to represent the reaction of acid rain with limestone or marble.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony oxide is widely used as a homogeneous catalyst in the reaction of benzene-1,4-dicarboxylic acid with ethane-1,2-diol in the production of polyethylene terephthalate (PETE) shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Catalysts reduce the activation energy. Outline how homogeneous catalysts are involved in the reaction mechanism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is important to know how catalysts function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Antimony and its compounds are toxic, so it is important to check that the catalyst is removed from the final product. One technique to detect antimony is Inductively Coupled Plasma Mass Spectroscopy (ICP-MS).</p>
<p>Outline the nature of the plasma state and how it is produced in ICP-MS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Chloroethene undergoes polymerization with a free-radical initiator to produce the atactic form of polychlorethene (PVC).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the atactic form of polychloroethene showing <strong>four</strong> units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain, in molecular terms, why PVC becomes more flexible and softer when a plasticizer is added.</p>
<p>(ii) State <strong>one</strong> type of compound which can be used as a plasticizer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an environmental issue associated with the use of PVC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Biphenyl nitriles, such as the molecule shown below, were the first thermotropic liquid crystal molecules to be synthesized.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how changing the size or shape of the hydrocarbon chain would affect the molecule’s liquid crystal behaviour.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the nitrile group enables these molecules to be used in liquid-crystal displays (LCDs).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymers are made up of repeating monomer units which can be manipulated in various ways to give structures with desired properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw the structure of 2-methylpropene.</p>
<p>(ii) Deduce the repeating unit of poly(2-methylpropene).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the percentage atom economy for polymerization of 2-methylpropene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Suggest why incomplete combustion of plastic, such as polyvinyl chloride, is common in industrial and house fires.</p>
<p>(ii) Phthalate plasticizers such as DEHP, shown below, are frequently used in polyvinyl chloride.</p>
<p style="text-align: center;"><img src=""></p>
<p>With reference to bonding, suggest a reason why many adults have measurable levels of phthalates in their bodies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals have many applications.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a lyotropic liquid crystal differs from a thermotropic liquid crystal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing the temperature of a nematic liquid crystal on its directional order.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymer nanocomposites often have better structural performance than conventional materials. Lithographic etching and metal coordination are two methods of assembling these nanocomposites.</p>
</div>
<div class="specification">
<p>Nanoparticles anchor plasticizers in PVC so that they cannot escape from the polymer as easily.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the two distinct phases of a composite.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the methods of assembling nanocomposites by completing the table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the structure of plasticizers enables them to soften PVC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a reason why nanoparticles can better anchor plasticizers in the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The development of materials with unique properties is critical to advances in industry.</p>
</div>
<div class="specification">
<p>Low density polyethene (LDPE) and high density polyethene (HDPE) are both addition polymers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline two properties a substance should have to be used as liquid-crystal in a liquid-crystal display.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the structures of LDPE and HDPE affect one mechanical property of the plastics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the two infrared (IR) spectra is that of polyethene and the other of polytetrafluoroethene (PTFE).</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Deduce, with a reason, which spectrum is that of PTFE. Infrared data is given in section 26 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Many plastics used to be incinerated. Deduce an equation for the complete combustion of two repeating units of PVC, (–C<sub>2</sub>H<sub>3</sub>Cl–)<sub>2</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Inductively Coupled Plasma (ICP) used with Mass Spectrometry (MS) or Optical Emission Spectrometry (OES) can be used to identify and quantify elements in a sample.</p>
</div>
<div class="specification">
<p>The following graphs represent data collected by ICP-OES on trace amounts of vanadium in oil.</p>
<p style="text-align: center;"><strong>Graph 1</strong>: Calibration graph and signal for 10 μg kg<sup>−1</sup> of vanadium in oil</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><strong>Graph 2:</strong> Calibration of vanadium in μg kg<sup>−1</sup></p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;">[Source: © Agilent Technologies, Inc.1998. Reproduced with Permission, Courtesy of Agilent Technologies, Inc.]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>ICP-OES/MS can be used to analyse alloys and composites. Distinguish between alloys and composites.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>ICP-MS is a reference mode for analysis. The following correlation graphs between ICP-OES and ICP-MS were produced for yttrium and nickel.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_13.02.42.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/03.b"></p>
<p>Each <em>y</em>-axis shows concentrations calculated by ICP-OES; each <em>x</em>-axis shows concentrations for the same sample as found by ICP-MS.</p>
<p>The line in each graph is <em>y </em>= <em>x</em>.</p>
<p>Discuss the effectiveness of ICP-OES for yttrium and nickel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the purpose of each graph.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to four significant figures, the concentration, in μg kg<sup>−1</sup>, of vanadium in oil giving a signal intensity of 14 950.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium(V) oxide is used as the catalyst in the conversion of sulfur dioxide to sulfur trioxide.</p>
<p>SO<sub>2</sub>(g) + V<sub>2</sub>O<sub>5</sub>(s) → SO<sub>3</sub>(g) + 2VO<sub>2</sub>(s)</p>
<p>\(\frac{1}{2}\)O<sub>2</sub>(g) + 2VO<sub>2</sub>(s) → V<sub>2</sub>O<sub>5</sub>(s)</p>
<p>Outline how vanadium(V) oxide acts as a catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Infrared (IR) spectroscopy is often used for the identification of polymers, such as PETE, for recycling.</p>
</div>
<div class="specification">
<p>LDPE and high density polyethene (HDPE) have very similar IR spectra even though they have rather different structures and physical properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are the IR spectra of two plastics (<strong>A</strong> and <strong>B</strong>); one is PETE, the other is low density polyethene (LDPE).</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;">Deduce, giving your reasons, the identity and resin identification code (RIC) of <strong>A</strong> and <strong>B </strong>using sections 26 and 30 of the data booklet.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the difference in their structures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the difference in their structures affects their melting points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br>